diff --git a/.gitignore b/.gitignore
index 9622ab78e0e0556ec2b4cc974fee93ff680d54d2..4f21fefda9f64a0392881971a715b97c234030e3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -22,6 +22,7 @@ cmake-build-*
# generated while compiling
python/paddle/v2/framework/core.so
+paddle/pybind/pybind.h
CMakeFiles
cmake_install.cmake
paddle/.timestamp
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 08237cd850ae20c515a39c8783a18deaac431626..5739c2a26039426ab544f762e9401445f01e7de7 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -67,6 +67,9 @@ endif()
if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
+ elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
+ # TODO: support glog for Android api 16 ~ 19 in the future
+ message(WARNING "Using the unofficial git repository instead")
endif()
set(WITH_GPU OFF CACHE STRING
diff --git a/Dockerfile.android b/Dockerfile.android
index 452aa1574550627c2cce6375e12e154a9763254d..9d13a414f67be04e17b7d83403228d92bce0eda9 100644
--- a/Dockerfile.android
+++ b/Dockerfile.android
@@ -6,13 +6,14 @@ RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ub
# ENV variables
ARG ANDROID_ABI
+ARG ANDROID_API
ENV ANDROID_ABI=${ANDROID_ABI:-"armeabi-v7a"}
+ENV ANDROID_API=${ANDROID_API:-21}
ENV HOME=/root \
ANDROID_NDK_HOME=/opt/android-ndk-linux \
- ANDROID_ARM_STANDALONE_TOOLCHAIN=/opt/arm-toolchain \
- ANDROID_ARM64_STANDALONE_TOOLCHAIN=/opt/arm64-toolchain
+ ANDROID_TOOLCHAINS_DIR=/opt/toolchains
RUN apt-get update && \
apt-get install -y \
@@ -42,14 +43,12 @@ RUN pip install --upgrade pip && \
pip install pre-commit
# Android NDK
-RUN mkdir /opt/android-ndk-tmp && \
+RUN mkdir -p ${ANDROID_TOOLCHAINS_DIR} && \
+ mkdir -p /opt/android-ndk-tmp && \
cd /opt/android-ndk-tmp && \
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \
unzip -q android-ndk-r14b-linux-x86_64.zip && \
mv android-ndk-r14b ${ANDROID_NDK_HOME} && \
- ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-23 --install-dir=${ANDROID_ARM_STANDALONE_TOOLCHAIN} && \
- ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm64 --platform=android-23 --install-dir=${ANDROID_ARM64_STANDALONE_TOOLCHAIN} && \
- rm -rf /opt/android-ndk-tmp && \
- rm -rf ${ANDROID_NDK_HOME}
+ rm -rf /opt/android-ndk-tmp
CMD ["bash", "/paddle/paddle/scripts/docker/build_android.sh"]
diff --git a/cmake/cpplint.cmake b/cmake/cpplint.cmake
index 8d5d533126c9b7fa84c725d614cf3486126d0284..4823dc3e91390002aefac70f7931b4197db05789 100644
--- a/cmake/cpplint.cmake
+++ b/cmake/cpplint.cmake
@@ -26,9 +26,9 @@ set(IGNORE_PATTERN
.*ImportanceSampler.*
.*cblas\\.h.*
.*\\.pb\\.txt
- .*LtrDataProvider.*
.*MultiDataProvider.*
- .*pb.*)
+ .*pb.*
+ .*pybind.h)
# add_style_check_target
#
diff --git a/cmake/external/gflags.cmake b/cmake/external/gflags.cmake
index 16e5bef4cdb8d6513de51838e3c3c8398dbad60d..01a2f4d5fa357ca882162247cc52299a3d1d3030 100644
--- a/cmake/external/gflags.cmake
+++ b/cmake/external/gflags.cmake
@@ -18,9 +18,9 @@ SET(GFLAGS_SOURCES_DIR ${THIRD_PARTY_PATH}/gflags)
SET(GFLAGS_INSTALL_DIR ${THIRD_PARTY_PATH}/install/gflags)
SET(GFLAGS_INCLUDE_DIR "${GFLAGS_INSTALL_DIR}/include" CACHE PATH "gflags include directory." FORCE)
IF(WIN32)
- set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
+ set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
ELSE(WIN32)
- set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
+ set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR})
@@ -56,3 +56,12 @@ SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES})
ADD_DEPENDENCIES(gflags extern_gflags)
LIST(APPEND external_project_dependencies gflags)
+
+IF(WITH_C_API)
+ INSTALL(DIRECTORY ${GFLAGS_INCLUDE_DIR} DESTINATION third_party/gflags)
+ IF(ANDROID)
+ INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib/${ANDROID_ABI})
+ ELSE()
+ INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib)
+ ENDIF()
+ENDIF()
diff --git a/cmake/external/glog.cmake b/cmake/external/glog.cmake
index 8a594a825abdca6a0f989b94fa42f97d6df5e10a..b450a3016667dcb4ab229fe7ec8aaae8609d8171 100644
--- a/cmake/external/glog.cmake
+++ b/cmake/external/glog.cmake
@@ -19,9 +19,9 @@ SET(GLOG_INSTALL_DIR ${THIRD_PARTY_PATH}/install/glog)
SET(GLOG_INCLUDE_DIR "${GLOG_INSTALL_DIR}/include" CACHE PATH "glog include directory." FORCE)
IF(WIN32)
- SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE)
+ SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE)
ELSE(WIN32)
- SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE)
+ SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE)
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GLOG_INCLUDE_DIR})
@@ -56,3 +56,12 @@ ADD_DEPENDENCIES(glog extern_glog gflags)
LINK_LIBRARIES(glog gflags)
LIST(APPEND external_project_dependencies glog)
+
+IF(WITH_C_API)
+ INSTALL(DIRECTORY ${GLOG_INCLUDE_DIR} DESTINATION third_party/glog)
+ IF(ANDROID)
+ INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib/${ANDROID_ABI})
+ ELSE()
+ INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib)
+ ENDIF()
+ENDIF()
diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake
index f9e05af59fed7a8ad049390eda2c94d8577db1e7..4fc8d43fc10891603b79c01a1c769cae21c52655 100644
--- a/cmake/external/openblas.cmake
+++ b/cmake/external/openblas.cmake
@@ -73,6 +73,26 @@ IF(NOT ${CBLAS_FOUND})
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
)
+
+ IF(WITH_C_API)
+ INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas)
+ # Because libopenblas.a is a symbolic link of another library, thus need to
+ # install the whole directory.
+ IF(ANDROID)
+ SET(TMP_INSTALL_DIR third_party/openblas/lib/${ANDROID_ABI})
+ ELSE()
+ SET(TMP_INSTALL_DIR third_party/openblas/lib)
+ ENDIF()
+ INSTALL(CODE "execute_process(
+ COMMAND ${CMAKE_COMMAND} -E copy_directory ${CBLAS_INSTALL_DIR}/lib
+ destination ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}
+ )"
+ )
+ INSTALL(CODE "MESSAGE(STATUS \"Installing: \"
+ \"${CBLAS_INSTALL_DIR}/lib -> ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}\"
+ )"
+ )
+ ENDIF()
ENDIF(NOT ${CBLAS_FOUND})
MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}")
diff --git a/cmake/external/protobuf.cmake b/cmake/external/protobuf.cmake
index e629d61585c2d2ff916187ee28d4fd089a5bd857..a887be2e2ae5e21562fc15c775bb24cc1553480e 100644
--- a/cmake/external/protobuf.cmake
+++ b/cmake/external/protobuf.cmake
@@ -223,6 +223,15 @@ IF(NOT PROTOBUF_FOUND)
SET(PROTOBUF_PROTOC_LIBRARY ${extern_protobuf_PROTOC_LIBRARY}
CACHE FILEPATH "protoc library." FORCE)
+ IF(WITH_C_API)
+ INSTALL(DIRECTORY ${PROTOBUF_INCLUDE_DIR} DESTINATION third_party/protobuf)
+ IF(ANDROID)
+ INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI})
+ ELSE()
+ INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib)
+ ENDIF()
+ ENDIF()
+
IF(CMAKE_CROSSCOMPILING)
PROMPT_PROTOBUF_LIB(protobuf_host extern_protobuf)
ELSE()
diff --git a/cmake/external/zlib.cmake b/cmake/external/zlib.cmake
index 45ca5542b7dc30216b45487782f849b93c5f8fca..5aecab90ca3cecdfdba0eac178a6ba07dfcb8745 100644
--- a/cmake/external/zlib.cmake
+++ b/cmake/external/zlib.cmake
@@ -49,3 +49,12 @@ ExternalProject_Add(
)
LIST(APPEND external_project_dependencies zlib)
+
+IF(WITH_C_API)
+ INSTALL(DIRECTORY ${ZLIB_INCLUDE_DIR} DESTINATION third_party/zlib)
+ IF(ANDROID)
+ INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib/${ANDROID_ABI})
+ ELSE()
+ INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib)
+ ENDIF()
+ENDIF()
diff --git a/doc/design/block.md b/doc/design/block.md
new file mode 100644
index 0000000000000000000000000000000000000000..be8800122035984df281692fc40009c397565046
--- /dev/null
+++ b/doc/design/block.md
@@ -0,0 +1,338 @@
+# Design Doc: Block and Scope
+
+## The Representation of Computation
+
+Both deep learning systems and programming languages help users describe computation procedures. These systems use various representations of computation:
+
+- Caffe, Torch, and Paddle: sequences of layers.
+- TensorFlow, Caffe2, Mxnet: graphs of operators.
+- PaddlePaddle: nested blocks, like C++ and Java programs.
+
+## Block in Programming Languages and Deep Learning
+
+In programming languages, a block is a pair of curly braces that includes local variables definitions and a sequence of instructions, or operators.
+
+Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning:
+
+| programming languages | PaddlePaddle |
+|-----------------------|-----------------------|
+| for, while loop | RNN, WhileOp |
+| if, if-else, switch | IfElseOp, SwitchOp |
+| sequential execution | a sequence of layers |
+
+A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes.
+
+## Stack Frames and the Scope Hierarchy
+
+The existence of the backward makes the execution of a block of traditional programs and PaddlePaddle different to each other:
+
+| programming languages | PaddlePaddle |
+|-----------------------|-------------------------------|
+| stack | scope hierarchy |
+| stack frame | scope |
+| push at entering block| push at entering block |
+| pop at leaving block | destroy at minibatch completes|
+
+1. In traditional programs:
+
+ - When the execution enters the left curly brace of a block, the runtime pushes a frame into the stack, where it realizes local variables.
+ - After the execution leaves the right curly brace, the runtime pops the frame.
+ - The maximum number of frames in the stack is the maximum depth of nested blocks.
+
+1. In PaddlePaddle
+
+ - When the execution enters a block, PaddlePaddle adds a new scope, where it realizes variables.
+ - PaddlePaddle doesn't pop a scope after the execution of the block because variables therein are to be used by the backward pass. So it has a stack forest known as a *scope hierarchy*.
+ - The height of the highest tree is the maximum depth of nested blocks.
+ - After the process of a minibatch, PaddlePaddle destroys the scope hierarchy.
+
+## Use Blocks in C++ and PaddlePaddle Programs
+
+Let us consolidate the discussion by presenting some examples.
+
+### Blocks with `if-else` and `IfElseOp`
+
+The following C++ programs shows how blocks are used with the `if-else` structure:
+
+```c++
+int x = 10;
+int y = 20;
+int out;
+bool cond = false;
+if (cond) {
+ int z = x + y;
+ out = softmax(z);
+} else {
+ int z = fc(x);
+ out = z;
+}
+```
+
+An equivalent PaddlePaddle program from the design doc of the [IfElseOp operator](./if_else_op.md) is as follows:
+
+```python
+import paddle as pd
+
+x = var(10)
+y = var(20)
+cond = var(false)
+ie = pd.create_ifelseop(inputs=[x], output_num=1)
+with ie.true_block():
+ x = ie.inputs(true, 0)
+ z = operator.add(x, y)
+ ie.set_output(true, 0, operator.softmax(z))
+with ie.false_block():
+ x = ie.inputs(false, 0)
+ z = layer.fc(x)
+ ie.set_output(true, 0, operator.softmax(z))
+out = b(cond)
+```
+
+In both examples, the left branch computes `softmax(x+y)` and the right branch computes `fc(x)`.
+
+A difference is that variables in the C++ program contain scalar values, whereas those in the PaddlePaddle programs are mini-batches of instances. The `ie.input(true, 0)` invocation returns instances in the 0-th input, `x`, that corresponds to true values in `cond` as the local variable `x`, where `ie.input(false, 0)` returns instances corresponding to false values.
+
+### Blocks with `for` and `RNNOp`
+
+The following RNN model from the [RNN design doc](./rnn.md)
+
+```python
+x = sequence([10, 20, 30])
+m = var(0)
+W = tensor()
+U = tensor()
+
+rnn = create_rnn(inputs=[input])
+with rnn.stepnet() as net:
+ x = net.set_inputs(0)
+ h = net.add_memory(init=m)
+ fc_out = pd.matmul(W, x)
+ hidden_out = pd.matmul(U, h.pre(n=1))
+ sum = pd.add_two(fc_out, hidden_out)
+ act = pd.sigmoid(sum)
+ h.update(act) # update memory with act
+ net.set_outputs(0, act, hidden_out) # two outputs
+
+o1, o2 = rnn()
+print o1, o2
+```
+
+has its equivalent C++ program as follows
+
+```c++
+int* x = {10, 20, 30};
+int m = 0;
+int W = some_value();
+int U = some_other_value();
+
+int mem[sizeof(x) / sizeof(x[0]) + 1];
+int o1[sizeof(x) / sizeof(x[0]) + 1];
+int o2[sizeof(x) / sizeof(x[0]) + 1];
+for (int i = 1; i <= sizeof(x)/sizeof(x[0]); ++i) {
+ int x = x[i-1];
+ if (i == 1) mem[0] = m;
+ int fc_out = W * x;
+ int hidden_out = Y * mem[i-1];
+ int sum = fc_out + hidden_out;
+ int act = sigmoid(sum);
+ mem[i] = act;
+ o1[i] = act;
+ o2[i] = hidden_out;
+}
+
+print_array(o1);
+print_array(o2);
+```
+
+
+## Compilation and Execution
+
+Like TensorFlow programs, a PaddlePaddle program is written in Python. The first part describes a neural network as a protobuf message, and the rest part executes the message for training or inference.
+
+The generation of this protobuf message is like what a compiler generates a binary executable file. The execution of the message that the OS executes the binary file.
+
+## The "Binary Executable File Format"
+
+The definition of the protobuf message is as follows:
+
+```protobuf
+message BlockDesc {
+ repeated VarDesc vars = 1;
+ repeated OpDesc ops = 2;
+}
+```
+
+The step net in above RNN example would look like
+
+```
+BlockDesc {
+ vars = {
+ VarDesc {...} // x
+ VarDesc {...} // h
+ VarDesc {...} // fc_out
+ VarDesc {...} // hidden_out
+ VarDesc {...} // sum
+ VarDesc {...} // act
+ }
+ ops = {
+ OpDesc {...} // matmul
+ OpDesc {...} // add_two
+ OpDesc {...} // sigmoid
+ }
+};
+```
+
+Also, the RNN operator in above example is serialized into a protobuf message of type `OpDesc` and would look like:
+
+```
+OpDesc {
+ inputs = {0} // the index of x
+ outputs = {5, 3} // indices of act and hidden_out
+ attrs {
+ "memories" : {1} // the index of h
+ "step_net" :
+ }
+};
+```
+
+This `OpDesc` value is in the `ops` field of the `BlockDesc` value representing the global block.
+
+
+## The Compilation of Blocks
+
+During the generation of the Protobuf message, the Block should store VarDesc (the Protobuf message which describes Variable) and OpDesc (the Protobuf message which describes Operator).
+
+VarDesc in a block should have its name scope to avoid local variables affect parent block's name scope.
+Child block's name scopes should inherit the parent's so that OpDesc in child block can reference a VarDesc that stored in parent block. For example
+
+```python
+a = pd.Varaible(shape=[20, 20])
+b = pd.fc(a, params=["fc.w", "fc.b"])
+
+rnn = pd.create_rnn()
+with rnn.stepnet() as net:
+ x = net.set_inputs(a)
+ # reuse fc's parameter
+ fc_without_b = pd.get_variable("fc.w")
+ net.set_outputs(fc_without_b)
+
+out = rnn()
+```
+the method `pd.get_variable` can help retrieve a Variable by a name, a Variable may store in a parent block, but might be retrieved in a child block, so block should have a variable scope that supports inheritance.
+
+In compiler design, the symbol table is a data structure created and maintained by compilers to store information about the occurrence of various entities such as variable names, function names, classes, etc.
+
+To store the definition of variables and operators, we define a C++ class `SymbolTable`, like the one used in compilers.
+
+`SymbolTable` can do the following stuff:
+
+- store the definitions (some names and attributes) of variables and operators,
+- to verify if a variable was declared,
+- to make it possible to implement type checking (offer Protobuf message pointers to `InferShape` handlers).
+
+
+```c++
+// Information in SymbolTable is enough to trace the dependency graph. So maybe
+// the Eval() interface takes a SymbolTable is enough.
+class SymbolTable {
+ public:
+ SymbolTable(SymbolTable* parent) : parent_(parent) {}
+
+ OpDesc* NewOp(const string& name="");
+
+ // TODO determine whether name is generated by python or C++
+ // currently assume that a unique name will be generated by C++ if the
+ // argument name left default.
+ VarDesc* NewVar(const string& name="");
+
+ // find a VarDesc by name, if recursive true, find parent's SymbolTable
+ // recursively.
+ // this interface is introduced to support InferShape, find protobuf messages
+ // of variables and operators, pass pointers into InferShape.
+ // operator
+ //
+ // NOTE maybe some C++ classes such as VarDescBuilder and OpDescBuilder should
+ // be proposed and embedded into pybind to enable python operate on C++ pointers.
+ VarDesc* FindVar(const string& name, bool recursive=true);
+
+ OpDesc* FindOp(const string& name);
+
+ BlockDesc Compile() const;
+
+ private:
+ SymbolTable* parent_;
+
+ map ops_;
+ map vars_;
+};
+```
+
+After all the description of variables and operators is added into SymbolTable,
+the block has enough information to run.
+
+The `Block` class takes a `BlockDesc` as input, and provide `Run` and `InferShape` functions.
+
+
+```c++
+namespace {
+
+class Block : OperatorBase {
+public:
+ Block(const BlockDesc& desc) desc_(desc) {}
+
+ void InferShape(const framework::Scope& scope) const override {
+ if (!symbols_ready_) {
+ CreateVariables(scope);
+ CreateOperators();
+ }
+ // should run InferShape first.
+ for (auto& op : runtime_table_.ops()) {
+ op->InferShape(scope);
+ }
+ }
+
+ void Run(const framework::Scope& scope,
+ const platform::DeviceContext& dev_ctx) const override {
+ PADDLE_ENFORCE(symbols_ready_, "operators and variables should be created first.");
+ for (auto& op : runtime_table_.ops()) {
+ op->Run(scope, dev_ctx);
+ }
+ }
+
+ void CreateVariables(const framework::Scope& scope);
+ void CreateOperators();
+
+ // some other necessary interfaces of NetOp are list below
+ // ...
+
+private:
+ BlockDesc desc_;
+ bool symbols_ready_{false};
+};
+```
+
+## The Execution of Blocks
+
+Block inherits from OperatorBase, which has a Run method.
+Block's Run method will run its operators sequentially.
+
+There is another important interface called `Eval`, which take some arguments called targets, and generate a minimal graph which takes targets as the end points and creates a new Block,
+after `Run`, `Eval` will get the latest value and return the targets.
+
+The definition of Eval is as follows:
+
+```c++
+// clean a block description by targets using the corresponding dependency graph.
+// return a new BlockDesc with minimal number of operators.
+// NOTE not return a Block but the block's description so that this can be distributed
+// to a cluster.
+BlockDesc Prune(const BlockDesc& desc, vector targets);
+
+void Block::Eval(const vector& targets,
+ const framework::Scope& scope,
+ const platform::DeviceContext& dev_ctx) {
+ BlockDesc min_desc = Prune(desc_, targets);
+ Block min_block(min_desc);
+ min_block.Run(scope, dev_ctx);
+}
+```
diff --git a/doc/design/if_else_op.md b/doc/design/if_else_op.md
index 7370c2a24fa644a64e738f202bac9b9209642e08..954a19c0733358c235eae3cffe134c23dac94c95 100644
--- a/doc/design/if_else_op.md
+++ b/doc/design/if_else_op.md
@@ -1,22 +1,4 @@
-IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has M (M<=N) instances, each corresponds to a true element in `cond`.
-
-```python
-import paddle as pd
-
-x = var()
-y = var()
-cond = var()
-
-b = pd.create_ifop(inputs=[x], output_num=1)
-with b.true_block():
- x = b.inputs(0)
- z = operator.add(x, y)
- b.set_output(0, operator.softmax(z))
-
-out = b(cond)
-```
-
-If we want the output still has N instances, we can use IfElseOp with a default value, whose minibatch size must be N:
+IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has N instances. If cond[i] == True, input instance input[i] will go through true_block() and generate output[i]; otherwise it will produce output from false_bloack().
```python
import paddle as pd
@@ -39,7 +21,7 @@ with b.false_block():
out = b(cond)
```
-If only true_block is set in an IfElseOp, we can have a default value for false as:
+If only true_block is set in an IfElseOp, a special case is that we can have a default value for false as:
```python
import paddle as pd
diff --git a/doc/design/ops/images/2_level_rnn.dot b/doc/design/ops/images/2_level_rnn.dot
new file mode 100644
index 0000000000000000000000000000000000000000..a498e882a3d85a33d44dbad7474fa2a340e33976
--- /dev/null
+++ b/doc/design/ops/images/2_level_rnn.dot
@@ -0,0 +1,56 @@
+digraph G {
+
+ rnn [label="1-th level RNN" shape=box]
+
+ subgraph cluster0 {
+ label = "time step 0"
+
+ sent0 [label="sentence"]
+ sent1 [label="sentence"]
+
+ rnn1 [label="2-th level RNN" shape=box]
+
+ sent0 -> rnn1
+ sent1 -> rnn1
+ }
+
+ subgraph cluster1 {
+ label = "time step 1"
+
+ sent2 [label="sentence"]
+ sent3 [label="sentence"]
+
+ rnn2 [label="2-th level RNN" shape=box]
+
+ sent2 -> rnn2
+ sent3 -> rnn2
+ }
+
+ subgraph cluster2 {
+ label = "time step 2"
+
+ sent4 [label="sentence"]
+ sent5 [label="sentence"]
+
+ rnn3 [label="2-th level RNN" shape=box]
+
+ sent4 -> rnn3
+ sent5 -> rnn3
+ }
+
+
+ para0 [label="paragraph info 0"]
+ para1 [label="paragraph info 1"]
+ para2 [label="paragraph info 2"]
+
+ rnn1 -> para0
+ rnn2 -> para1
+ rnn3 -> para2
+
+ para0 -> rnn
+ para1 -> rnn
+ para2 -> rnn
+
+ chapter [label="chapter info"]
+ rnn -> chapter
+}
diff --git a/doc/design/ops/images/2_level_rnn.png b/doc/design/ops/images/2_level_rnn.png
new file mode 100644
index 0000000000000000000000000000000000000000..0537a75beb175c0c284717421f7aa908da2a5038
Binary files /dev/null and b/doc/design/ops/images/2_level_rnn.png differ
diff --git a/doc/design/ops/images/rnn.dot b/doc/design/ops/images/rnn.dot
new file mode 100644
index 0000000000000000000000000000000000000000..c1141cd9c981bb3cbf50d8bf7a6ed210280d79a5
--- /dev/null
+++ b/doc/design/ops/images/rnn.dot
@@ -0,0 +1,87 @@
+digraph G {
+ label = "simple RNN implementation"
+
+ ranksep=2;
+
+ //graph [nodesep=1, ranksep=1];
+
+ node[nodesep=1]
+
+ subgraph cluster0 {
+ label = "global scope"
+ rankdir = TB
+ W
+ boot_memory
+ input
+ output
+ }
+
+ subgraph cluster1 {
+ label = "step-scope 0"
+ rankdir = TB
+ memory0[label="memory"]
+ prememory0[label="pre-memory"]
+ step_input0[label="step input"]
+ step_output0[label="step output"]
+ }
+
+ subgraph cluster2 {
+ label = "step-scope 1"
+ rankdir = TB
+ memory1[label="memory"]
+ prememory1[label="pre-memory"]
+ step_input1[label="step input"]
+ step_output1[label="step output"]
+ }
+
+ subgraph cluster3 {
+ label = "step-scope 2"
+ rankdir = TB
+ memory2[label="memory"]
+ prememory2[label="pre-memory"]
+ step_input2[label="step input"]
+ step_output2[label="step output"]
+ }
+
+ stepnet [shape=box]
+ stepnet0 [shape=box, style=dashed]
+ stepnet1 [shape=box, style=dashed]
+ stepnet2 [shape=box, style=dashed]
+
+
+ edge[color=blue]
+ boot_memory -> prememory0 [label="init" color="blue"]
+ memory0 -> prememory1 [label="copy/reference" color="blue"]
+ memory1 -> prememory2 [label="copy/reference" color="blue"]
+
+ edge[color=black]
+ W -> stepnet0[constraint=false, style=dashed]
+ W -> stepnet1[constraint=false, style=dashed]
+ W -> stepnet2[constraint=false, style=dashed]
+
+ memory0 -> stepnet0[style=dashed]
+ prememory0 -> stepnet0 -> step_output0[style=dashed]
+
+ memory1 -> stepnet1[style=dashed]
+ prememory1 -> stepnet1 -> step_output1[style=dashed]
+
+ memory2 -> stepnet2[style=dashed]
+ prememory2 -> stepnet2 -> step_output2[style=dashed]
+
+ input -> step_input0
+ input -> step_input1
+ input -> step_input2
+
+ step_input0 -> stepnet0 [style=dashed]
+ step_input1 -> stepnet1[style=dashed]
+ step_input2 -> stepnet2[style=dashed]
+
+ step_output0 -> output
+ step_output1 -> output
+ step_output2 -> output
+
+ stepnet0 -> stepnet[style=dashed]
+ stepnet1 -> stepnet[style=dashed]
+ stepnet2 -> stepnet[style=dashed]
+
+}
diff --git a/doc/design/ops/images/rnn.jpg b/doc/design/ops/images/rnn.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9867e404cf959df0dce6ded5222b466c788fb840
Binary files /dev/null and b/doc/design/ops/images/rnn.jpg differ
diff --git a/doc/design/ops/images/rnn.png b/doc/design/ops/images/rnn.png
new file mode 100644
index 0000000000000000000000000000000000000000..e139e373fe8396782044cfd936fdde624f8c66fe
Binary files /dev/null and b/doc/design/ops/images/rnn.png differ
diff --git a/doc/design/ops/images/rnn_2level_data.dot b/doc/design/ops/images/rnn_2level_data.dot
new file mode 100644
index 0000000000000000000000000000000000000000..1d85ae2617a915ad0ad8288d848b607cc37ad297
--- /dev/null
+++ b/doc/design/ops/images/rnn_2level_data.dot
@@ -0,0 +1,75 @@
+digraph G {
+ chapter [label="chapter"]
+
+ subgraph cluster0 {
+ label = "paragraph 0"
+
+ top_rnn0[label="top rnn step 0" shape=box]
+
+ p0 [label="paragraph 0"]
+ p1 [label="paragraph 1"]
+ }
+
+ subgraph cluster1{
+ label = "paragraph 1"
+
+ top_rnn1[label="top rnn step 1" shape=box]
+
+ p2 [label="paragraph 0"]
+ p3 [label="paragraph 1"]
+ }
+
+ subgraph cluster_p0 {
+ label = "sentence 0"
+
+ low_rnn0 [label="low rnn step 0" shape=box]
+ s00 [label="sentence 0"]
+ s01 [label="sentence 1"]
+
+ low_rnn0 -> s00
+ low_rnn0 -> s01
+ }
+
+ subgraph cluster_p1 {
+ label = "sentence 1"
+ low_rnn1 [label="low rnn step 1" shape=box]
+ s10 [label="sentence 0"]
+ s11 [label="sentence 1"]
+ low_rnn1 -> s10
+ low_rnn1 -> s11
+ }
+
+ subgraph cluster_p2 {
+ label = "sentence 1"
+ low_rnn2 [label="low rnn step 0" shape=box]
+ s20 [label="sentence 0"]
+ s21 [label="sentence 1"]
+ low_rnn2 -> s20
+ low_rnn2 -> s21
+ }
+
+ subgraph cluster_p3 {
+ label = "sentence 1"
+ low_rnn3 [label="low rnn step 1" shape=box]
+ s30 [label="sentence 0"]
+ s31 [label="sentence 1"]
+ low_rnn3 -> s30
+ low_rnn3 -> s31
+ }
+
+
+ chapter -> top_rnn0
+ chapter -> top_rnn1
+
+ top_rnn0 -> p0
+ top_rnn0 -> p1
+ top_rnn1 -> p2
+ top_rnn1 -> p3
+
+
+ p0 -> low_rnn0
+ p1 -> low_rnn1
+ p2 -> low_rnn2
+ p3 -> low_rnn3
+
+}
diff --git a/doc/design/ops/images/rnn_2level_data.png b/doc/design/ops/images/rnn_2level_data.png
new file mode 100644
index 0000000000000000000000000000000000000000..4be81b2430717a6a506342a09fc26899568574c6
Binary files /dev/null and b/doc/design/ops/images/rnn_2level_data.png differ
diff --git a/doc/design/ops/rnn.md b/doc/design/ops/rnn.md
new file mode 100644
index 0000000000000000000000000000000000000000..a78eea7d45e9e9553d153170aa31da55ec6e8289
--- /dev/null
+++ b/doc/design/ops/rnn.md
@@ -0,0 +1,153 @@
+# RNNOp design
+
+This document is about an RNN operator which requires that instances in a mini-batch have the same length. We will have a more flexible RNN operator.
+
+## RNN Algorithm Implementation
+
+
+
+
+
+The above diagram shows an RNN unrolled into a full network.
+
+There are several important concepts:
+
+- *step-net*: the sub-graph to run at each step,
+- *memory*, $h_t$, the state of the current step,
+- *ex-memory*, $h_{t-1}$, the state of the previous step,
+- *initial memory value*, the ex-memory of the first step.
+
+### Step-scope
+
+There could be local variables defined in step-nets. PaddlePaddle runtime realizes these variables in *step-scopes* -- scopes created for each step.
+
+
+
+Figure 2 the RNN's data flow
+
+
+Please be aware that all steps run the same step-net. Each step
+
+1. creates the step-scope,
+2. realizes local variables, including step-outputs, in the step-scope, and
+3. runs the step-net, which could use these variables.
+
+The RNN operator will compose its output from step outputs in step scopes.
+
+### Memory and Ex-memory
+
+Let's give more details about memory and ex-memory via a simply example:
+
+$$
+h_t = U h_{t-1} + W x_t
+$$,
+
+where $h_t$ and $h_{t-1}$ are the memory and ex-memory of step $t$'s respectively.
+
+In the implementation, we can make an ex-memory variable either "refers to" the memory variable of the previous step,
+or copy the value of the previous memory value to the current ex-memory variable.
+
+### Usage in Python
+
+For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md).
+
+We can define an RNN's step-net using Block:
+
+```python
+import paddle as pd
+
+X = some_op() # x is some operator's output, and is a LoDTensor
+a = some_op()
+
+# declare parameters
+W = pd.Variable(shape=[20, 30])
+U = pd.Variable(shape=[20, 30])
+
+rnn = pd.create_rnn_op(output_num=1)
+with rnn.stepnet():
+ x = rnn.add_input(X)
+ # declare a memory (rnn's step)
+ h = rnn.add_memory(init=a)
+ # h.pre_state() means previous memory of rnn
+ new_state = pd.add_two( pd.matmul(W, x) + pd.matmul(U, h.pre_state()))
+ # update current memory
+ h.update(new_state)
+ # indicate that h variables in all step scopes should be merged
+ rnn.add_outputs(h)
+
+out = rnn()
+```
+
+Python API functions in above example:
+
+- `rnn.add_input` indicates the parameter is a variable that will be segmented into step-inputs.
+- `rnn.add_memory` creates a variable used as the memory.
+- `rnn.add_outputs` mark the variables that will be concatenated across steps into the RNN output.
+
+### Nested RNN and LoDTensor
+
+An RNN whose step-net includes other RNN operators is known as an *nested RNN*.
+
+For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences.
+
+The following figure illustrates the feeding of text into the lower level, one sentence each step, and the feeding of step outputs to the top level. The final top level output is about the whole text.
+
+
+
+
+
+```python
+import paddle as pd
+
+W = pd.Variable(shape=[20, 30])
+U = pd.Variable(shape=[20, 30])
+
+W0 = pd.Variable(shape=[20, 30])
+U0 = pd.Variable(shape=[20, 30])
+
+# a is output of some op
+a = some_op()
+
+# chapter_data is a set of 128-dim word vectors
+# the first level of LoD is sentence
+# the second level of LoD is chapter
+chapter_data = pd.Variable(shape=[None, 128], type=pd.lod_tensor, level=2)
+
+def lower_level_rnn(paragraph):
+ '''
+ x: the input
+ '''
+ rnn = pd.create_rnn_op(output_num=1)
+ with rnn.stepnet():
+ sentence = rnn.add_input(paragraph, level=0)
+ h = rnn.add_memory(shape=[20, 30])
+ h.update(
+ pd.matmul(W, sentence) + pd.matmul(U, h.pre_state()))
+ # get the last state as sentence's info
+ rnn.add_outputs(h)
+ return rnn
+
+top_level_rnn = pd.create_rnn_op(output_num=1)
+with top_level_rnn.stepnet():
+ paragraph_data = rnn.add_input(chapter_data, level=1)
+ low_rnn = lower_level_rnn(paragraph_data)
+ paragraph_out = low_rnn()
+
+ h = rnn.add_memory(init=a)
+ h.update(
+ pd.matmul(W0, paragraph_data) + pd.matmul(U0, h.pre_state()))
+ top_level_rnn.add_outputs(h)
+
+# just output the last step
+chapter_out = top_level_rnn(output_all_steps=False)
+```
+
+in above example, the construction of the `top_level_rnn` calls `lower_level_rnn`. The input is a LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences.
+
+By default, the `RNNOp` will concatenate the outputs from all the time steps,
+if the `output_all_steps` set to False, it will only output the final time step.
+
+
+
+
+
diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md
index 58665e9f2b6299ec3959ed6858ab01d459f64dd8..c6570b89aedfaac1aef9b00e889b0b3ed21d8d65 100644
--- a/doc/howto/dev/new_op_cn.md
+++ b/doc/howto/dev/new_op_cn.md
@@ -34,7 +34,7 @@ Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU
注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,GPU实现在`.cu`文件中
-实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。
+实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。
@@ -224,45 +224,15 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
### 5. 编译
-- 简单**无特殊依赖**的OP无需修改CMakeList.txt文件。[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt) 会自动将 `paddle/operators` 目录下新增的 `*_op.cc` 文件加入编译。
-- 较为复杂、**有额外依赖** 的operator仍需要修改[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)。如,`mul_op` 依赖 `math_function`,需要在`CMakeLists.txt`中添加如下内容:
+运行下面命令可以进行编译:
- ```
- op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) +
- ```
-
-- 运行下面命令可以进行编译:
-
- ```
- make mul_op
- ```
+```
+make mul_op
+```
## 绑定Python
-- 绑定Python
-
- 在 [`paddle/pybind/pybind.cc
-`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc) 使用`USE_OP`告知编译器需要链接的Op,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。
-
- ```
- USE_OP(mul);
- ```
- 如果只实现了CPU版本,则使用`USE_CPU_ONLY_OP`:
-
- ```
- USE_CPU_ONLY_OP(gather);
- ```
-
- 如果OP不带Kernel,则使用`USE_NO_KENREL_OP`:
-
- ```
- USE_NO_KENREL_OP(recurrent);
- ```
-
-
- - 生成库
-
- 无需修改 [`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件,`paddle/operators` 目录下新增的 `*_op.cc` 文件会被自动添加链接到生成的lib库中。
+系统会对新增的op自动绑定Python,并链接到生成的lib库中。
## 实现单元测试
@@ -354,11 +324,7 @@ class TestMulGradOp(GradientChecker):
### 编译和执行单元测试
-单元测试编写完成之后,在[`python/paddle/v2/framework/tests/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt)中添加以下内容,将单元测试加入工程:
-
-```
-py_test(test_mul_op SRCS test_mul_op.py)
-```
+`python/paddle/v2/framework/tests` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。
请注意,**不同于Op的编译测试,运行单元测试测时需要编译整个工程**,并且编译时需要打开`WITH_TESTING`, 即`cmake paddle_dir -DWITH_TESTING=ON`。编译成功后,执行下面的命令来运行单元测试:
@@ -371,3 +337,10 @@ make test ARGS="-R test_mul_op -V"
```bash
ctest -R test_mul_op
```
+
+## 注意事项
+
+- 为每个Op创建单独的`*_op.h`(如有)、`*_op.cc`和`*_op.cu`(如有)。不允许一个文件中包含多个Op,这将会导致编译出错。
+- 注册Op时的类型名,需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OP(B, ...)`等,这将会导致单元测试出错。
+- 如果Op没有实现GPU Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。
+- 如果多个Op依赖一些共用的函数,可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。
diff --git a/doc/howto/dev/write_docs_cn.rst b/doc/howto/dev/write_docs_cn.rst
index 36e5d420c986fc8d88eefee4aa221dba0a0480f2..731a63f945c29ba78538b3d71289b234e569354d 100644
--- a/doc/howto/dev/write_docs_cn.rst
+++ b/doc/howto/dev/write_docs_cn.rst
@@ -5,15 +5,13 @@
PaddlePaddle的文档包括英文文档 ``doc`` 和中文文档 ``doc_cn`` 两个部分。文档都是通过 `cmake`_ 驱动 `sphinx`_ 编译生成,生成后的文档分别存储在编译目录的 ``doc`` 和 ``doc_cn`` 两个子目录下。
-如何构建PaddlePaddle的文档
-==========================
+如何构建文档
+============
-PaddlePaddle的文档构建有直接构建和基于Docker构建两种方式,我们提供了一个构建脚本build_docs.sh来进行构建。
-PaddlePaddle文档需要准备的环境相对较复杂,所以我们推荐使用基于Docker来构建PaddlePaddle的文档。
+PaddlePaddle的文档构建有两种方式。
-
-使用Docker构建PaddlePaddle的文档
---------------------------------
+使用Docker构建
+--------------
使用Docker构建PaddlePaddle的文档,需要在系统里先安装好Docker工具包。Docker安装请参考 `Docker的官网 `_ 。安装好Docker之后可以使用源码目录下的脚本构建文档,即
@@ -21,58 +19,46 @@ PaddlePaddle文档需要准备的环境相对较复杂,所以我们推荐使
cd TO_YOUR_PADDLE_CLONE_PATH
cd paddle/scripts/tools/build_docs
- bash build_docs.sh with_docker
-
-编译完成后,会在当前目录生成两个子目录\:
-
-* doc 英文文档目录
-* doc_cn 中文文档目录
+ sh build_docs.sh
+编译完成之后,会在当前目录生成两个子目录\: doc(英文文档目录)和 doc_cn(中文文档目录)。
打开浏览器访问对应目录下的index.html即可访问本地文档。
-
-
-直接构建PaddlePaddle的文档
---------------------------
-
-因为PaddlePaddle的v2 api文档生成过程依赖于py_paddle Python包,用户需要首先确认py_paddle包已经安装。
-
-.. code-block:: bash
-
- python -c "import py_paddle"
-
-如果提示错误,那么用户需要在本地编译安装PaddlePaddle,请参考 `源码编译文档 `_ 。
-注意,用户在首次编译安装PaddlePaddle时,请将WITH_DOC选项关闭。在编译安装正确之后,请再次确认py_paddle包已经安装,即可进行下一步操作。
+直接构建
+--------
如果提示正确,可以执行以下命令编译生成文档,即
.. code-block:: bash
cd TO_YOUR_PADDLE_CLONE_PATH
- cd paddle/scripts/tools/build_docs
- bash build_docs.sh local
-
-编译完成之后,会在当前目录生成两个子目录\:
-
-* doc 英文文档目录
-* doc_cn 中文文档目录
+ mkdir -p build
+ cd build
+ cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_DOC=ON
+ make gen_proto_py
+ make paddle_docs paddle_docs_cn
+编译完成之后,会在当前目录生成两个子目录\: doc(英文文档目录)和 doc_cn(中文文档目录)。
打开浏览器访问对应目录下的index.html即可访问本地文档。
-如何书写PaddlePaddle的文档
-==========================
+如何书写文档
+============
PaddlePaddle文档使用 `sphinx`_ 自动生成,用户可以参考sphinx教程进行书写。
-如何更新www.paddlepaddle.org文档
-================================
+如何更新文档主题
+================
+
+PaddlePaddle文档主题在 `TO_YOUR_PADDLE_CLONE_PATH/doc_theme` 文件夹下,包含所有和前端网页设计相关的文件。
-开发者给PaddlePaddle代码增加的注释以PR的形式提交到github中,提交方式可参见 `贡献文档 `_ 。
+如何更新doc.paddlepaddle.org
+============================
+
+更新的文档以PR的形式提交到github中,提交方式参见 `贡献文档 `_ 。
目前PaddlePaddle的develop分支的文档是自动触发更新的,用户可以分别查看最新的 `中文文档 `_ 和
`英文文档 `_ 。
-
.. _cmake: https://cmake.org/
.. _sphinx: http://www.sphinx-doc.org/en/1.4.8/
diff --git a/paddle/capi/CMakeLists.txt b/paddle/capi/CMakeLists.txt
index dde99ab3400be4e61bfe119fc272270518acf070..3af111eb5738c3f2f399ff4e5c06c8d2ecd8973e 100644
--- a/paddle/capi/CMakeLists.txt
+++ b/paddle/capi/CMakeLists.txt
@@ -64,9 +64,29 @@ link_paddle_exe(paddle_capi_shared)
install(FILES ${CAPI_HEADERS} DESTINATION include/paddle)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle)
if(ANDROID)
+ execute_process(
+ COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1
+ OUTPUT_VARIABLE GIT_COMMITS_LIST
+ RESULT_VARIABLE GIT_COMMITS_LIST_RESULT
+ ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
+ if(${GIT_COMMITS_LIST_RESULT})
+ set(GIT_COMMITS_LIST "No commits.")
+ endif()
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}
DESTINATION lib/${ANDROID_ABI})
install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI})
+ install(CODE "FILE(WRITE ${CMAKE_INSTALL_PREFIX}/lib/${ANDROID_ABI}/BUILD.txt
+ \"Compiler:\n\"
+ \"\\t${CMAKE_C_COMPILER}\\n\"
+ \"\\t${CMAKE_CXX_COMPILER}\\n\"
+ \"Compiler Flags:\\n\"
+ \"\\t${CMAKE_F_FLAGS}\\n\"
+ \"\\t${CMAKE_CXX_FLAGS}\\n\"
+ \"Android API: ${CMAKE_SYSTEM_VERSION}\\n\"
+ \"Lastest commit:\\n\"
+ \"\\t${GIT_COMMITS_LIST}\\n\"
+ )"
+ )
else(ANDROID)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib)
install(TARGETS paddle_capi_shared DESTINATION lib)
diff --git a/paddle/cuda/include/hl_cuda_cudnn.h b/paddle/cuda/include/hl_cuda_cudnn.h
index 3f68c62de6d9b3aaadc9180d86159089dc728ea9..b44b071bd1b3b6e9e5539d5dc0c2b155c524fd57 100644
--- a/paddle/cuda/include/hl_cuda_cudnn.h
+++ b/paddle/cuda/include/hl_cuda_cudnn.h
@@ -22,10 +22,10 @@ limitations under the License. */
*/
typedef enum {
HL_POOLING_MAX = 0,
- // average includes padded values
- HL_POOLING_AVERAGE = 1,
// average does not include padded values
- HL_POOLING_AVERAGE_EXCLUDE_PADDING = 2,
+ HL_POOLING_AVERAGE = 1,
+ // average includes padded values
+ HL_POOLING_AVERAGE_INCLUDE_PADDING = 2,
HL_POOLING_END
} hl_pooling_mode_t;
diff --git a/paddle/cuda/include/hl_tensor_ops.h b/paddle/cuda/include/hl_tensor_ops.h
index 93d38b7d2299d994cde0934213668a525bffa80c..b2bf334dab9799153fe1d4fe2c74cce9d57168b9 100644
--- a/paddle/cuda/include/hl_tensor_ops.h
+++ b/paddle/cuda/include/hl_tensor_ops.h
@@ -461,7 +461,7 @@ class add {
public:
INLINE float32x4_t operator()(const float32x4_t a,
const float32x4_t b) const {
- return vmulq_f32(a, b);
+ return vaddq_f32(a, b);
}
};
diff --git a/paddle/cuda/src/hl_cuda_cnn.cu b/paddle/cuda/src/hl_cuda_cnn.cu
index 9ba3d142617537c0160f6dccb86ddca43ada15a5..58674febdc4a094c95ff03701e4586c32729847d 100644
--- a/paddle/cuda/src/hl_cuda_cnn.cu
+++ b/paddle/cuda/src/hl_cuda_cnn.cu
@@ -211,13 +211,11 @@ __global__ void KeAvgPoolForward(const int nthreads,
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
- int hend = min(hstart + sizeY, height + padH);
- int wend = min(wstart + sizeX, width + padW);
- int pool_size = (hend - hstart) * (wend - wstart);
+ int hend = min(hstart + sizeY, height);
+ int wend = min(wstart + sizeX, width);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
- hend = min(hend, height);
- wend = min(wend, width);
+ int pool_size = (hend - hstart) * (wend - wstart);
real aveval = 0;
inputData += (frameNum * channels + c) * height * width;
@@ -299,12 +297,14 @@ __global__ void KeAvgPoolBackward(const int nthreads,
outGrad += (frameNum * outStride + offsetC * pooledH * pooledW);
for (int ph = phstart; ph < phend; ++ph) {
+ int hstart = ph * strideH - padH;
+ int hend = min(hstart + sizeY, height);
+ hstart = max(hstart, 0);
for (int pw = pwstart; pw < pwend; ++pw) {
// figure out the pooling size
- int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
- int hend = min(hstart + sizeY, height + padH);
- int wend = min(wstart + sizeX, width + padW);
+ int wend = min(wstart + sizeX, width);
+ wstart = max(wstart, 0);
int poolsize = (hend - hstart) * (wend - wstart);
gradient += outGrad[ph * pooledW + pw] / poolsize;
}
@@ -600,16 +600,13 @@ __global__ void KeAvgPool3DForward(const int nthreads,
int dstart = pd * strideD - padD;
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
- int dend = min(dstart + sizeZ, depth + padD);
- int hend = min(hstart + sizeY, height + padH);
- int wend = min(wstart + sizeX, width + padW);
- int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
+ int dend = min(dstart + sizeZ, depth);
+ int hend = min(hstart + sizeY, height);
+ int wend = min(wstart + sizeX, width);
dstart = max(dstart, 0);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
- dend = min(dend, depth);
- hend = min(hend, height);
- wend = min(wend, width);
+ int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
real aveval = 0;
inputData += (frameNum * channels + c) * depth * height * width;
@@ -712,15 +709,18 @@ __global__ void KeAvgPool3DBackward(const int nthreads,
outGrad += (frameNum * channels + offsetC) * pooledD * pooledH * pooledW;
for (int pd = pdstart; pd < pdend; ++pd) {
+ int dstart = pd * strideD - padD;
+ int dend = min(dstart + sizeZ, depth);
+ dstart = max(dstart, 0);
for (int ph = phstart; ph < phend; ++ph) {
+ int hstart = ph * strideH - padH;
+ int hend = min(hstart + sizeY, height);
+ hstart = max(hstart, 0);
for (int pw = pwstart; pw < pwend; ++pw) {
// figure out the pooling size
- int dstart = pd * strideD - padD;
- int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
- int dend = min(dstart + sizeZ, depth + padD);
- int hend = min(hstart + sizeY, height + padH);
- int wend = min(wstart + sizeX, width + padW);
+ int wend = min(wstart + sizeX, width);
+ wstart = max(wstart, 0);
int poolsize = (dend - dstart) * (hend - hstart) * (wend - wstart);
gradient += outGrad[(pd * pooledH + ph) * pooledW + pw] / poolsize;
}
diff --git a/paddle/cuda/src/hl_cuda_cudnn.cc b/paddle/cuda/src/hl_cuda_cudnn.cc
index f38ef692558b908ed65d2c84821bbb7c3b439742..b8caf48f9c06094e85765f7aa5a3f4195d0ca931 100644
--- a/paddle/cuda/src/hl_cuda_cudnn.cc
+++ b/paddle/cuda/src/hl_cuda_cudnn.cc
@@ -432,11 +432,11 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc,
cudnn_mode = CUDNN_POOLING_MAX;
break;
case HL_POOLING_AVERAGE:
- cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
- break;
- case HL_POOLING_AVERAGE_EXCLUDE_PADDING:
cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
break;
+ case HL_POOLING_AVERAGE_INCLUDE_PADDING:
+ cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
+ break;
default:
LOG(FATAL) << "parameter mode error";
}
diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt
index c0838d9b759110fd706577386d2c81bda6876223..3371962c635c3731f00a6af2a6e287ece33397cd 100644
--- a/paddle/framework/CMakeLists.txt
+++ b/paddle/framework/CMakeLists.txt
@@ -9,6 +9,7 @@ cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor)
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor)
+nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc)
diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md
index c762811dfc190b255e0a3389885a081ce8315caf..0a6d762bc8be5201ac196b4bc6107c06d07a31d7 100644
--- a/paddle/framework/backward.md
+++ b/paddle/framework/backward.md
@@ -2,11 +2,22 @@
## Motivation
-In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the gradient operators/expressions together with the chain rule. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
+In Neural Network, many model is solved by the the backpropagation algorithm(known as BP) at present. Technically it caculates the gradient of the loss function, then distributed back through the networks. Follows the chain rule, so we need a module chains the gradient operators/expressions together with to construct the backward pass. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
-## Backward Operator Registry
+## Implementation
-A backward network is built up with several backward operators. Backward operators take forward operators' inputs outputs, and output gradients and then calculate its input gradients.
+In this design doc, we exported only one API for generating the backward pass.
+
+```c++
+std::unique_ptr Backward(const OperatorBase& forwardOp,
+ const std::unordered_set& no_grad_vars);
+```
+
+The implementation behind it can be divided into two parts, **Backward Operator Creating** and **Backward Operator Building**.
+
+### Backward Operator Registry
+
+A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs, and output gradients and then calculate its input gradients.
| | forward operator | backward operator
| ---------------------- | ---------------- |------------------------- |
@@ -25,7 +36,7 @@ REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
`mul_grad` is the type of backward operator, and `MulOpGrad` is its class name.
-## Backward Opeartor Creating
+### Backward Opeartor Creating
Given a certain forward operator, we can get its corresponding backward operator by calling:
@@ -43,40 +54,47 @@ The function `BuildGradOp` will sequentially execute following processes:
4. Building backward operator with `inputs`, `outputs` and forward operator's attributes.
-## Backward Network Building
-
-A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and put them together.
+### Backward Network Building
-In our design, the network itself is also a kind of operator. So the operators contained by a big network may be some small network.
-
-given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`, `InputGradients`.
+A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and append them together one by one. There is some corner case need to process specially.
1. Op
- when the input forward network is an Op, return its gradient Operator Immediately.
+ When the input forward network is an Op, return its gradient Operator Immediately. If all of its outputs are in no gradient set, then return a special `NOP`.
2. NetOp
- when the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
+ In our design, the network itself is also a kind of operator(**NetOp**). So the operators contained by a big network may be some small network. When the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
+
+3. RnnOp
+
+ RnnOp is a nested stepnet operator. Backward module need to recusively call `Backward` for every stepnet.
+
+4. Sharing Variables
+
+ **sharing variables**. As illustrated in the pictures, two operator's share the same variable name of W@GRAD, which will overwrite their sharing input variable.
+
+
+
- **shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwrite their shared input variable.
+ pic 1. Sharing variables in operators.
-
-
+
- 1. Shared variable in operators.
+ Sharing variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator to replace the overwrite links.
-
+
+
- Share variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator replace the overwrite links.
+ pic 2. Replace sharing variable's gradient with `Add` operator.
-
-
+
- 2. Replace shared variable's gradient with `Add` operator.
+ Because our framework finds variables accord to their names, we need to rename the output links. We add a suffix of number to represent its position in clockwise.
-
+5. Part of Gradient is Zero.
+ In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implement, we insert a special `fillZeroLike` operator.
- Then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it.
+Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it.
diff --git a/paddle/framework/images/duplicate_op2.graffle b/paddle/framework/images/duplicate_op2.graffle
index ede3bca30ae17d5af52505fd94dc2f79b23b57e0..5cec3bc64dbd44dc99e348485969f29bd128ceb1 100644
Binary files a/paddle/framework/images/duplicate_op2.graffle and b/paddle/framework/images/duplicate_op2.graffle differ
diff --git a/paddle/framework/images/duplicate_op2.png b/paddle/framework/images/duplicate_op2.png
index 4e872dc2caf3b0cbd0d5176f11a14801b538dc86..21cdd5cabf1b5203e1435a75b57770d2f702fa92 100644
Binary files a/paddle/framework/images/duplicate_op2.png and b/paddle/framework/images/duplicate_op2.png differ
diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h
index 154068fef69bc96edbd85b731fe8091b3b1ff823..fac5cd20aa7f9db0792f8102bb442192ab1ad63f 100644
--- a/paddle/framework/lod_tensor.h
+++ b/paddle/framework/lod_tensor.h
@@ -18,8 +18,10 @@
#ifndef PADDLE_ONLY_CPU
#include
#include
+#include
#endif
+#include
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/enforce.h"
@@ -32,7 +34,8 @@ template
using Vector = std::vector;
#else
template
-using Vector = thrust::host_vector;
+using Vector = thrust::host_vector<
+ T, thrust::system::cuda::experimental::pinned_allocator>;
#endif
using LoD = std::vector>;
@@ -48,18 +51,15 @@ bool operator==(const LoD& a, const LoD& b);
* LoDTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/
-class LoDTensor {
+class LoDTensor : public Tensor {
public:
LoDTensor() {}
- LoDTensor(const LoD& lod, Tensor* t) : lod_(lod), tensor_(t) {}
- void set_lod(const LoD& lod) { lod_ = lod; }
-
- void set_tensor(Tensor* tensor) { tensor_ = tensor; }
+ explicit LoDTensor(const LoD& lod) : lod_(lod) {}
- Tensor& tensor() { return *tensor_; }
+ void set_lod(const LoD& lod) { lod_ = lod; }
- LoD lod() { return lod_; }
+ LoD lod() const { return lod_; }
/*
* Get a element from LoD.
@@ -101,7 +101,6 @@ class LoDTensor {
private:
LoD lod_;
- Tensor* tensor_; // not owned
};
} // namespace framework
} // namespace paddle
diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc
index 1da8553134f377f7a4fbe8008d12fe8d4a0e47f4..7915326b27a22e9280e3f09d9bbfc2a58f46aff7 100644
--- a/paddle/framework/lod_tensor_test.cc
+++ b/paddle/framework/lod_tensor_test.cc
@@ -36,69 +36,64 @@ class LoDTensorTester : public ::testing::Test {
ASSERT_EQ(lod.size(), 3UL);
- tensor.Resize({20 /*batch size*/, 128 /*dim*/});
+ lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/});
// malloc memory
- tensor.mutable_data(place);
+ lod_tensor_.mutable_data(place);
- lod_tensor.set_lod(lod);
- lod_tensor.set_tensor(&tensor);
+ lod_tensor_.set_lod(lod);
}
protected:
platform::CPUPlace place;
- Tensor tensor;
- LoDTensor lod_tensor;
+ LoDTensor lod_tensor_;
};
-TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor.NumLevels(), 3UL); }
+TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); }
TEST_F(LoDTensorTester, NumElements) {
- ASSERT_EQ(lod_tensor.NumElements(0), 2UL);
- ASSERT_EQ(lod_tensor.NumElements(1), 4UL);
- ASSERT_EQ(lod_tensor.NumElements(2), 8UL);
+ ASSERT_EQ(lod_tensor_.NumElements(0), 2UL);
+ ASSERT_EQ(lod_tensor_.NumElements(1), 4UL);
+ ASSERT_EQ(lod_tensor_.NumElements(2), 8UL);
}
TEST_F(LoDTensorTester, SliceLevels) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
- LoDTensor new_lod_tensor = lod_tensor;
+ LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
- ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level));
- ASSERT_EQ(new_lod_tensor.tensor().data(),
- lod_tensor.tensor().data());
+ ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
+ ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data());
}
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
- LoDTensor new_lod_tensor = lod_tensor;
+ LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
- ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level));
- ASSERT_EQ(new_lod_tensor.NumElements(1), lod_tensor.NumElements(level + 1));
- ASSERT_EQ(new_lod_tensor.tensor().data(),
- lod_tensor.tensor().data());
+ ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
+ ASSERT_EQ(new_lod_tensor.NumElements(1),
+ lod_tensor_.NumElements(level + 1));
+ ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data());
}
}
TEST_F(LoDTensorTester, SliceInLevel) {
size_t level = 0;
- LoDTensor new_lod_tensor = lod_tensor;
+ LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL);
- ASSERT_EQ(new_lod_tensor.tensor().data(),
- lod_tensor.tensor().data());
+ ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data());
level = 1;
- new_lod_tensor = lod_tensor;
+ new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
- ASSERT_EQ(new_lod_tensor.tensor().data(),
- lod_tensor.tensor().data());
+ ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data());
}
} // namespace framework
diff --git a/paddle/framework/lod_tensor_test.cu b/paddle/framework/lod_tensor_test.cu
new file mode 100644
index 0000000000000000000000000000000000000000..97e69cdb2e5e1e64031c899f5e04020665485ba8
--- /dev/null
+++ b/paddle/framework/lod_tensor_test.cu
@@ -0,0 +1,50 @@
+/*
+ Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+ http://www.apache.org/licenses/LICENSE-2.0
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+*/
+
+#include
+#include
+#include "paddle/framework/lod_tensor.h"
+#include "paddle/platform/assert.h"
+
+#include
+
+__global__ void test(size_t* a, int size) {
+ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < size;
+ i += blockDim.x * gridDim.x) {
+ a[i] *= 2;
+ }
+}
+
+TEST(LoDTensor, LoDInGPU) {
+ paddle::framework::LoDTensor lod_tensor;
+ paddle::platform::GPUPlace place(0);
+
+ paddle::framework::LoD src_lod;
+ src_lod.push_back(std::vector{0, 2, 4, 6, 8, 10, 12, 14});
+
+ lod_tensor.Resize({14, 16});
+ lod_tensor.mutable_data(place);
+
+ lod_tensor.set_lod(src_lod);
+ CHECK_EQ(lod_tensor.lod_element(0, 2), 4);
+ CHECK_EQ(lod_tensor.lod_element(0, 4), 8);
+
+ auto lod = lod_tensor.lod();
+
+ test<<<1, 8>>>(lod[0].data(), lod[0].size());
+ cudaDeviceSynchronize();
+
+ for (size_t i = 0; i < src_lod[0].size(); ++i) {
+ CHECK_EQ(lod[0].data()[i], src_lod[0].data()[i] * 2);
+ }
+}
diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc
index 790cfc4746b1d34da413fa3c29a266f962c6dde6..c57537be4bf67a8db6a49669ab8d2ed1b1324bdc 100644
--- a/paddle/framework/operator.cc
+++ b/paddle/framework/operator.cc
@@ -123,6 +123,15 @@ OperatorBase::OperatorBase(const std::string& type,
CheckAllInputOutputSet();
}
+std::vector OperatorBase::InputVars() const {
+ std::vector ret_val;
+ for (auto& o : outputs_) {
+ ret_val.reserve(ret_val.size() + o.second.size());
+ ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
+ }
+ return ret_val;
+}
+
std::vector OperatorBase::OutputVars(bool has_intermediate) const {
std::vector ret_val;
if (has_intermediate) {
@@ -177,6 +186,48 @@ void OperatorBase::GenerateTemporaryNames() {
}
}
+template <>
+const Tensor* InferShapeContext::Input(const std::string& name) const {
+ auto* var = InputVar(name);
+ return var == nullptr ? nullptr : GetTensorFromVar(var);
+}
+
+template <>
+const std::vector InferShapeContext::MultiInput(
+ const std::string& name) const {
+ auto names = op().Inputs(name);
+ std::vector res;
+ res.reserve(names.size());
+ std::transform(names.begin(), names.end(), std::back_inserter(res),
+ [&](const std::string& sub_name) {
+ auto var = scope_.FindVar(sub_name);
+ return var == nullptr ? nullptr : GetTensorFromVar(var);
+ });
+ return res;
+}
+
+template <>
+Tensor* ExecutionContext::Output(const std::string& name) const {
+ auto* var = OutputVar(name);
+ return var == nullptr ? nullptr : const_cast(GetTensorFromVar(var));
+}
+
+template <>
+std::vector ExecutionContext::MultiOutput(
+ const std::string& name) const {
+ auto names = op().Outputs(name);
+ std::vector res;
+ res.reserve(names.size());
+ std::transform(names.begin(), names.end(), std::back_inserter(res),
+ [&](const std::string& sub_name) {
+ auto var = scope().FindVar(sub_name);
+ return var == nullptr
+ ? nullptr
+ : const_cast(GetTensorFromVar(var));
+ });
+ return res;
+}
+
void OpProtoAndCheckerMaker::Validate() {
validated_ = true;
CheckNoDuplicatedInOutAttrs();
diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h
index 9a98d4d3be0d1cb875d614b263f1e4365ede4113..adae7bfc3d7d31b1ed0373f01db4ef80343a08f7 100644
--- a/paddle/framework/operator.h
+++ b/paddle/framework/operator.h
@@ -22,6 +22,7 @@ limitations under the License. */
#include "op_info.h"
#include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h"
+#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
@@ -94,11 +95,14 @@ class OperatorBase {
const VariableNameMap& Inputs() const { return inputs_; }
const VariableNameMap& Outputs() const { return outputs_; }
+
//! Get a input with argument's name described in `op_proto`
std::string Input(const std::string& name) const;
//! Get a input which has multiple variables.
const std::vector& Inputs(const std::string& name) const;
+ std::vector InputVars() const;
+
//! Get a output with argument's name described in `op_proto`
std::string Output(const std::string& name) const;
//! Get an output which has multiple variables.
@@ -311,9 +315,9 @@ class InferShapeContext {
}
template
- std::vector MultiOutput(const std::string& name) const {
+ std::vector MultiOutput(const std::string& name) const {
auto names = op_.Outputs(name);
- std::vector res;
+ std::vector res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
@@ -323,11 +327,27 @@ class InferShapeContext {
return res;
}
+ const Tensor* GetTensorFromVar(const Variable* var) const {
+ if (var->IsType()) {
+ return &var->Get();
+ }
+ PADDLE_ENFORCE(var->IsType(),
+ "The Input(%s) must be LoDTensor or Tensor.");
+ return &var->Get();
+ }
+
private:
const OperatorBase& op_;
const Scope& scope_;
};
+template <>
+const Tensor* InferShapeContext::Input(const std::string& name) const;
+
+template <>
+const std::vector InferShapeContext::MultiInput(
+ const std::string& name) const;
+
template
struct EigenDeviceConverter;
@@ -360,9 +380,37 @@ class ExecutionContext : public InferShapeContext {
return device_context_;
}
+ // redefine Output function,
+ // use Variable::Get instead of Variable::GetMutable
+ template
+ T* Output(const std::string& name) const {
+ auto var = OutputVar(name);
+ return var == nullptr ? nullptr : const_cast(&var->Get());
+ }
+
+ // redefine MultiOutput function.
+ // use Variable::Get instead of Variable::GetMutable
+ template
+ std::vector MultiOutput(const std::string& name) const {
+ auto names = op().Outputs(name);
+ std::vector res;
+ res.reserve(names.size());
+ std::transform(
+ names.begin(), names.end(), std::back_inserter(res),
+ [&](const std::string& sub_name) { return Output(sub_name); });
+ return res;
+ }
+
const platform::DeviceContext* device_context_;
};
+template <>
+Tensor* ExecutionContext::Output(const std::string& name) const;
+
+template <>
+std::vector ExecutionContext::MultiOutput(
+ const std::string& name) const;
+
class OpKernel {
public:
/**
diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h
index ce938b21437195fed8c1adad4329fd139f3f96ab..4b5a2ae523f2f7fde5445f0534cd99969ad9d59e 100644
--- a/paddle/framework/tensor.h
+++ b/paddle/framework/tensor.h
@@ -81,6 +81,9 @@ class Tensor {
/*! Return the dimensions of the memory block. */
inline const DDim& dims() const;
+ /*! Return the numel of the memory block. */
+ inline int64_t numel() const;
+
/*! Resize the dimensions of the memory block. */
inline Tensor& Resize(const DDim& dims);
@@ -162,6 +165,12 @@ class Tensor {
/*! points to dimensions of memory block. */
DDim dims_;
+ /**
+ * A cache of the number of elements in a tensor.
+ * Would be 0 for an uninitialized tensor.
+ */
+ int64_t numel_;
+
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h
index 637f04ae0037bd402d855b8bcde8087bfe8328d1..ed166935f76be9d25062b5e69536c7b7ac19045d 100644
--- a/paddle/framework/tensor_impl.h
+++ b/paddle/framework/tensor_impl.h
@@ -22,9 +22,9 @@ namespace framework {
template
inline void Tensor::check_memory_size() const {
PADDLE_ENFORCE_NOT_NULL(
- holder_, "Tenosr holds no memory. Call Tensor::mutable_data first.");
+ holder_, "Tensor holds no memory. Call Tensor::mutable_data first.");
PADDLE_ENFORCE_GE(
- holder_->size(), product(dims_) * sizeof(T) + offset_,
+ holder_->size(), numel() * sizeof(T) + offset_,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory.\n"
"or maybe the required data-type mismatches the data already stored.");
@@ -54,11 +54,11 @@ inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
template
inline T* Tensor::mutable_data(platform::Place place) {
static_assert(std::is_pod::value, "T must be POD");
- PADDLE_ENFORCE_GT(product(dims_), 0,
+ PADDLE_ENFORCE_GT(numel(), 0,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first.");
/* some versions of boost::variant don't have operator!= */
- int64_t size = product(dims_) * sizeof(T);
+ int64_t size = numel() * sizeof(T);
if (holder_ == nullptr || !(holder_->place() == place) ||
holder_->size() < size + offset_) {
if (platform::is_cpu_place(place)) {
@@ -97,7 +97,7 @@ inline void Tensor::CopyFrom(const Tensor& src,
auto dst_ptr = static_cast(mutable_data(dst_place));
- auto size = product(src.dims_) * sizeof(T);
+ auto size = src.numel() * sizeof(T);
if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
memory::Copy(boost::get(dst_place), dst_ptr,
@@ -131,7 +131,7 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index.");
PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1.");
- size_t base = product(dims_) / dims_[0];
+ size_t base = numel() / dims_[0];
Tensor dst;
dst.holder_ = holder_;
DDim dst_dims = dims_;
@@ -143,11 +143,14 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
inline Tensor& Tensor::Resize(const DDim& dims) {
dims_ = dims;
+ numel_ = product(dims_);
return *this;
}
inline const DDim& Tensor::dims() const { return dims_; }
+inline int64_t Tensor::numel() const { return numel_; }
+
template
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
Tensor res;
diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc
index 55302ea47120f420e952b26830c8ea4cbcce6435..e2ec738de35c90c6a06c9a46b062d4cce55f5eda 100644
--- a/paddle/framework/tensor_test.cc
+++ b/paddle/framework/tensor_test.cc
@@ -36,7 +36,7 @@ TEST(Tensor, DataAssert) {
} catch (paddle::platform::EnforceNotMet err) {
caught = true;
std::string msg =
- "holder_ should not be null\nTenosr holds no memory. Call "
+ "holder_ should not be null\nTensor holds no memory. Call "
"Tensor::mutable_data first.";
const char* what = err.what();
for (size_t i = 0; i < msg.length(); ++i) {
@@ -112,7 +112,7 @@ TEST(Tensor, ShareDataWith) {
} catch (paddle::platform::EnforceNotMet err) {
caught = true;
std::string msg =
- "holder_ should not be null\nTenosr holds no memory. Call "
+ "holder_ should not be null\nTensor holds no memory. Call "
"Tensor::mutable_data first.";
const char* what = err.what();
for (size_t i = 0; i < msg.length(); ++i) {
@@ -274,4 +274,4 @@ TEST(Tensor, ReshapeToMatrix) {
Tensor res = ReshapeToMatrix(src, 2);
ASSERT_EQ(res.dims()[0], 2 * 3);
ASSERT_EQ(res.dims()[1], 4 * 9);
-}
\ No newline at end of file
+}
diff --git a/paddle/function/neon/NeonDepthwiseConv.h b/paddle/function/neon/NeonDepthwiseConv.h
index aefeea78badbca3d0d09e292e4e1e148618f8ac6..33722d3cac61b62f5dce8f51105c1bf4e70c4a6c 100644
--- a/paddle/function/neon/NeonDepthwiseConv.h
+++ b/paddle/function/neon/NeonDepthwiseConv.h
@@ -594,7 +594,7 @@ struct StridePadding {
float32x4_t s1 = vdupq_n_f32(0.f);
for (int s = 0; s < step; s++) {
float32x4_t s0 = vld1q_f32(input);
- float32x4x2_t v = {s0, s1};
+ float32x4x2_t v = {{s0, s1}};
vst2q_f32(inputPadding, v);
input += 4;
inputPadding += 8;
diff --git a/paddle/gserver/layers/CudnnPoolLayer.cpp b/paddle/gserver/layers/CudnnPoolLayer.cpp
index 4adb2d4709e585a6fec052435c33714d6e3a3f0e..810a1af2d09c63c3787a1ac225c2c7de4238d609 100644
--- a/paddle/gserver/layers/CudnnPoolLayer.cpp
+++ b/paddle/gserver/layers/CudnnPoolLayer.cpp
@@ -29,9 +29,9 @@ bool CudnnPoolLayer::typeCheck(const std::string &poolType,
if (mode) {
*mode = HL_POOLING_AVERAGE;
}
- } else if (poolType == "cudnn-avg-excl-pad-pool") {
+ } else if (poolType == "cudnn-avg-incl-pad-pool") {
if (mode) {
- *mode = HL_POOLING_AVERAGE_EXCLUDE_PADDING;
+ *mode = HL_POOLING_AVERAGE_INCLUDE_PADDING;
}
} else {
return false;
diff --git a/paddle/gserver/layers/DeConv3DLayer.cpp b/paddle/gserver/layers/DeConv3DLayer.cpp
index 1b59ed60c57fe3bbfa814befa8a63408a2621715..3eea638649e8ebfdd7efa18615977a9e1344c695 100644
--- a/paddle/gserver/layers/DeConv3DLayer.cpp
+++ b/paddle/gserver/layers/DeConv3DLayer.cpp
@@ -53,27 +53,27 @@ bool DeConv3DLayer::init(const LayerMap &layerMap,
size_t DeConv3DLayer::getSize() {
CHECK_NE(inputLayers_.size(), 0UL);
- outputH_.clear();
- outputW_.clear();
- outputD_.clear();
+ imgSizeW_.clear();
+ imgSizeH_.clear();
+ imgSizeD_.clear();
N_.clear();
NOut_.clear();
size_t layerSize = 0;
for (size_t i = 0; i < inputLayers_.size(); ++i) {
- outputW_.push_back(
- imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
- outputH_.push_back(imageSize(
- imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
- outputD_.push_back(imageSize(
- imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
- NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
- N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
+ imgSizeW_.push_back(
+ imageSize(outputW_[i], filterSize_[i], padding_[i], stride_[i], true));
+ imgSizeH_.push_back(imageSize(
+ outputH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
+ imgSizeD_.push_back(imageSize(
+ outputD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
+ NOut_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
+ N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
layerSize += NOut_[i] * numFilters_;
}
- getOutput().setFrameHeight(outputH_[0]);
- getOutput().setFrameWidth(outputW_[0]);
- getOutput().setFrameDepth(outputD_[0]);
+ getOutput().setFrameHeight(imgSizeH_[0]);
+ getOutput().setFrameWidth(imgSizeW_[0]);
+ getOutput().setFrameDepth(imgSizeD_[0]);
return layerSize;
}
@@ -103,9 +103,9 @@ void DeConv3DLayer::forward(PassType passType) {
}
colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(),
numFilters_,
- outputD_[i],
- outputH_[i],
- outputW_[i],
+ imgSizeD_[i],
+ imgSizeH_[i],
+ imgSizeW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
@@ -144,9 +144,9 @@ void DeConv3DLayer::backward(const UpdateCallback &callback) {
colBuf_->vol2Col(
getOutputGrad()->getData() + n * getOutputGrad()->getStride(),
numFilters_,
- outputD_[i],
- outputH_[i],
- outputW_[i],
+ imgSizeD_[i],
+ imgSizeH_[i],
+ imgSizeW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.cpp b/paddle/gserver/layers/ExpandConvBaseLayer.cpp
deleted file mode 100644
index 2b7bef0a757d7c706be3815c539b036b094596cf..0000000000000000000000000000000000000000
--- a/paddle/gserver/layers/ExpandConvBaseLayer.cpp
+++ /dev/null
@@ -1,124 +0,0 @@
-/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License. */
-
-#include "ExpandConvBaseLayer.h"
-
-#include "paddle/utils/Logging.h"
-namespace paddle {
-
-bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
- const ParameterMap ¶meterMap) {
- /* Initialize the basic convolutional parent class */
- ConvBaseLayer::init(layerMap, parameterMap);
-
- int index = 0;
- for (auto &inputConfig : config_.inputs()) {
- const ConvConfig &conf = inputConfig.conv_conf();
- /* Consistent caffe mode for multiple input */
- caffeMode_ = conf.caffe_mode();
-
- // create a new weight
- size_t height, width;
- height = filterPixels_[index] * filterChannels_[index];
- width = (!isDeconv_) ? numFilters_ : channels_[index];
- CHECK_EQ(parameters_[index]->getSize(), width * height);
- Weight *w = new Weight(height, width, parameters_[index]);
- weights_.emplace_back(w);
- index++;
- }
- if (biasParameter_.get()) {
- if (sharedBiases_) {
- CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
- biases_ =
- std::unique_ptr(new Weight(numFilters_, 1, biasParameter_));
- } else {
- biases_ =
- std::unique_ptr(new Weight(getSize(), 1, biasParameter_));
- }
- }
- getOutputSize();
-
- return true;
-}
-
-size_t ExpandConvBaseLayer::getOutputSize() {
- CHECK_NE(inputLayers_.size(), 0UL);
- size_t layerSize = ConvBaseLayer::calOutputSize();
- return layerSize;
-}
-
-void ExpandConvBaseLayer::addSharedBias() {
- size_t mapW = getOutputSize() / numFilters_;
- size_t mapH = getOutputValue()->getElementCnt() / mapW;
- MatrixPtr out =
- Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_);
-
- Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);
-
- out->transpose(transOutValue_, false); // false means no memory allocation
- transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
- numFilters_);
-
- MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
- 1,
- biases_->getW()->getElementCnt(),
- false,
- useGpu_);
- transOutValue_->addBias(*bias, 1.0f);
-
- transOutValue_->reshape(mapW, mapH);
- transOutValue_->transpose(out, false); // false means no memory allocation
-
- out->clear();
- bias->clear();
-}
-
-void ExpandConvBaseLayer::addUnsharedBias() {
- MatrixPtr outValue = getOutputValue();
- MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
- 1,
- biases_->getW()->getElementCnt(),
- false,
- useGpu_);
- outValue->addBias(*bias, 1.0f);
-}
-
-void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
- size_t mapW = getOutputSize() / numFilters_;
- size_t mapH = v->getElementCnt() / mapW;
- MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);
-
- Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);
-
- vTmp->transpose(transOutValue_, false); // false means no memory allocation
- transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
- numFilters_);
- biases->collectBias(*transOutValue_, 1.0f);
-}
-
-void ExpandConvBaseLayer::bpropBiases(MatrixPtr v) {
- MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(),
- 1,
- biases_->getWGrad()->getElementCnt(),
- false,
- useGpu_);
- if (sharedBiases_) {
- bpropSharedBias(biases, v);
- } else {
- biases->collectBias(*v, 1.0f);
- }
- biases->clear();
-}
-
-} // namespace paddle
diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.h b/paddle/gserver/layers/ExpandConvBaseLayer.h
deleted file mode 100644
index 01c699d2344443a1887ec0b5005125f617cbe279..0000000000000000000000000000000000000000
--- a/paddle/gserver/layers/ExpandConvBaseLayer.h
+++ /dev/null
@@ -1,57 +0,0 @@
-/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License. */
-
-#pragma once
-
-#include
-#include "ConvBaseLayer.h"
-#include "paddle/math/Matrix.h"
-
-namespace paddle {
-
-/**
- * @brief A subclass of ConvBaseLayer that is a superclass of both
- * ExpandConvLayer and ExpandConvTransLayer
- */
-class ExpandConvBaseLayer : public ConvBaseLayer {
-protected:
- /// The transpose of output, which is an auxiliary matrix.
- MatrixPtr transOutValue_;
-
-public:
- explicit ExpandConvBaseLayer(const LayerConfig& config)
- : ConvBaseLayer(config) {}
-
- ~ExpandConvBaseLayer() {}
-
- bool init(const LayerMap& layerMap,
- const ParameterMap& parameterMap) override;
-
- size_t getOutputSize();
-
- /**
- * Add shared bias.
- */
- void addSharedBias();
-
- /**
- * Add unshared bias.
- */
- void addUnsharedBias();
-
- void bpropSharedBias(MatrixPtr biases, MatrixPtr v);
- void bpropBiases(MatrixPtr v);
-};
-
-} // namespace paddle
diff --git a/paddle/gserver/layers/ExpandConvLayer.cpp b/paddle/gserver/layers/ExpandConvLayer.cpp
index 20de475fc3f6b6f3c05ac26bea8363daff0cf110..48dfcb49a4c2c46891bb5236fc1f8e644c03f327 100644
--- a/paddle/gserver/layers/ExpandConvLayer.cpp
+++ b/paddle/gserver/layers/ExpandConvLayer.cpp
@@ -36,7 +36,36 @@ inline bool isDepthwiseConv(int channels, int groups) {
bool ExpandConvLayer::init(const LayerMap &layerMap,
const ParameterMap ¶meterMap) {
/* Initialize the basic convolutional parent class */
- ExpandConvBaseLayer::init(layerMap, parameterMap);
+ ConvBaseLayer::init(layerMap, parameterMap);
+
+ int index = 0;
+ for (auto &inputConfig : config_.inputs()) {
+ const ConvConfig &conf = inputConfig.conv_conf();
+ /* Consistent caffe mode for multiple input */
+ caffeMode_ = conf.caffe_mode();
+
+ // create a new weight
+ size_t height, width;
+ height = filterPixels_[index] * filterChannels_[index];
+ width = (!isDeconv_) ? numFilters_ : channels_[index];
+ CHECK_EQ(parameters_[index]->getSize(), width * height);
+ Weight *w = new Weight(height, width, parameters_[index]);
+ weights_.emplace_back(w);
+ index++;
+ }
+
+ if (biasParameter_.get()) {
+ if (sharedBiases_) {
+ CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
+ biases_ = std::unique_ptr(
+ new Weight(1, numFilters_, biasParameter_, 0));
+ } else {
+ biases_ =
+ std::unique_ptr(new Weight(1, getSize(), biasParameter_, 0));
+ }
+ }
+
+ getOutputSize();
size_t numInputs = config_.inputs_size();
inputShape_.resize(numInputs);
@@ -108,6 +137,12 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
return true;
}
+size_t ExpandConvLayer::getOutputSize() {
+ CHECK_NE(inputLayers_.size(), 0UL);
+ size_t layerSize = ConvBaseLayer::calOutputSize();
+ return layerSize;
+}
+
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
backward_[2 * i]->calc(inputs, outputs)
@@ -155,11 +190,7 @@ void ExpandConvLayer::forward(PassType passType) {
/* add the bias-vector */
if (biases_.get()) {
- if (sharedBiases_) {
- addSharedBias();
- } else {
- addUnsharedBias();
- }
+ output_.value->addBias(*biases_->getW(), 1.0, sharedBiases_);
}
/* activation */
@@ -171,7 +202,7 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
MatrixPtr outGrad = getOutputGrad();
if (biases_ && biases_->getWGrad()) {
- bpropBiases(outGrad);
+ biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBiases_);
/* Increasing the number of gradient */
biases_->getParameterPtr()->incUpdate(callback);
}
diff --git a/paddle/gserver/layers/ExpandConvLayer.h b/paddle/gserver/layers/ExpandConvLayer.h
index a1f943d1521547af0f82cec7da8a4efe9037cd71..a0873de19253f2496bc0c2fba550b3199dfc7486 100644
--- a/paddle/gserver/layers/ExpandConvLayer.h
+++ b/paddle/gserver/layers/ExpandConvLayer.h
@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once
#include
-#include "ExpandConvBaseLayer.h"
+#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
namespace paddle {
@@ -28,10 +28,9 @@ namespace paddle {
* The config file api is img_conv_layer.
*/
-class ExpandConvLayer : public ExpandConvBaseLayer {
+class ExpandConvLayer : public ConvBaseLayer {
public:
- explicit ExpandConvLayer(const LayerConfig& config)
- : ExpandConvBaseLayer(config) {}
+ explicit ExpandConvLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
~ExpandConvLayer() {}
@@ -41,6 +40,8 @@ public:
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
+ size_t getOutputSize();
+
protected:
std::vector inputShape_;
std::vector filterShape_;
diff --git a/paddle/gserver/layers/Layer.h b/paddle/gserver/layers/Layer.h
index edef36194aabdb9c122ec3423deb036169a34d7c..4002a3d0747a86ab7b495ffe52247521831b71b8 100644
--- a/paddle/gserver/layers/Layer.h
+++ b/paddle/gserver/layers/Layer.h
@@ -49,6 +49,12 @@ struct LayerState {
};
typedef std::shared_ptr LayerStatePtr;
+/// Paddle device ID, MKLDNN is -2, CPU is -1
+enum PADDLE_DEVICE_ID {
+ MKLDNN_DEVICE = -2,
+ CPU_DEVICE = -1,
+};
+
/**
* @brief Base class for layer.
* Define necessary variables and functions for every layer.
@@ -59,11 +65,6 @@ protected:
LayerConfig config_;
/// whether to use GPU
bool useGpu_;
- /// Paddle device ID, MKLDNN is -2, CPU is -1
- enum PADDLE_DEVICE_ID {
- MKLDNN_DEVICE = -2,
- CPU_DEVICE = -1,
- };
/// Device Id. MKLDNN is -2, CPU is -1, and GPU is 0, 1, 2 ...
int deviceId_;
/// Input layers
diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..9088744beebd25ac105737fe3b012de143c66a7c
--- /dev/null
+++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp
@@ -0,0 +1,544 @@
+/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "MKLDNNConvLayer.h"
+#include "paddle/math/MathUtils.h"
+#include "paddle/utils/Logging.h"
+
+using namespace mkldnn; // NOLINT
+typedef memory::format format;
+
+namespace paddle {
+
+REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);
+
+bool MKLDNNConvLayer::init(const LayerMap& layerMap,
+ const ParameterMap& parameterMap) {
+ if (!MKLDNNLayer::init(layerMap, parameterMap)) {
+ return false;
+ }
+ CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
+ CHECK_EQ(inputLayers_.size(), parameters_.size());
+ CHECK(config_.shared_biases()) << "Only support shared biases yet";
+
+ oc_ = config_.num_filters();
+ const ConvConfig& conf = config_.inputs(0).conv_conf();
+ ic_ = conf.channels();
+ fw_ = conf.filter_size();
+ fh_ = conf.filter_size_y();
+ pw_ = conf.padding();
+ ph_ = conf.padding_y();
+ dw_ = conf.dilation();
+ dh_ = conf.dilation_y();
+ sw_ = conf.stride();
+ sh_ = conf.stride_y();
+ gp_ = conf.groups();
+ oh_ = conf.output_y();
+ ow_ = conf.output_x();
+ ih_ = conf.img_size_y();
+ iw_ = conf.img_size();
+ caffeMode_ = conf.caffe_mode();
+ CHECK(caffeMode_) << "Only support caffe mode yet";
+ CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
+ // check group setting
+ CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
+ CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";
+
+ // create weight
+ size_t height = oc_ / gp_;
+ size_t width = ic_ * fh_ * fw_;
+ CHECK_EQ(parameters_[0]->getSize(), height * width);
+ weight_ =
+ std::unique_ptr(new Weight(height, width, parameters_[0], 0));
+
+ // create biases
+ if (biasParameter_.get() != NULL) {
+ biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_));
+ }
+ return true;
+}
+
+void MKLDNNConvLayer::convertWeightsFromPaddle() {
+ if (hasInitedWgt_) {
+ return;
+ }
+
+ CHECK(wgtVal_) << "should have been initialized";
+ // the paddle weight format is oihw or goihw
+ auto targetDim = wgtVal_->getDims();
+ auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
+ wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
+ hasInitedWgt_ = true;
+}
+
+void MKLDNNConvLayer::convertWeightsToPaddle() {
+ CHECK(wgtVal_) << "should have been initialized";
+ auto targetDim = wgtVal_->getDims();
+ auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
+ wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
+}
+
+void MKLDNNConvLayer::reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
+ reshapeInput(bs, ih, iw);
+
+ // cal output sizes
+ // oc can not be changed
+ int fh = (fh_ - 1) * dh_ + 1;
+ int fw = (fw_ - 1) * dw_ + 1;
+ oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
+ ow = outputSize(iw, fw, pw_, sw_, caffeMode_);
+
+ reshapeOutput(oh, ow);
+ resizeOutput(bs, oc * oh * ow);
+
+ printSizeInfo();
+}
+
+void MKLDNNConvLayer::resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ resetFwdPD(fwdPD_);
+
+ resetFwdBuffers(fwdPD_, in, wgt, bias, out);
+
+ resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
+
+ printValueFormatFlow();
+}
+
+void MKLDNNConvLayer::resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ std::shared_ptr bwdWgtPD;
+ std::shared_ptr bwdDataPD;
+
+ resetBwdWgtPD(bwdWgtPD);
+
+ resetBwdDataPD(bwdDataPD);
+
+ resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out);
+
+ resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
+
+ printGradFormatFlow();
+}
+
+void MKLDNNConvLayer::updateInputData() {
+ cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
+}
+
+void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
+ weight_->getParameterPtr()->incUpdate(callback);
+ if (biases_ && biases_->getWGrad()) {
+ biases_->getParameterPtr()->incUpdate(callback);
+ }
+}
+
+void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt,
+ memory::dims& bias,
+ memory::dims& stride,
+ memory::dims& dilation,
+ memory::dims& padL,
+ memory::dims& padR) {
+ wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
+ : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
+ bias = memory::dims{oc_};
+ stride = memory::dims{sh_, sw_};
+ padL = memory::dims{ph_, pw_};
+ padR = getPaddingR();
+ // note: mkldnn dilation start from 0
+ dilation = memory::dims{dh_ - 1, dw_ - 1};
+}
+
+void MKLDNNConvLayer::resetFwdPD(
+ std::shared_ptr& pd) {
+ // dims for conv
+ memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
+ memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
+ memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
+ loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
+
+ prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
+ : prop_kind::forward_training;
+ algorithm algo = algorithm::convolution_direct;
+ padding_kind padKind = padding_kind::zero;
+ conv_fwd::desc fwdDesc =
+ biases_ && biases_->getW()
+ ? conv_fwd::desc(pk,
+ algo,
+ MKLDNNMatrix::createMemoryDesc(inDims),
+ MKLDNNMatrix::createMemoryDesc(wgtDims),
+ MKLDNNMatrix::createMemoryDesc(biasDims),
+ MKLDNNMatrix::createMemoryDesc(outDims),
+ strides,
+ dilations,
+ padL,
+ padR,
+ padKind)
+ : conv_fwd::desc(pk,
+ algo,
+ MKLDNNMatrix::createMemoryDesc(inDims),
+ MKLDNNMatrix::createMemoryDesc(wgtDims),
+ MKLDNNMatrix::createMemoryDesc(outDims),
+ strides,
+ dilations,
+ padL,
+ padR,
+ padKind);
+ pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
+}
+
+void MKLDNNConvLayer::resetFwdBuffers(
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ CHECK(pd);
+ resetInValue(pd, in);
+
+ resetWgtBiasValue(pd, wgt, bias);
+
+ resetOutValue(pd, out);
+}
+
+void MKLDNNConvLayer::resetFwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+
+ if (cvtInVal_) {
+ pipeline.push_back(*cvtInVal_);
+ }
+
+ if (bias) {
+ fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out));
+ } else {
+ fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out));
+ }
+ pipeline.push_back(*fwd_);
+
+ if (cvtOutVal_) {
+ pipeline.push_back(*cvtOutVal_);
+ }
+}
+
+void MKLDNNConvLayer::resetInValue(
+ std::shared_ptr& pd, MKLDNNMatrixPtr& in) {
+ const MatrixPtr& inMat = inputLayers_[0]->getOutput().value;
+ in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc());
+
+ // create buffer and reorder if input value do not match
+ cpuInVal_ = nullptr;
+ cvtInVal_ = nullptr;
+ if (inputIsOnlyMKLDNN()) {
+ MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast(inMat);
+ CHECK(dnnIn) << "Input should be MKLDNNMatrix";
+ if (dnnIn->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+ CHECK_EQ(dnnIn->getFormat(), format::nc);
+ CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format";
+ // create a new one with nchw format and same data
+ memory::dims inDims = memory::dims{bs_, ic_, 1, 1};
+ dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_);
+ CHECK(dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc());
+ }
+ in = dnnIn;
+ } else {
+ const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
+ memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
+ cpuInVal_ = MKLDNNMatrix::create(cpuIn, inDims, format::nchw, engine_);
+ if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+ // create new mkldnn matrix
+ in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc());
+ cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
+ CHECK(cvtInVal_) << "should not be emptry";
+ } else {
+ in = cpuInVal_;
+ }
+ }
+}
+
+void MKLDNNConvLayer::resetWgtBiasValue(
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias) {
+ wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc());
+ VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat();
+
+ bias = (biases_ && biases_->getW())
+ ? MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc())
+ : nullptr;
+}
+
+void MKLDNNConvLayer::resetOutValue(
+ std::shared_ptr& pd, MKLDNNMatrixPtr& out) {
+ out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc());
+
+ // change original output value from cpu matrix to mkldnn matrix
+ output_.value = std::dynamic_pointer_cast(out);
+
+ // create reorder if output value has cpu device and pd do not match
+ cpuOutVal_ = nullptr;
+ cpuOutVal_ = nullptr;
+ if (!outputIsOnlyMKLDNN()) {
+ const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
+ memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
+ cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
+ if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
+ cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
+ CHECK(cvtOutVal_) << "should not be emptry";
+ } else {
+ // CPU output share the same data of MKLDNN output
+ cpuOut->setData(out->getData());
+ cpuOutVal_ = out;
+ }
+ }
+}
+
+void MKLDNNConvLayer::resetBwdWgtPD(
+ std::shared_ptr& pd) {
+ memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
+ loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
+
+ // create backward weight using input, output and weight value memory desc
+ CHECK(inVal_) << "Should have input value";
+ CHECK(outVal_) << "Should have output value";
+ CHECK(wgtVal_) << "Should have weight value";
+ algorithm algo = algorithm::convolution_direct;
+ padding_kind padKind = padding_kind::zero;
+ auto bwdWgtDesc = biasVal_ != nullptr
+ ? conv_bwdWgt::desc(algo,
+ inVal_->getMemoryDesc(),
+ wgtVal_->getMemoryDesc(),
+ biasVal_->getMemoryDesc(),
+ outVal_->getMemoryDesc(),
+ strides,
+ padL,
+ padR,
+ padKind)
+ : conv_bwdWgt::desc(algo,
+ inVal_->getMemoryDesc(),
+ wgtVal_->getMemoryDesc(),
+ outVal_->getMemoryDesc(),
+ strides,
+ padL,
+ padR,
+ padKind);
+ pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
+ CHECK(pd->src_primitive_desc() == inVal_->getPrimitiveDesc())
+ << "primitive desc of in value should equal";
+ CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
+ << "primitive desc of out grad should equal the out value";
+ CHECK(pd->diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc())
+ << "primitive desc of weight grad should equal the weight value";
+}
+
+void MKLDNNConvLayer::resetBwdDataPD(
+ std::shared_ptr& pd) {
+ pd = nullptr;
+ if (inputLayers_[0]->getOutput().grad == nullptr) {
+ return;
+ }
+
+ memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
+ loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
+ CHECK(inVal_) << "Should have input value";
+ CHECK(outVal_) << "Should have output value";
+ // create backward data using input and output value memory desc
+ // but using weight memory desc with any format
+ auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct,
+ inVal_->getMemoryDesc(),
+ MKLDNNMatrix::createMemoryDesc(wgtDims),
+ outVal_->getMemoryDesc(),
+ strides,
+ padL,
+ padR,
+ padding_kind::zero);
+ pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
+ CHECK(pd->diff_src_primitive_desc() == inVal_->getPrimitiveDesc())
+ << "primitive desc of in grad should equal the in value";
+ CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
+ << "primitive desc of out grad should equal";
+}
+
+void MKLDNNConvLayer::resetBwdBuffers(
+ std::shared_ptr& wgtPD,
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ CHECK(wgtPD);
+ resetOutGrad(wgtPD, out);
+
+ resetWgtBiasGrad(wgtPD, wgt, bias);
+
+ resetInGrad(dataPD, in);
+
+ resetWgtValBwdData(dataPD, wgtValBwdData_);
+}
+
+void MKLDNNConvLayer::resetBwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& wgtPD,
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+
+ if (cvtOutGrad_) {
+ pipeline.push_back(*cvtOutGrad_);
+ }
+
+ // add bwdWgt handle
+ if (bias) {
+ bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias));
+ } else {
+ bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt));
+ }
+ pipeline.push_back(*bwdWgt_);
+
+ if (dataPD == nullptr) {
+ return;
+ }
+
+ if (cvtWgtVal_) {
+ pipeline.push_back(*cvtWgtVal_);
+ }
+
+ // add bwdData handle
+ CHECK(wgtValBwdData_) << "Should have weight memory";
+ bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in));
+ pipeline.push_back(*bwdData_);
+
+ if (cvtInGrad_) {
+ pipeline.push_back(*cvtInGrad_);
+ }
+}
+
+void MKLDNNConvLayer::resetOutGrad(
+ std::shared_ptr& wgtPD, MKLDNNMatrixPtr& out) {
+ const MatrixPtr& outMat = output_.grad;
+ out = MKLDNNMatrix::create(outMat, wgtPD->diff_dst_primitive_desc());
+ CHECK(outVal_ != nullptr &&
+ out->getPrimitiveDesc() == outVal_->getPrimitiveDesc())
+ << "primitive desc of out grad and value should be equal";
+
+ // TODO(TJ): merge outgrad
+ // create reorder if has output grad does not match
+ cpuOutGrad_ = nullptr;
+ cvtOutGrad_ = nullptr;
+ if (!outputIsOnlyMKLDNN()) {
+ const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
+ // same PrimitiveDesc with cpuInVal_
+ CHECK(cpuOutVal_);
+ cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
+ if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) {
+ outMat->setData(cpuOut->getData());
+ out = cpuOutGrad_;
+ } else {
+ cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
+ CHECK(cvtOutGrad_);
+ }
+ }
+}
+
+void MKLDNNConvLayer::resetWgtBiasGrad(
+ std::shared_ptr& wgtPD,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias) {
+ wgt = MKLDNNMatrix::create(weight_->getWGrad(),
+ wgtPD->diff_weights_primitive_desc());
+ CHECK(nullptr != wgtVal_ &&
+ wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc())
+ << "primitive desc of weight grad and value should be equal";
+ VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat();
+
+ bias = nullptr;
+ if (biasVal_ == nullptr) {
+ return;
+ }
+ bias = MKLDNNMatrix::create(biases_->getWGrad(),
+ wgtPD->diff_bias_primitive_desc());
+ CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc())
+ << "primitive desc of bias grad should equal the bias value";
+}
+
+void MKLDNNConvLayer::resetInGrad(
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in) {
+ if (dataPD == nullptr) {
+ return;
+ }
+
+ // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
+ in = MKLDNNMatrix::create(inputLayers_[0]->getOutput().grad,
+ dataPD->diff_src_primitive_desc());
+ CHECK(nullptr != inVal_ &&
+ in->getPrimitiveDesc() == inVal_->getPrimitiveDesc())
+ << "primitive desc of input grad and value should be equal";
+
+ // create reorder if has output grad does not match
+ cpuInGrad_ = nullptr;
+ cvtInGrad_ = nullptr;
+ if (!inputIsOnlyMKLDNN()) {
+ const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE);
+ // same PrimitiveDesc with cpuInVal_
+ CHECK(cpuInVal_);
+ cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc());
+ if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+ const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE);
+ in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc());
+ cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_);
+ CHECK(cvtInGrad_);
+ } else {
+ in = cpuInGrad_;
+ }
+ }
+}
+
+void MKLDNNConvLayer::resetWgtValBwdData(
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& wgt) {
+ if (dataPD == nullptr) {
+ return;
+ }
+
+ // create new weight value for backward data, and create reorder if necessary
+ // since the primitive_desc would be different with wgtVal_
+ CHECK(wgtVal_) << "should have weight value";
+ if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
+ wgtValBwdData_ =
+ MKLDNNMatrix::create(nullptr, dataPD->weights_primitive_desc());
+ cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
+ CHECK(cvtWgtVal_);
+ } else {
+ wgtValBwdData_ = wgtVal_;
+ }
+ VLOG(MKLDNN_FMTS) << "weight value format for backward data"
+ << wgtValBwdData_->getFormat();
+}
+
+} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNConvLayer.h b/paddle/gserver/layers/MKLDNNConvLayer.h
new file mode 100644
index 0000000000000000000000000000000000000000..f84f2f737c47a1b8adc2b83360a0396ffbc6ae24
--- /dev/null
+++ b/paddle/gserver/layers/MKLDNNConvLayer.h
@@ -0,0 +1,253 @@
+/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+
+#include "MKLDNNLayer.h"
+#include "mkldnn.hpp"
+
+namespace paddle {
+typedef mkldnn::convolution_forward conv_fwd;
+typedef mkldnn::convolution_backward_weights conv_bwdWgt;
+typedef mkldnn::convolution_backward_data conv_bwdData;
+
+/**
+ * @brief A subclass of MKLDNNLayer conv layer.
+ *
+ * The config file api is mkldnn_conv
+ */
+class MKLDNNConvLayer : public MKLDNNLayer {
+protected:
+ // padding height and width
+ int ph_, pw_;
+ // stride height and width
+ int sh_, sw_;
+ // dilation height and width
+ int dh_, dw_;
+ // filter(kenerl) height and width
+ int fh_, fw_;
+ // group number
+ int gp_;
+
+ // in resetBwdData, the format of wgtValBwdData_ is different with wgtVal_
+ MKLDNNMatrixPtr wgtValBwdData_;
+ // convert handle from wgtVal_ to wgtValBwdData_
+ std::shared_ptr cvtWgtVal_;
+
+ // save forward primitive_desc, which can be used backward
+ std::shared_ptr fwdPD_;
+
+ // MKLDNNMatrixPtr which should be created from CPU Device
+ MKLDNNMatrixPtr cpuInVal_;
+ MKLDNNMatrixPtr cpuInGrad_;
+ MKLDNNMatrixPtr cpuOutVal_;
+ MKLDNNMatrixPtr cpuOutGrad_;
+ // convert handle between CPU device and MKLDNN device
+ std::shared_ptr cvtInVal_;
+ std::shared_ptr cvtInGrad_;
+ std::shared_ptr cvtOutVal_;
+ std::shared_ptr cvtOutGrad_;
+
+ // whether the weight has been init
+ bool hasInitedWgt_;
+
+ // true by default, which impact the calculation of output image size.
+ // details can refer to mathUtil.h
+ bool caffeMode_;
+
+ // weight and bias
+ std::unique_ptr weight_;
+ std::unique_ptr biases_;
+
+public:
+ explicit MKLDNNConvLayer(const LayerConfig& config)
+ : MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {}
+
+ ~MKLDNNConvLayer() {}
+
+ bool init(const LayerMap& layerMap,
+ const ParameterMap& parameterMap) override;
+
+ void reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
+
+ void resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) override;
+
+ void resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) override;
+
+ void updateInputData() override;
+
+ void updateWeights(const UpdateCallback& callback) override;
+
+ void convertWeightsFromPaddle() override;
+
+ void convertWeightsToPaddle() override;
+
+ void printSizeInfo() override {
+ MKLDNNLayer::printSizeInfo();
+ VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
+ << ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
+ << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_;
+ }
+
+ void printValueFormatFlow() override {
+ if (cpuInVal_) {
+ VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>";
+ }
+ MKLDNNLayer::printValueFormatFlow();
+ if (cpuOutVal_) {
+ VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat();
+ }
+ }
+
+ void printGradFormatFlow() override {
+ if (cpuInGrad_) {
+ VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<";
+ }
+ MKLDNNLayer::printGradFormatFlow();
+ if (cpuOutGrad_) {
+ VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat();
+ }
+ }
+
+protected:
+ /**
+ * load the dims settings of this conv
+ */
+ void loadConvSettings(mkldnn::memory::dims& wgt,
+ mkldnn::memory::dims& bias,
+ mkldnn::memory::dims& stride,
+ mkldnn::memory::dims& dilation,
+ mkldnn::memory::dims& padL,
+ mkldnn::memory::dims& padR);
+
+ /**
+ * reset the forward primitive descriptor.
+ */
+ void resetFwdPD(std::shared_ptr& pd);
+ /**
+ * reset the MKLDNNMatrix buffers used in forward.
+ */
+ void resetFwdBuffers(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ /**
+ * reset the forward pipeline.
+ */
+ void resetFwdPipeline(std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * reset MKLDNNMatrix of input value
+ */
+ void resetInValue(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in);
+ /**
+ * reset MKLDNNMatrix of weight and bias value
+ */
+ void resetWgtBiasValue(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias);
+ /**
+ * reset MKLDNNMatrix of output value
+ */
+ void resetOutValue(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * reset the backward weight primitive descriptor.
+ */
+ void resetBwdWgtPD(std::shared_ptr& pd);
+ /**
+ * reset the backward data primitive descriptor.
+ */
+ void resetBwdDataPD(std::shared_ptr& pd);
+ /**
+ * reset the MKLDNNMatrix buffers used in backward.
+ */
+ void resetBwdBuffers(std::shared_ptr& wgtPD,
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ /**
+ * reset the backward pipeline.
+ */
+ void resetBwdPipeline(std::vector& pipeline,
+ std::shared_ptr& wgtPD,
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * reset MKLDNNMatrix of output grad
+ */
+ void resetOutGrad(std::shared_ptr& wgtPD,
+ MKLDNNMatrixPtr& out);
+ /**
+ * reset MKLDNNMatrix of weight and bias grad
+ */
+ void resetWgtBiasGrad(std::shared_ptr& wgtPD,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias);
+ /**
+ * reset MKLDNNMatrix of input grad
+ */
+ void resetInGrad(std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in);
+ /**
+ * reset MKLDNNMatrix of weight value for backward data
+ * since the primitive_desc would be different with wgtVal_
+ */
+ void resetWgtValBwdData(std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& wgt);
+
+ /**
+ * get padding_r according to
+ * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
+ * test_convolution_forward_common.hpp
+ * @note: mkldnn dilation start from 0 while paddle start from 1
+ */
+ mkldnn::memory::dims getPaddingR() const {
+ mkldnn::memory::dims padR = {ph_, pw_};
+ for (int i = 0; i < 2; ++i) {
+ if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) {
+ ++padR[0];
+ }
+ if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) {
+ ++padR[1];
+ }
+ }
+ return padR;
+ }
+};
+
+} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp
index 8318c8c519a4cec1610eadd28320ee5ce0b4147d..f60e221a6ec2ff513789a24e9f59bb25aef437b5 100644
--- a/paddle/gserver/layers/MKLDNNFcLayer.cpp
+++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp
@@ -14,13 +14,9 @@ limitations under the License. */
#include "MKLDNNFcLayer.h"
#include "paddle/utils/Logging.h"
-#include "paddle/utils/Stat.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
-typedef inner_product_forward fc_fwd;
-typedef inner_product_backward_weights fc_bwdWgt;
-typedef inner_product_backward_data fc_bwdData;
namespace paddle {
@@ -40,6 +36,8 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap,
oc_ = getSize();
oh_ = 1;
ow_ = 1;
+ ih_ = 1;
+ iw_ = 1;
// input size can not change in FC
iLayerSize_ = inputLayers_[0]->getSize();
@@ -77,122 +75,163 @@ void MKLDNNFcLayer::convertWeightsToPaddle() {
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
}
-void MKLDNNFcLayer::convertOutputToOtherDevice() {
- copyOutputInfoToOtherDevice();
- // find other cpu device and reorder output to cpu device
- int cnt = 0;
- for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
- if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
- // fc cpu output value do not need convert
- // just share point
- outputOtherDevice_[i].value = output_.value;
- ++cnt;
- }
- }
+void MKLDNNFcLayer::reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
+ reshapeInput(bs, ih, iw);
- if (cnt > 1) {
- LOG(WARNING) << "should not have more than one CPU devie";
- }
-}
-
-void MKLDNNFcLayer::reshape() {
- const Argument& input = getInput(0, getPrev(0)->getDeviceId());
- int batchSize = input.getBatchSize();
- if (bs_ == batchSize) {
- return;
- }
- bs_ = batchSize;
- ih_ = input.getFrameHeight();
- iw_ = input.getFrameWidth();
- if (ih_ == 0) {
- ih_ = 1;
- }
- if (iw_ == 0) {
- iw_ = 1;
- }
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
- ic_ = iLayerSize_ / (ih_ * iw_);
- CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
- CHECK_EQ(size_t(oc_), getSize());
+ ic = iLayerSize_ / (ih * iw);
+ CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible";
+ CHECK_EQ(size_t(oc), getSize());
+
+ reshapeOutput(oh, ow);
+ resizeOutput(bs, oc);
+
printSizeInfo();
+}
- // reset output
- output_.setFrameHeight(oh_);
- output_.setFrameWidth(ow_);
- resetOutput(bs_, oc_);
+void MKLDNNFcLayer::resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ resetFwdBuffers(in, wgt, bias, out);
- // reset mkldnn forward
- resetFwd();
- needResetBwd_ = true;
+ resetFwdPD(fwdPD_, in, wgt, bias, out);
- convertWeightsFromPaddle();
+ resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
+
+ printValueFormatFlow();
}
-void MKLDNNFcLayer::resetFwd() {
- bool hasBias = biases_ && biases_->getW();
- const MatrixPtr& wgt = weight_->getW();
- const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr;
- const MatrixPtr& out = output_.value;
+void MKLDNNFcLayer::resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ std::shared_ptr bwdWgtPD;
+ std::shared_ptr bwdDataPD;
+
+ resetBwdBuffers(in, wgt, bias, out);
+
+ resetBwdWgtPD(bwdWgtPD, wgt, bias, out);
+
+ resetBwdDataPD(bwdDataPD, in, out);
+
+ resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
+ printGradFormatFlow();
+}
+
+void MKLDNNFcLayer::updateInputData() {
+ inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
+}
+
+void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
+ weight_->getParameterPtr()->incUpdate(callback);
+ if (biases_ && biases_->getWGrad()) {
+ biases_->getParameterPtr()->incUpdate(callback);
+ }
+}
+
+void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ resetInValue(in);
+
+ resetWgtBiasValue(wgt, bias);
+
+ resetOutValue(out);
+}
+
+void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) {
if (inputIsOnlyMKLDNN()) {
- const MatrixPtr& in = getInputValue(0);
- inVal_ = std::dynamic_pointer_cast(in);
- CHECK(inVal_) << "Input should be MKLDNNMatrix";
+ const MatrixPtr& dnnIn = getInputValue(0);
+ in = std::dynamic_pointer_cast(dnnIn);
+ CHECK(in) << "Input should be MKLDNNMatrix";
} else {
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
- const MatrixPtr& in = getInputValue(0, CPU_DEVICE);
- inVal_ = MKLDNNMatrix::create(
- in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
+ const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
+ in = MKLDNNMatrix::create(
+ cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
}
- inVal_->downSpatial();
- wgtVal_ = MKLDNNMatrix::create(
- wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
- wgtVal_->downSpatial();
- biasVal_ =
- hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr;
- outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_);
+ in->downSpatial();
+}
+
+void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias) {
+ wgt = MKLDNNMatrix::create(
+ weight_->getW(), {oc_, ic_, ih_, iw_}, format::oihw, engine_);
+ wgt->downSpatial();
+
+ bias = (biases_ && biases_->getW())
+ ? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_)
+ : nullptr;
+}
+void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) {
+ out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_);
// change original output value to mkldnn output value
- output_.value = std::dynamic_pointer_cast(outVal_);
+ output_.value = std::dynamic_pointer_cast(out);
if (!outputIsOnlyMKLDNN()) {
- convertOutputToOtherDevice();
+ // fc cpu output value do not need create convert
+ // just share point
+ getOutput(CPU_DEVICE).value->setData(output_.value->getData());
}
+}
- // create forward handle
+void MKLDNNFcLayer::resetFwdPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr in,
+ MKLDNNMatrixPtr wgt,
+ MKLDNNMatrixPtr bias,
+ MKLDNNMatrixPtr out) {
+ CHECK(in);
+ CHECK(wgt);
+ CHECK(out);
prop_kind pk = prop_kind::forward;
- fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk,
- inVal_->getMemoryDesc(),
- wgtVal_->getMemoryDesc(),
- biasVal_->getMemoryDesc(),
- outVal_->getMemoryDesc())
- : fc_fwd::desc(pk,
- inVal_->getMemoryDesc(),
- wgtVal_->getMemoryDesc(),
- outVal_->getMemoryDesc());
- fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
- if (hasBias) {
- fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
+ fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk,
+ in->getMemoryDesc(),
+ wgt->getMemoryDesc(),
+ bias->getMemoryDesc(),
+ out->getMemoryDesc())
+ : fc_fwd::desc(pk,
+ in->getMemoryDesc(),
+ wgt->getMemoryDesc(),
+ out->getMemoryDesc());
+ pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_));
+}
+
+void MKLDNNFcLayer::resetFwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+
+ if (bias) {
+ fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out));
} else {
- fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
+ fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out));
}
- printValueFormatFlow();
- pipelineFwd_.clear();
- pipelineFwd_.push_back(*fwd_);
+ pipeline.push_back(*fwd_);
}
-void MKLDNNFcLayer::resetBwd() {
- if (!needResetBwd_) {
- return;
- }
- needResetBwd_ = false;
- bool hasBias = biases_ && biases_->getWGrad();
+void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ resetOutGrad(out);
- /// backward weight
- CHECK(inVal_) << "Should have input value";
- const MatrixPtr& wgt = weight_->getWGrad();
- const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr;
+ resetWgtBiasGrad(wgt, bias);
+
+ resetInGrad(in);
+}
+void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
// TODO(TJ): merge outgrad
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
// for MKLDNN device:
@@ -202,101 +241,88 @@ void MKLDNNFcLayer::resetBwd() {
// for CPU device:
// fc do not need to convert from cpu device since output is always nc format
// only need create from cpu device
- const MatrixPtr& out = getOutput(device).grad;
- outGrad_ = MKLDNNMatrix::create(out, outVal_->getPrimitiveDesc());
- wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPrimitiveDesc());
- biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPrimitiveDesc())
- : nullptr;
-
- // create memory primitive desc
- fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
- inVal_->getMemoryDesc(),
- wgtGrad_->getMemoryDesc(),
- outGrad_->getMemoryDesc());
- fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
- fc_bwdWgt::desc bwdWgtDesc = hasBias
- ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
- wgtGrad_->getMemoryDesc(),
- biasGrad_->getMemoryDesc(),
- outGrad_->getMemoryDesc())
- : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
- wgtGrad_->getMemoryDesc(),
- outGrad_->getMemoryDesc());
- fc_bwdWgt::primitive_desc bwdWgtPD =
- fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
-
- if (hasBias) {
- bwdWgt_.reset(
- new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
- } else {
- bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
- }
- pipelineBwd_.clear();
- pipelineBwd_.push_back(*bwdWgt_);
+ CHECK(outVal_);
+ out =
+ MKLDNNMatrix::create(getOutput(device).grad, outVal_->getPrimitiveDesc());
+}
- /// backward data
- device = inputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
- const MatrixPtr& in = getInputGrad(0, device);
- if (in == nullptr) {
+void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias) {
+ CHECK(wgtVal_);
+ wgt = MKLDNNMatrix::create(weight_->getWGrad(), wgtVal_->getPrimitiveDesc());
+
+ bias = nullptr;
+ if (biasVal_ == nullptr) {
return;
}
- if (getInput(0, device).getAllCount() > 1) {
- // TODO(TJ): use outputMaps_ ways when merge outgrad done
- } else {
- inGrad_ = MKLDNNMatrix::create(in, inVal_->getPrimitiveDesc());
- }
-
- fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(inVal_->getMemoryDesc(),
- wgtGrad_->getMemoryDesc(),
- outGrad_->getMemoryDesc());
- fc_bwdData::primitive_desc bwdDataPD =
- fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
-
- CHECK(wgtVal_) << "Should have weight memory";
- bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
- printGradFormatFlow();
- pipelineBwd_.push_back(*bwdData_);
+ bias =
+ MKLDNNMatrix::create(biases_->getWGrad(), biasVal_->getPrimitiveDesc());
}
-void MKLDNNFcLayer::forward(PassType passType) {
- Layer::forward(passType);
- reshape();
-
- {
- REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
- syncInputValue();
-
- // just submit forward pipeline
- stream_->submit(pipelineFwd_);
+void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) {
+ in = nullptr;
+ const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
+ if (inGrad == nullptr) {
+ return;
}
+ // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
+ CHECK(inVal_);
+ in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
+}
- /* activation */ {
- REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
- forwardActivation();
- }
+void MKLDNNFcLayer::resetBwdWgtPD(
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ CHECK(inVal_);
+ fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
+ wgt->getMemoryDesc(),
+ bias->getMemoryDesc(),
+ out->getMemoryDesc())
+ : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
+ wgt->getMemoryDesc(),
+ out->getMemoryDesc());
+ pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
}
-void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
- /* Do derivation */ {
- REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
- backwardActivation();
+void MKLDNNFcLayer::resetBwdDataPD(
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out) {
+ pd = nullptr;
+ if (in == nullptr) {
+ return;
}
+ CHECK(wgtVal_);
+ fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
+ in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc());
+ pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
+}
- {
- REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
- resetBwd();
-
- syncOutputGrad();
- // just sumbmit backward pipeline
- stream_->submit(pipelineBwd_);
+void MKLDNNFcLayer::resetBwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& bwdWgtPD,
+ std::shared_ptr& bwdDataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+ CHECK(inVal_);
+ if (bias) {
+ bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias));
+ } else {
+ bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt));
}
+ pipeline.push_back(*bwdWgt_);
- {
- REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
- weight_->getParameterPtr()->incUpdate(callback);
- if (biases_ && biases_->getWGrad()) {
- biases_->getParameterPtr()->incUpdate(callback);
- }
+ if (bwdDataPD == nullptr) {
+ return;
}
+ CHECK(wgtVal_) << "Should have weight memory";
+ bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in));
+ pipeline.push_back(*bwdData_);
}
+
} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNFcLayer.h b/paddle/gserver/layers/MKLDNNFcLayer.h
index e138a6faf181c412949218458e7ecf800a0d6a07..c76878aafab7e986d2bf478eaba02f2f0aced293 100644
--- a/paddle/gserver/layers/MKLDNNFcLayer.h
+++ b/paddle/gserver/layers/MKLDNNFcLayer.h
@@ -18,6 +18,9 @@ limitations under the License. */
#include "mkldnn.hpp"
namespace paddle {
+typedef mkldnn::inner_product_forward fc_fwd;
+typedef mkldnn::inner_product_backward_weights fc_bwdWgt;
+typedef mkldnn::inner_product_backward_data fc_bwdData;
/**
* @brief A subclass of MKLDNNLayer fc layer.
@@ -32,6 +35,9 @@ protected:
// if has already init the weight
bool hasInitedWgt_;
+ // save forward primitive_desc, which can be used backward
+ std::shared_ptr fwdPD_;
+
// fc weight and bias
std::unique_ptr weight_;
std::unique_ptr biases_;
@@ -45,35 +51,81 @@ public:
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
- void convertWeightsFromPaddle() override;
+ void reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
- void convertWeightsToPaddle() override;
+ void resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) override;
- void forward(PassType passType) override;
+ void resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) override;
- void backward(const UpdateCallback& callback) override;
+ void updateInputData() override;
-protected:
- /**
- * reshape the input image sizes
- * and reset output buffer size
- * and reset mkldnn forward
- */
- void reshape();
+ void updateWeights(const UpdateCallback& callback) override;
+ void convertWeightsFromPaddle() override;
+
+ void convertWeightsToPaddle() override;
+
+protected:
/**
- * reset the forward primitve and memory
- * only would be called when input size changes
+ * Forward functions: reset buffers(input, output, weight and bias),
+ * reset primitive descriptor,
+ * reset pipeline.
*/
- void resetFwd();
+ void resetFwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ void resetInValue(MKLDNNMatrixPtr& in);
+ void resetWgtBiasValue(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias);
+ void resetOutValue(MKLDNNMatrixPtr& out);
+ void resetFwdPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr in,
+ MKLDNNMatrixPtr wgt,
+ MKLDNNMatrixPtr bias,
+ MKLDNNMatrixPtr out);
+ void resetFwdPipeline(std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
/**
- * reset the backward primitve and memory for mkldnn fc
- * only would be called when needed
+ * Backward functions: reset buffers(input, output, weight and bias),
+ * reset primitive descriptor for backward weight,
+ * reset primitive descriptor for backward data,
+ * reset pipeline.
*/
- void resetBwd();
-
- void convertOutputToOtherDevice() override;
+ void resetBwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ void resetOutGrad(MKLDNNMatrixPtr& out);
+ void resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias);
+ void resetInGrad(MKLDNNMatrixPtr& in);
+ void resetBwdWgtPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ void resetBwdDataPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out);
+ void resetBwdPipeline(std::vector& pipeline,
+ std::shared_ptr& bwdWgtPD,
+ std::shared_ptr& bwdDataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
};
} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h
index b983b833d510b823c5d4cff0b9390173e4cefc89..169679c8297542cac4a43f5a8e1af311ad9282df 100644
--- a/paddle/gserver/layers/MKLDNNLayer.h
+++ b/paddle/gserver/layers/MKLDNNLayer.h
@@ -19,6 +19,7 @@ limitations under the License. */
#include "MKLDNNBase.h"
#include "mkldnn.hpp"
#include "paddle/math/MKLDNNMatrix.h"
+#include "paddle/utils/Stat.h"
DECLARE_bool(use_mkldnn);
@@ -33,6 +34,8 @@ typedef std::shared_ptr MKLDNNLayerPtr;
*/
class MKLDNNLayer : public Layer {
protected:
+ // input value element count
+ size_t inputElemenCnt_;
// batch size
int bs_;
// input image channel, height and width
@@ -52,7 +55,7 @@ protected:
std::vector pipelineFwd_;
std::vector pipelineBwd_;
- // MKLDNNMatrixPtr
+ // MKLDNNMatrixPtr with internal format
MKLDNNMatrixPtr inVal_;
MKLDNNMatrixPtr inGrad_;
MKLDNNMatrixPtr outVal_;
@@ -65,6 +68,7 @@ protected:
public:
explicit MKLDNNLayer(const LayerConfig& config)
: Layer(config),
+ inputElemenCnt_(0),
bs_(0),
ic_(0),
ih_(0),
@@ -95,12 +99,104 @@ public:
if (!Layer::init(layerMap, parameterMap)) {
return false;
}
+ checkCPUOutputsNumber();
stream_.reset(new MKLDNNStream());
engine_ = CPUEngine::Instance().getEngine();
return true;
}
+ void forward(PassType passType) override {
+ passType_ = passType;
+
+ {
+ REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
+ CHECK(!inputLayers_.empty());
+ copySeqInfoToOutputs();
+ size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt();
+ if (inputElemenCnt_ != elemenCnt) {
+ // reset when input total sizes changed, not only the batchsize
+ inputElemenCnt_ = elemenCnt;
+ reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
+ resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
+ convertWeightsFromPaddle();
+ needResetBwd_ = true;
+ }
+
+ if (inputLayers_[0]->getType() == "data") {
+ updateInputData();
+ }
+
+ stream_->submit(pipelineFwd_);
+ }
+
+ /* activation */ {
+ REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
+ forwardActivation();
+ }
+ }
+
+ void backward(const UpdateCallback& callback) override {
+ /* Do derivation */ {
+ REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
+ backwardActivation();
+ }
+
+ {
+ REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
+ if (needResetBwd_) {
+ resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
+ needResetBwd_ = false;
+ }
+
+ stream_->submit(pipelineBwd_);
+ }
+
+ {
+ REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
+ updateWeights(callback);
+ }
+ }
+
+ /**
+ * reshape the input image sizes
+ * and reset output image and buffer size
+ * output channel can not be changed
+ */
+ virtual void reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0;
+
+ /**
+ * reset the mkldnn forward primitve and memory
+ * only would be called when input size changes
+ */
+ virtual void resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) = 0;
+
+ /**
+ * reset the mkldnn backward primitve and memory for mkldnn fc
+ * only would be called when needed
+ */
+ virtual void resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) = 0;
+
+ /**
+ * Update input value data when input layer is "data" type.
+ * Since the input value data address might be changed.
+ */
+ virtual void updateInputData() {}
+
+ /**
+ * Update weights and biases if necessary.
+ */
+ virtual void updateWeights(const UpdateCallback& callback) {}
+
/**
* convert weight from paddle format to mkldnn format
* weight_ will be override
@@ -114,10 +210,38 @@ public:
virtual void convertWeightsToPaddle() {}
/**
- * convert MKLDNN output to other device.
- * only support CPU device yet
+ * add this interface as public for unit test
+ */
+ void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }
+
+protected:
+ /**
+ * reshape the input image sizes and input batchsize
*/
- virtual void convertOutputToOtherDevice() {}
+ virtual void reshapeInput(int& batchsize, int& height, int& width) {
+ const Argument& input = inputLayers_[0]->getOutput();
+ batchsize = input.getBatchSize();
+ int h = input.getFrameHeight();
+ int w = input.getFrameWidth();
+ if (h != 0) {
+ height = h;
+ }
+ if (w != 0) {
+ width = w;
+ }
+ }
+
+ /**
+ * reshape output image sizes
+ */
+ virtual void reshapeOutput(size_t height, size_t width) {
+ output_.setFrameHeight(height);
+ output_.setFrameWidth(width);
+ for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
+ outputOtherDevice_[i].setFrameHeight(height);
+ outputOtherDevice_[i].setFrameWidth(width);
+ }
+ }
/**
* print info about sizes
@@ -133,8 +257,8 @@ public:
*/
virtual void printValueFormatFlow() {
if (inVal_ && outVal_) {
- VLOG(MKLDNN_FMTS) << "value format flow --- " << inVal_->getFormat()
- << " >>> " << outVal_->getFormat();
+ VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> "
+ << outVal_->getFormat();
}
}
@@ -143,29 +267,12 @@ public:
*/
virtual void printGradFormatFlow() {
if (inGrad_ && outGrad_) {
- VLOG(MKLDNN_FMTS) << "grad format flow --- " << inGrad_->getFormat()
- << " <<< " << outGrad_->getFormat();
+ VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< "
+ << outGrad_->getFormat();
}
}
protected:
- /**
- * copy image size and sequence info to other device
- * @note: can not directly use Layer::copyOutputToOtherDevice since here only
- * copy base info and do not copy data value
- */
- void copyOutputInfoToOtherDevice() {
- for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
- outputOtherDevice_[i].setFrameHeight(output_.getFrameHeight());
- outputOtherDevice_[i].setFrameWidth(output_.getFrameWidth());
- outputOtherDevice_[i].sequenceStartPositions =
- output_.sequenceStartPositions;
- outputOtherDevice_[i].subSequenceStartPositions =
- output_.subSequenceStartPositions;
- outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
- }
- }
-
/**
* If input only has MKLDNN device.
* Otherwise, only support the previous layer using CPU device.
@@ -193,37 +300,12 @@ protected:
return outputOtherDevice_.size() == 0;
}
- /**
- * Sync input value data
- */
- void syncInputValue() {
- if (inputIsOnlyMKLDNN()) {
- return;
- }
- real* iData = getInputValue(0, CPU_DEVICE)->getData();
- // update input data
- // since it might be changed if this is after data layer
- inVal_->updateData(iData);
- }
-
- /**
- * Sync output grad data
- */
- void syncOutputGrad() {
- if (outputIsOnlyMKLDNN()) {
- return;
- }
-
- // update diff
- real* oDiff = getOutput(CPU_DEVICE).grad->getData();
- outGrad_->updateData(oDiff);
- }
-
/**
* Set deviceId of this layer.
*/
void setDevice(int id) { deviceId_ = id; }
+private:
/**
* Set deviceId of the params used in this layer.
*/
@@ -247,6 +329,42 @@ protected:
parameter->setDevice(id);
}
}
+
+ /**
+ * Check the cpu device number of outputOtherDevice_.
+ * should have only one at most.
+ */
+ void checkCPUOutputsNumber(int max = 1) {
+ int cnt = 0;
+ for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
+ if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
+ ++cnt;
+ }
+ }
+ CHECK_LE(cnt, max) << "too much CPU devies";
+ }
+
+ /**
+ * copy SeqInfo from input layer to this output and other output devices.
+ * @note: do not use getInput(0) since it used this deviceId_,
+ * use "inputLayers_[0]->getOutput()" instead.
+ */
+ void copySeqInfoToOutputs() {
+ if (inputLayers_.empty() || !needSequenceInfo_) {
+ return;
+ }
+ const Argument& input = inputLayers_[0]->getOutput();
+ output_.sequenceStartPositions = input.sequenceStartPositions;
+ output_.subSequenceStartPositions = input.subSequenceStartPositions;
+ output_.cpuSequenceDims = input.cpuSequenceDims;
+ for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
+ outputOtherDevice_[i].sequenceStartPositions =
+ output_.sequenceStartPositions;
+ outputOtherDevice_[i].subSequenceStartPositions =
+ output_.subSequenceStartPositions;
+ outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
+ }
+ }
};
} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.cpp b/paddle/gserver/layers/MKLDNNPoolLayer.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..48b2f5a4cb37f6a9c4b1fdc6178c914b46c76e63
--- /dev/null
+++ b/paddle/gserver/layers/MKLDNNPoolLayer.cpp
@@ -0,0 +1,277 @@
+/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "MKLDNNPoolLayer.h"
+#include "paddle/math/MathUtils.h"
+#include "paddle/utils/Logging.h"
+
+using namespace mkldnn; // NOLINT
+typedef memory::format format;
+
+namespace paddle {
+
+REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer);
+
+bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
+ const ParameterMap& parameterMap) {
+ if (!MKLDNNLayer::init(layerMap, parameterMap)) {
+ return false;
+ }
+
+ /* the size of inputs for pool-layer is 1 */
+ CHECK_EQ(config_.inputs_size(), 1);
+ const PoolConfig& conf = config_.inputs(0).pool_conf();
+ ic_ = conf.channels();
+ ih_ = conf.img_size_y();
+ iw_ = conf.img_size();
+ oc_ = ic_;
+ oh_ = conf.output_y();
+ ow_ = conf.output_x();
+ fh_ = conf.size_y();
+ fw_ = conf.size_x();
+ ph_ = conf.padding_y();
+ pw_ = conf.padding();
+ sh_ = conf.stride_y();
+ sw_ = conf.stride();
+
+ const std::string& type = conf.pool_type();
+ if (type == "max-projection") {
+ poolAlgo_ = algorithm::pooling_max;
+ } else if (type == "avg-projection") {
+ // paddle only use exclude_padding
+ poolAlgo_ = algorithm::pooling_avg_exclude_padding;
+ } else {
+ LOG(FATAL) << "unknow pooling type!";
+ }
+ return true;
+}
+
+void MKLDNNPoolLayer::reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
+ reshapeInput(bs, ih, iw);
+ // ic_ and oc can not be changed
+ CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic)
+ << "Input channel can not be changed";
+
+ // cal output sizes
+ // paddle used false caffeMode for pooling
+ oh = outputSize(ih, fh_, ph_, sh_, false);
+ ow = outputSize(iw, fw_, pw_, sw_, false);
+ reshapeOutput(oh, ow);
+
+ resizeOutput(bs, oc * oh * ow);
+
+ printSizeInfo();
+}
+
+void MKLDNNPoolLayer::resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ resetFwdBuffers(in, out);
+
+ resetFwdPD(fwdPD_, in, out);
+
+ resetFwdPipeline(pipeline, fwdPD_, in, out);
+
+ printValueFormatFlow();
+}
+
+void MKLDNNPoolLayer::resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ std::shared_ptr pd;
+
+ resetBwdBuffers(in, out);
+
+ resetBwdPD(pd, in, out);
+
+ resetBwdPipeline(pipeline, pd, in, out);
+
+ printGradFormatFlow();
+}
+
+void MKLDNNPoolLayer::updateInputData() {
+ inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
+}
+
+void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out) {
+ resetInValue(in);
+
+ resetOutValue(out);
+}
+
+void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) {
+ if (inputIsOnlyMKLDNN()) {
+ const MatrixPtr& dnnIn = getInputValue(0);
+ in = std::dynamic_pointer_cast(dnnIn);
+ CHECK(in) << "Input should be MKLDNNMatrix";
+ } else {
+ CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
+ const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
+ in = MKLDNNMatrix::create(
+ cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
+ }
+}
+
+void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
+ CHECK(inVal_) << "Should reset input value first";
+ memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
+ out = MKLDNNMatrix::create(
+ output_.value, outDims, inVal_->getFormat(), engine_);
+ output_.value = std::dynamic_pointer_cast(out);
+
+ // create reorder if output value has cpu device and pd do not match
+ cpuOutVal_ = nullptr;
+ cvtOutVal_ = nullptr;
+ if (!outputIsOnlyMKLDNN()) {
+ const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
+ cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
+ if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
+ cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
+ CHECK(cvtOutVal_) << "should not be emptry";
+ } else {
+ // CPU output share the same data of MKLDNN output
+ cpuOut->setData(out->getData());
+ cpuOutVal_ = out;
+ }
+ }
+}
+
+void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr in,
+ MKLDNNMatrixPtr out) {
+ memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
+ memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
+ memory::dims kernels = memory::dims{fh_, fw_};
+ memory::dims strides = memory::dims{sh_, sw_};
+ memory::dims padL = memory::dims{ph_, pw_};
+ memory::dims padR = getPaddingR();
+ padding_kind padKind = padding_kind::zero;
+ prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
+ : prop_kind::forward_training;
+ auto fwdDesc = pool_fwd::desc(pk,
+ poolAlgo_,
+ in->getMemoryDesc(),
+ out->getMemoryDesc(),
+ strides,
+ kernels,
+ padL,
+ padR,
+ padKind);
+ pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_));
+
+ // prepare workspace if necessary
+ workspace_ =
+ (passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max)
+ ? std::make_shared(memory(pd->workspace_primitive_desc()))
+ : nullptr;
+}
+
+void MKLDNNPoolLayer::resetFwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+ fwd_ = workspace_
+ ? std::make_shared(pool_fwd(*pd, *in, *out, *workspace_))
+ : std::make_shared(pool_fwd(*pd, *in, *out));
+ pipeline.push_back(*fwd_);
+
+ if (cvtOutVal_) {
+ pipeline.push_back(*cvtOutVal_);
+ }
+}
+
+void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out) {
+ resetOutGrad(out);
+
+ resetInGrad(in);
+}
+void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
+ CHECK(outVal_) << "Should have output value";
+ out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
+
+ // create reorder if output value has cpu device and pd do not match
+ cpuOutGrad_ = nullptr;
+ cvtOutGrad_ = nullptr;
+ if (!outputIsOnlyMKLDNN()) {
+ const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
+ cpuOutGrad_ = MKLDNNMatrix::create(
+ cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_);
+ if (cpuOutGrad_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
+ cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
+ CHECK(cvtOutGrad_) << "should not be emptry";
+ } else {
+ // share the same data of CPU output
+ output_.grad->setData(cpuOut->getData());
+ out = cpuOutGrad_;
+ }
+ }
+}
+
+void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) {
+ in = nullptr;
+ const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
+ if (inGrad == nullptr) {
+ return;
+ }
+ CHECK(inVal_);
+ in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
+}
+
+void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out) {
+ memory::dims kernels = memory::dims{fh_, fw_};
+ memory::dims strides = memory::dims{sh_, sw_};
+ memory::dims padL = memory::dims{ph_, pw_};
+ memory::dims padR = getPaddingR();
+ CHECK(in);
+ CHECK(out);
+ auto bwdDesc = pool_bwd::desc(poolAlgo_,
+ in->getMemoryDesc(),
+ out->getMemoryDesc(),
+ strides,
+ kernels,
+ padL,
+ padR,
+ padding_kind::zero);
+ pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
+}
+
+void MKLDNNPoolLayer::resetBwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+ if (cvtOutGrad_) {
+ pipeline.push_back(*cvtOutGrad_);
+ }
+
+ bwdData_ =
+ workspace_
+ ? std::make_shared(pool_bwd(*pd, *out, *workspace_, *in))
+ : std::make_shared(pool_bwd(*pd, *out, *in));
+ pipeline.push_back(*bwdData_);
+}
+
+} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.h b/paddle/gserver/layers/MKLDNNPoolLayer.h
new file mode 100644
index 0000000000000000000000000000000000000000..891e15a7efcdd2e54f61352efc1ba7345b91c76b
--- /dev/null
+++ b/paddle/gserver/layers/MKLDNNPoolLayer.h
@@ -0,0 +1,138 @@
+/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+
+#include "MKLDNNLayer.h"
+#include "mkldnn.hpp"
+
+namespace paddle {
+typedef mkldnn::pooling_forward pool_fwd;
+typedef mkldnn::pooling_backward pool_bwd;
+
+/**
+ * @brief A subclass of MKLDNNLayer pool layer.
+ *
+ * The config file api is mkldnn_pool
+ */
+class MKLDNNPoolLayer : public MKLDNNLayer {
+protected:
+ // padding height and width
+ int ph_, pw_;
+ // stride height and width
+ int sh_, sw_;
+ // filter(kenerl) height and width
+ int fh_, fw_;
+
+ // pooling_avg or pooling_max
+ mkldnn::algorithm poolAlgo_;
+
+ // MKLDNNMatrixPtr which should be created from CPU Device
+ MKLDNNMatrixPtr cpuOutVal_;
+ MKLDNNMatrixPtr cpuOutGrad_;
+ // convert handle between CPU device and MKLDNN device
+ std::shared_ptr cvtOutVal_;
+ std::shared_ptr cvtOutGrad_;
+
+ // save forward primitive_desc, which can be used backward
+ std::shared_ptr fwdPD_;
+ // according to https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
+ // test_pooling_forward.cpp, pool need workspace for backward
+ std::shared_ptr workspace_;
+
+public:
+ explicit MKLDNNPoolLayer(const LayerConfig& config) : MKLDNNLayer(config) {}
+
+ ~MKLDNNPoolLayer() {}
+
+ bool init(const LayerMap& layerMap,
+ const ParameterMap& parameterMap) override;
+
+ void reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
+
+ void resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) override;
+
+ void resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) override;
+
+ void updateInputData() override;
+
+ void printSizeInfo() override {
+ MKLDNNLayer::printSizeInfo();
+ VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
+ << ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
+ << ", sw: " << sw_;
+ }
+
+protected:
+ /**
+ * Forward functions: reset buffers(input, output),
+ * reset primitive descriptor,
+ * reset pipeline.
+ */
+ void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out);
+ void resetInValue(MKLDNNMatrixPtr& in);
+ void resetOutValue(MKLDNNMatrixPtr& out);
+ void resetFwdPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr in,
+ MKLDNNMatrixPtr out);
+ void resetFwdPipeline(std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * Backward functions: reset buffers(input, output),
+ * reset primitive descriptor,
+ * reset pipeline.
+ */
+ void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out);
+ void resetOutGrad(MKLDNNMatrixPtr& out);
+ void resetInGrad(MKLDNNMatrixPtr& in);
+ void resetBwdPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out);
+ void resetBwdPipeline(std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * get padding_r according to
+ * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
+ * test_pooling_forward.cpp
+ */
+ mkldnn::memory::dims getPaddingR() const {
+ mkldnn::memory::dims padR = {ph_, pw_};
+ for (int i = 0; i < 2; ++i) {
+ if ((ih_ + ph_ + padR[0] - fh_) / sh_ + 1 < oh_) {
+ ++padR[0];
+ }
+ if ((iw_ + pw_ + padR[1] - fw_) / sw_ + 1 < ow_) {
+ ++padR[1];
+ }
+ }
+ return padR;
+ }
+};
+
+} // namespace paddle
diff --git a/paddle/gserver/layers/SwitchOrderLayer.cpp b/paddle/gserver/layers/SwitchOrderLayer.cpp
index d7eee6eaf078dab8d48adc4c7ee758a433672ac6..e97809141a93106f9e6ebaf40c7e8aa9c6010557 100644
--- a/paddle/gserver/layers/SwitchOrderLayer.cpp
+++ b/paddle/gserver/layers/SwitchOrderLayer.cpp
@@ -83,8 +83,7 @@ void SwitchOrderLayer::forward(PassType passType) {
setOutDims();
resetOutput(outDims_[0], outDims_[1] * outDims_[2] * outDims_[3]);
if (heightAxis_.size() > 0) {
- getOutputValue()->reshape(reshapeHeight_, reshapeWidth_);
- getOutputGrad()->reshape(reshapeHeight_, reshapeWidth_);
+ resetOutput(reshapeHeight_, reshapeWidth_);
}
// switch NCHW to NHWC
diff --git a/paddle/gserver/tests/MKLDNNTester.cpp b/paddle/gserver/tests/MKLDNNTester.cpp
index de1635be2af37cd0ba49010199a417090865b0e4..2f48e5b2d3ffc9337ed1314f6db6549e56263fdd 100644
--- a/paddle/gserver/tests/MKLDNNTester.cpp
+++ b/paddle/gserver/tests/MKLDNNTester.cpp
@@ -63,8 +63,12 @@ void MKLDNNTester::reset(const TestConfig& dnn,
initTestLayer(
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
}
- dnnLayer_ = testLayers_[DNN];
refLayer_ = testLayers_[REF];
+ dnnLayer_ = std::dynamic_pointer_cast(testLayers_[DNN]);
+ CHECK(dnnLayer_);
+ // for comparison with Paddle reference results,
+ // need manually add cpu device output for test
+ dnnLayer_->addOutputArgument(CPU_DEVICE);
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
@@ -109,20 +113,22 @@ void MKLDNNTester::randomBotDatas() {
void MKLDNNTester::randomTopDiffs() {
refLayer_->getOutputGrad()->randomizeUniform();
- dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad()));
- VLOG(lvl_) << "Random dom Backward Input, TopDiff: ";
+ dnnLayer_->getOutput(CPU_DEVICE)
+ .grad->copyFrom(*(refLayer_->getOutputGrad()));
+ VLOG(lvl_) << "Random Backward Input, TopDiff: ";
printMatrix(refLayer_->getOutputGrad());
}
void MKLDNNTester::checkForward() {
- printTopDatas();
- double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
- testLayers_[REF]->getOutputValue());
VLOG(MKLDNN_ALL) << "Check Forward";
+ printTopDatas();
+ double delta = compareMatrix(dnnLayer_->getOutput(-1).value,
+ refLayer_->getOutputValue());
EXPECT_LE(fabs(delta), eps_);
}
void MKLDNNTester::checkBackwardData() {
+ VLOG(MKLDNN_ALL) << "Check Backward Data";
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
@@ -144,14 +150,12 @@ void MKLDNNTester::checkBackwardData() {
}
void MKLDNNTester::checkBackwardWgts() {
+ VLOG(MKLDNN_ALL) << "Check Backward Weight";
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
vector dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts);
- const MKLDNNLayerPtr dnnlayer =
- std::dynamic_pointer_cast(dnnLayer_);
- CHECK(dnnlayer);
- dnnlayer->convertWeightsToPaddle();
+ dnnLayer_->convertWeightsToPaddle();
for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
@@ -189,38 +193,38 @@ void MKLDNNTester::restoreWgt(const vector& from,
}
// clear parameters grad
-void MKLDNNTester::clearWgtDiffs() {
+void MKLDNNTester::clearWgtDiffs(size_t id) {
+ CHECK_LE(id, parameters_.size());
for (size_t n = 0; n < parameters_.size(); ++n) {
- for (size_t i = 0; i < parameters_[n].size(); ++i) {
- const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
- if (grad) {
- grad->zeroMem();
+ if (id == n || id == parameters_.size()) {
+ for (size_t i = 0; i < parameters_[n].size(); ++i) {
+ const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
+ if (grad) {
+ grad->zeroMem();
+ }
}
}
}
}
-void MKLDNNTester::clearBotDiffs() {
- // dnn and ref
+void MKLDNNTester::clearBotDiffs(size_t id) {
+ CHECK_LE(id, dataLayers_.size());
for (size_t n = 0; n < dataLayers_.size(); ++n) {
- // all inputs layers
- for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
- dataLayers_[n][i]->getOutputGrad()->zeroMem();
+ if (id == n || id == dataLayers_.size()) {
+ // clear inputs layers of this specific layer
+ for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
+ dataLayers_[n][i]->getOutputGrad()->zeroMem();
+ }
}
}
}
-void MKLDNNTester::clearBotDiffs(int n) {
- CHECK_LT(n, NUM);
- // all inputs layers
- for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
- dataLayers_[n][i]->getOutputGrad()->zeroMem();
- }
-}
-
-void MKLDNNTester::clearTopDatas() {
+void MKLDNNTester::clearTopDatas(size_t id) {
+ CHECK_LE(id, testLayers_.size());
for (size_t i = 0; i < testLayers_.size(); ++i) {
- testLayers_[i]->getOutputValue()->zeroMem();
+ if (id == i || id == testLayers_.size()) {
+ testLayers_[i]->getOutputValue()->zeroMem();
+ }
}
}
@@ -300,16 +304,24 @@ void MKLDNNTester::runOnce() {
checkForward();
// test backward
+ // simple updater
+ UpdateCallback updateCallback = [](Parameter* para) {
+ auto& grad = para->getBuf(PARAMETER_GRADIENT);
+ auto& value = para->getBuf(PARAMETER_VALUE);
+ real lr = 1e-3;
+ value->add(*grad, lr);
+ };
randomTopDiffs();
- dnnLayer_->backward(nullptr);
- refLayer_->backward(nullptr);
+ dnnLayer_->backward(updateCallback);
+ refLayer_->backward(updateCallback);
checkBackwardData();
checkBackwardWgts();
// clear buffers
// ref code will addto the diff, dnn code will writeto it
- // and clearTopDatas() and clearWgtDiffs() should be coverd by test layers
+ // and clearTopDatas(REF) should be coverd by ref layers
clearBotDiffs(REF);
+ clearWgtDiffs(REF);
}
void MKLDNNTester::run(const TestConfig& dnn,
diff --git a/paddle/gserver/tests/MKLDNNTester.h b/paddle/gserver/tests/MKLDNNTester.h
index e55e4493ffdfe45b8cfdee423febd1878b8b3d8a..5ac885638cde7693a0c847733e7a6149c1b7e6c2 100644
--- a/paddle/gserver/tests/MKLDNNTester.h
+++ b/paddle/gserver/tests/MKLDNNTester.h
@@ -18,6 +18,7 @@ limitations under the License. */
#include
#include "LayerGradUtil.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
+#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace paddle {
@@ -40,7 +41,8 @@ protected:
vector layerMaps_;
vector> parameters_;
vector testLayers_;
- LayerPtr dnnLayer_, refLayer_;
+ LayerPtr refLayer_;
+ MKLDNNLayerPtr dnnLayer_;
/// run some iterations, all the result should pass
size_t iter_;
@@ -88,10 +90,10 @@ private:
void checkBackwardData();
void checkBackwardWgts();
- void clearWgtDiffs();
- void clearBotDiffs();
- void clearBotDiffs(int n); // clear specific layer
- void clearTopDatas();
+ // clear specific layer, clear all when id equals NUM
+ void clearWgtDiffs(size_t id = NUM);
+ void clearBotDiffs(size_t id = NUM);
+ void clearTopDatas(size_t id = NUM);
void printTopDatas();
void printMatrix(const MatrixPtr& m);
diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp
index 0e6be2df9ef5f0fae8ed2b0c65ac6c032fe45ab1..090bde7b203652e3ffb1662b8f5b8937885d2608 100644
--- a/paddle/gserver/tests/test_LayerGrad.cpp
+++ b/paddle/gserver/tests/test_LayerGrad.cpp
@@ -2302,26 +2302,27 @@ void test3DDeConvLayer(const string& type, bool trans, bool useGpu) {
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_stride_z(2);
- conv->set_img_size(IMAGE_SIZE);
- conv->set_img_size_y(IMAGE_SIZE_Y);
- conv->set_img_size_z(IMAGE_SIZE_Z);
- conv->set_output_x(imageSize(conv->img_size(),
+ conv->set_output_x(IMAGE_SIZE);
+ conv->set_output_y(IMAGE_SIZE_Y);
+ conv->set_output_z(IMAGE_SIZE_Z);
+
+ conv->set_img_size(imageSize(conv->output_x(),
conv->filter_size(),
conv->padding(),
conv->stride(),
true));
- conv->set_output_y(imageSize(conv->img_size_y(),
- conv->filter_size_y(),
- conv->padding_y(),
- conv->stride_y(),
- true));
- conv->set_output_z(imageSize(conv->img_size_z(),
- conv->filter_size_z(),
- conv->padding_z(),
- conv->stride_z(),
- true));
- config.layerConfig.set_size(conv->output_x() * conv->output_y() *
- conv->output_z() * NUM_FILTERS);
+ conv->set_img_size_y(imageSize(conv->output_y(),
+ conv->filter_size_y(),
+ conv->padding_y(),
+ conv->stride_y(),
+ true));
+ conv->set_img_size_z(imageSize(conv->output_z(),
+ conv->filter_size_z(),
+ conv->padding_z(),
+ conv->stride_z(),
+ true));
+ config.layerConfig.set_size(conv->img_size() * conv->img_size_y() *
+ conv->img_size_z() * NUM_FILTERS);
conv->set_groups(1);
conv->set_filter_channels(conv->channels() / conv->groups());
config.inputDefs.push_back(
diff --git a/paddle/gserver/tests/test_MKLDNN.cpp b/paddle/gserver/tests/test_MKLDNN.cpp
index e1d2270df24331914f3a51acc90a518084b3ce4e..b593f65fe49ef2271ad7cd0f609c9b828be03037 100644
--- a/paddle/gserver/tests/test_MKLDNN.cpp
+++ b/paddle/gserver/tests/test_MKLDNN.cpp
@@ -17,6 +17,7 @@ limitations under the License. */
#include
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
+#include "paddle/math/MathUtils.h"
using namespace paddle; // NOLINT
@@ -63,6 +64,145 @@ TEST(MKLDNNLayer, FcLayer) {
testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16});
}
+struct testConvDesc {
+ int bs, gp;
+ int ic, ih, iw;
+ int oc, oh, ow;
+ int fh, fw;
+ int ph, pw;
+ int sh, sw;
+ int dh, dw;
+};
+
+void testConvLayer(const testConvDesc& pm) {
+ const std::string compareTypes[] = {"mkldnn_conv", "exconv"};
+ TestConfig cfg;
+ cfg.layerConfig.set_type(compareTypes[0]);
+ cfg.layerConfig.set_num_filters(pm.oc);
+ cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow);
+ // cfg.layerConfig.set_partial_sum(1); // TODO: check it
+ cfg.layerConfig.set_shared_biases(true);
+ cfg.inputDefs.push_back(
+ {INPUT_DATA,
+ "layer_0",
+ /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
+ /* size of weight= */ size_t(pm.oc * pm.ic * pm.fh * pm.fw / pm.gp)});
+ LayerInputConfig* input = cfg.layerConfig.add_inputs();
+ ConvConfig* conv = input->mutable_conv_conf();
+ conv->set_groups(pm.gp);
+ conv->set_img_size(pm.iw);
+ conv->set_img_size_y(pm.ih);
+ conv->set_output_x(pm.ow);
+ conv->set_output_y(pm.oh);
+ conv->set_filter_size(pm.fw);
+ conv->set_filter_size_y(pm.fh);
+ conv->set_channels(pm.ic);
+ conv->set_padding(pm.pw);
+ conv->set_padding_y(pm.ph);
+ conv->set_stride(pm.sw);
+ conv->set_stride_y(pm.sh);
+ conv->set_dilation(pm.dw);
+ conv->set_dilation_y(pm.dh);
+ conv->set_caffe_mode(true);
+ conv->set_filter_channels(conv->channels() / conv->groups());
+ CHECK_EQ(conv->filter_channels() * pm.gp, conv->channels())
+ << "it is indivisible";
+
+ int fh = (pm.fh - 1) * pm.dh + 1;
+ int fw = (pm.fw - 1) * pm.dw + 1;
+ int ow = outputSize(pm.iw, fw, pm.pw, pm.sw, true);
+ int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true);
+ CHECK_EQ(ow, pm.ow) << "output size check failed";
+ CHECK_EQ(oh, pm.oh) << "output size check failed";
+
+ MKLDNNTester tester;
+ for (auto biasSize : {pm.oc, 0}) {
+ cfg.biasSize = biasSize;
+ TestConfig ref = cfg;
+ ref.layerConfig.set_type(compareTypes[1]);
+ for (auto bs : {pm.bs, 1}) {
+ tester.run(cfg, ref, bs, pm.ih, pm.iw);
+ }
+ }
+}
+
+TEST(MKLDNNLayer, ConvLayer) {
+ /* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */
+ testConvLayer({2, 1, 3, 32, 32, 16, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({2, 1, 8, 16, 16, 8, 16, 16, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({3, 1, 16, 32, 32, 3, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({8, 1, 16, 18, 18, 32, 18, 18, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({16, 1, 1, 42, 31, 32, 23, 11, 4, 5, 3, 2, 2, 3, 1, 1});
+ testConvLayer({2, 1, 8, 16, 16, 8, 8, 8, 3, 3, 1, 1, 2, 2, 1, 1});
+ testConvLayer({3, 1, 8, 13, 13, 8, 7, 7, 3, 3, 1, 1, 2, 2, 1, 1});
+ // with groups
+ testConvLayer({2, 2, 4, 5, 5, 8, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({2, 3, 3, 5, 5, 3, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1});
+}
+
+struct testPoolDesc {
+ int bs, ch; // input channel and output channel are the same
+ int ih, iw;
+ int oh, ow;
+ int fh, fw;
+ int ph, pw;
+ int sh, sw;
+};
+
+void testPoolLayer(const testPoolDesc& pm) {
+ const std::string compareTypes[] = {"mkldnn_pool", "pool"};
+ TestConfig cfg;
+ cfg.layerConfig.set_type(compareTypes[0]);
+ cfg.layerConfig.set_size(pm.ch * pm.oh * pm.ow);
+ cfg.inputDefs.push_back(
+ {INPUT_DATA,
+ "layer_0",
+ /* size of input layer= */ size_t(pm.ch * pm.ih * pm.iw),
+ 0});
+ LayerInputConfig* input = cfg.layerConfig.add_inputs();
+ PoolConfig* pool = input->mutable_pool_conf();
+ // pool->set_pool_type(poolType);
+ pool->set_channels(pm.ch);
+ pool->set_img_size(pm.iw);
+ pool->set_img_size_y(pm.ih);
+ pool->set_output_x(pm.ow);
+ pool->set_output_y(pm.oh);
+ pool->set_size_x(pm.fw);
+ pool->set_size_y(pm.fh);
+ pool->set_padding(pm.pw);
+ pool->set_padding_y(pm.ph);
+ pool->set_stride(pm.sw);
+ pool->set_stride_y(pm.sh);
+
+ int oh = outputSize(pm.ih, pm.fh, pm.ph, pm.sh, false);
+ int ow = outputSize(pm.iw, pm.fw, pm.pw, pm.sw, false);
+ CHECK_EQ(ow, pm.ow) << "output size check failed";
+ CHECK_EQ(oh, pm.oh) << "output size check failed";
+
+ MKLDNNTester tester;
+ for (auto type : {"max-projection", "avg-projection"}) {
+ pool->set_pool_type(type);
+ TestConfig ref = cfg;
+ ref.layerConfig.set_type(compareTypes[1]);
+ for (auto bs : {pm.bs, 1}) {
+ tester.run(cfg, ref, bs, pm.ih, pm.iw);
+ }
+ }
+}
+
+TEST(MkldnnLayer, PoolLayer) {
+ /* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw*/
+ testPoolLayer({2, 1, 4, 4, 2, 2, 3, 3, 0, 0, 2, 2});
+ testPoolLayer({10, 8, 16, 16, 8, 8, 2, 2, 0, 0, 2, 2});
+ testPoolLayer({4, 2, 5, 5, 3, 3, 3, 3, 1, 1, 2, 2});
+ testPoolLayer({8, 16, 56, 56, 28, 28, 3, 3, 0, 0, 2, 2});
+ testPoolLayer({8, 16, 14, 14, 7, 7, 3, 3, 0, 0, 2, 2});
+ testPoolLayer({4, 16, 7, 7, 1, 1, 7, 7, 0, 0, 1, 1});
+ testPoolLayer({4, 2, 5, 5, 3, 3, 5, 5, 1, 1, 1, 1});
+ testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2});
+}
+
// TODO(TJ): add branch test
int main(int argc, char** argv) {
diff --git a/paddle/math/BaseMatrix.cu b/paddle/math/BaseMatrix.cu
index 5435808fb7f70fdf1ac98815f7fe8890fb85527c..53dd5383601782231e6e742784007d1c9154dc6b 100644
--- a/paddle/math/BaseMatrix.cu
+++ b/paddle/math/BaseMatrix.cu
@@ -17,6 +17,7 @@ limitations under the License. */
#include
#include "BaseMatrix.h"
#include "MathFunctions.h"
+#include "NEONFunctions.h"
#include "SIMDFunctions.h"
#include "hl_matrix_apply.cuh"
#include "hl_matrix_base.cuh"
@@ -666,6 +667,13 @@ void BaseMatrixT::relu(BaseMatrixT& b) {
applyBinary(binary::Relu(), b);
}
+#if defined(__ARM_NEON__) || defined(__ARM_NEON)
+template <>
+void BaseMatrixT::relu(BaseMatrixT& b) {
+ neon::relu(data_, b.data_, height_ * width_);
+}
+#endif
+
DEFINE_MATRIX_BINARY_OP(ReluDerivative, a *= (b > 0.0f ? 1.0f : 0.0f));
template
void BaseMatrixT::reluDerivative(BaseMatrixT& b) {
diff --git a/paddle/math/MKLDNNMatrix.cpp b/paddle/math/MKLDNNMatrix.cpp
index 0a355e2644cce572ce90ecf5c9d2a5b7b395bc61..0778bb63b7b3bca9b3d2647ca43dad72d783950a 100644
--- a/paddle/math/MKLDNNMatrix.cpp
+++ b/paddle/math/MKLDNNMatrix.cpp
@@ -33,14 +33,12 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, memory::primitive_desc pd) {
size_t width = cnts / dims[0];
m = Matrix::create(height, width, false, false);
}
-
CHECK(m) << " Matrix should not be empty";
+
CpuMatrixPtr cpuMatrix = std::dynamic_pointer_cast(m);
CHECK(cpuMatrix) << "Only support create from CPU matrix yet";
-
- CHECK_EQ(cnts, m->getElementCnt()) << "Count size does not match";
- return std::make_shared(
- m->getData(), m->getHeight(), m->getWidth(), pd);
+ CHECK_EQ(cpuMatrix->getElementCnt(), cnts) << "Count size does not match";
+ return std::make_shared(cpuMatrix, pd);
}
MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m,
@@ -51,6 +49,27 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m,
return create(m, memory::primitive_desc(memory::desc(dims, dtype, fmt), eg));
}
+std::shared_ptr MKLDNNMatrix::createReorder(const MKLDNNMatrixPtr& src,
+ const MKLDNNMatrixPtr& dst,
+ bool checkData) {
+ if (src == dst || src->getPrimitiveDesc() == dst->getPrimitiveDesc()) {
+ return nullptr;
+ }
+
+ if (checkData && (src->getData() == dst->getData())) {
+ LOG(FATAL) << "can not create reorder with inplace data";
+ return nullptr;
+ }
+
+ memory::dims srcDims = src->getDims();
+ memory::dims dstDims = dst->getDims();
+ CHECK_EQ(srcDims.size(), dstDims.size());
+ for (size_t i = 0; i < srcDims.size(); ++i) {
+ CHECK_EQ(srcDims[i], dstDims[i]);
+ }
+ return std::make_shared(*src, *dst);
+}
+
void MKLDNNMatrix::reorderDataFrom(const MKLDNNMatrixPtr& m,
memory::format srcFmt,
memory::dims targetDim) {
@@ -138,7 +157,7 @@ void MKLDNNMatrix::downSpatial() {
mkldnn_primitive_create(&result, pd.get(), nullptr, nullptr),
"could not create a memory primitive");
reset(result);
- set_data_handle(getData());
+ set_data_handle(data_);
}
} // namespace paddle
diff --git a/paddle/math/MKLDNNMatrix.h b/paddle/math/MKLDNNMatrix.h
index e50f698b495713e6f15ab7a12a7ee7487662040f..c843115eb9a5be50d6ff873f1510844228c9d89f 100644
--- a/paddle/math/MKLDNNMatrix.h
+++ b/paddle/math/MKLDNNMatrix.h
@@ -30,11 +30,10 @@ typedef std::shared_ptr MKLDNNMatrixPtr;
*/
class MKLDNNMatrix : public CpuMatrix, public mkldnn::memory {
public:
- MKLDNNMatrix(real* data,
- size_t height,
- size_t width,
- mkldnn::memory::primitive_desc pd)
- : CpuMatrix(data, height, width, false), mkldnn::memory(pd, data) {}
+ MKLDNNMatrix(CpuMatrixPtr m, mkldnn::memory::primitive_desc pd)
+ : CpuMatrix(m->getData(), m->getHeight(), m->getWidth(), false),
+ mkldnn::memory(pd, m->getData()),
+ m_(m) {}
~MKLDNNMatrix() {}
@@ -53,6 +52,32 @@ public:
mkldnn::engine& eg,
mkldnn::memory::data_type dtype = mkldnn::memory::data_type::f32);
+ /**
+ * Create Memory descriptor.
+ * default with any format and f32 dtype
+ */
+ static mkldnn::memory::desc createMemoryDesc(
+ const mkldnn::memory::dims& dims,
+ const mkldnn::memory::format& fmt = mkldnn::memory::format::any,
+ const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) {
+ return mkldnn::memory::desc(dims, dtype, fmt);
+ }
+
+ /**
+ * Create reorder primitive.
+ * Create a mkldnn::reorder handle for converting src MKLDNNMatrix to dst.
+ * checkData: whether to check the data handle of src and dst.
+ * if true, it will check the data and do not allow them equal;
+ * otherwise, it will not check them, then the reorder created
+ * may have inplace buffer.
+ * Do not set false, if you can not guarantee the inplace logical
+ * would work with your reorder.
+ */
+ static std::shared_ptr createReorder(
+ const MKLDNNMatrixPtr& src,
+ const MKLDNNMatrixPtr& dst,
+ bool checkData = true);
+
public:
/**
* Reorder this MKLDNNMatrix from other format.
@@ -81,11 +106,29 @@ public:
void downSpatial();
/**
- * Update the memory data handle.
+ * set the memory data handle.
* Caution: This will not check the buffer size of the data,
* it should be coverd by user.
*/
- void updateData(void* data) { set_data_handle(data); }
+ void setData(real* data) {
+ set_data_handle(data);
+ CpuMatrix::setData(data);
+ m_.reset();
+ }
+
+ /**
+ * override Matrix::getData
+ * check data before return
+ */
+ real* getData() override {
+ CHECK_EQ((void*)data_, get_data_handle());
+ return data_;
+ }
+
+ const real* getData() const override {
+ CHECK_EQ((void*)data_, get_data_handle());
+ return data_;
+ }
/**
* Get primitive descriptor.
@@ -143,6 +186,10 @@ protected:
memory::format srcFmt,
memory::format dstFmt,
memory::dims dm);
+
+private:
+ // save the CpuMatrixPtr in case the buffer released outside
+ CpuMatrixPtr m_;
};
} // namespace paddle
diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp
index 4a2132c8d1bfa329ced575f9b78052bdbfe3e4d5..0023b4d0f5da500f380ecb836b7c54e050b13d67 100644
--- a/paddle/math/Matrix.cpp
+++ b/paddle/math/Matrix.cpp
@@ -1033,17 +1033,15 @@ void GpuMatrix::maxPoolForward(Matrix& inputMat,
real* inputData = inputMat.getData();
size_t frameNum = inputMat.getHeight();
- size_t width = imgSizeW;
- size_t height = imgSizeH;
- CHECK(height * width * channels == inputMat.getWidth());
+ CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputH * outputW * channels);
hl_maxpool_forward(frameNum,
inputData,
channels,
- height,
- width,
+ imgSizeH,
+ imgSizeW,
outputH,
outputW,
sizeX,
@@ -1080,11 +1078,8 @@ void GpuMatrix::maxPoolBackward(Matrix& inputMat,
real* outDiff = outGrad.getData();
size_t frameNum = inputMat.getHeight();
size_t channels = outV.getWidth() / outputH / outputW;
- size_t width = imgSizeW;
- size_t height = imgSizeH;
- CHECK(height * width * channels == inputMat.getWidth());
+ CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight());
- CHECK(width_ == width * height * channels);
CHECK(outGrad.getHeight() == outV.getHeight() &&
outGrad.getWidth() == outV.getWidth());
@@ -1093,8 +1088,8 @@ void GpuMatrix::maxPoolBackward(Matrix& inputMat,
outData,
outDiff,
channels,
- height,
- width,
+ imgSizeH,
+ imgSizeW,
outputH,
outputW,
sizeX,
@@ -1125,17 +1120,15 @@ void GpuMatrix::avgPoolForward(Matrix& inputMat,
real* inputData = inputMat.getData();
size_t frameNum = inputMat.getHeight();
- size_t height = imgSizeH;
- size_t width = imgSizeW;
- CHECK(height * width * channels == inputMat.getWidth());
+ CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputH * outputW * channels);
hl_avgpool_forward(frameNum,
inputData,
channels,
- height,
- width,
+ imgSizeH,
+ imgSizeW,
outputH,
outputW,
sizeX,
@@ -1166,17 +1159,15 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad,
real* outDiff = outGrad.getData();
size_t frameNum = outGrad.getHeight();
size_t channels = outGrad.getWidth() / outputH / outputW;
- size_t height = imgSizeH;
- size_t width = imgSizeW;
- CHECK(height * width * channels == width_);
+ CHECK(imgSizeH * imgSizeW * channels == width_);
CHECK(height_ == outGrad.getHeight());
CHECK(outGrad.getWidth() == outputH * outputW * channels);
hl_avgpool_backward(frameNum,
outDiff,
channels,
- height,
- width,
+ imgSizeH,
+ imgSizeW,
outputH,
outputW,
sizeX,
@@ -1214,19 +1205,16 @@ void GpuMatrix::maxPool3DForward(Matrix& inputMat,
real* inputData = inputMat.getData();
real* maxPoolIdxData = maxPoolIdx.getData();
size_t num = inputMat.getHeight();
- size_t width = imgSizeW;
- size_t height = imgSizeH;
- size_t depth = imgSizeD;
- CHECK(depth * height * width * channels == inputMat.getWidth());
+ CHECK(imgSizeD * imgSizeH * imgSizeW * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputD * outputH * outputW * channels);
hl_maxpool3D_forward(num,
inputData,
channels,
- depth,
- height,
- width,
+ imgSizeD,
+ imgSizeH,
+ imgSizeW,
outputD,
outputH,
outputW,
@@ -1269,20 +1257,16 @@ void GpuMatrix::maxPool3DBackward(Matrix& outGrad,
real* maxPoolIdxData = maxPoolIdx.getData();
size_t frameNum = getHeight();
size_t channels = outGrad.getWidth() / outputD / outputH / outputW;
- size_t width = imgSizeW;
- size_t height = imgSizeH;
- size_t depth = imgSizeD;
- CHECK(depth * height * width * channels == getWidth());
- CHECK(width_ == depth * width * height * channels);
+ CHECK(imgSizeD * imgSizeH * imgSizeW * channels == getWidth());
CHECK(outGrad.getHeight() == maxPoolIdx.getHeight() &&
outGrad.getWidth() == maxPoolIdx.getWidth());
hl_maxpool3D_backward(frameNum,
outDiff,
channels,
- depth,
- height,
- width,
+ imgSizeD,
+ imgSizeH,
+ imgSizeW,
outputD,
outputH,
outputW,
@@ -1323,19 +1307,16 @@ void GpuMatrix::avgPool3DForward(Matrix& inputMat,
real* inputData = inputMat.getData();
size_t frameNum = inputMat.getHeight();
- size_t height = imgSizeH;
- size_t width = imgSizeW;
- size_t depth = imgSizeD;
- CHECK(depth * height * width * channels == inputMat.getWidth());
+ CHECK(imgSizeD * imgSizeH * imgSizeW * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputD * outputH * outputW * channels);
hl_avgpool3D_forward(frameNum,
inputData,
channels,
- depth,
- height,
- width,
+ imgSizeD,
+ imgSizeH,
+ imgSizeW,
outputD,
outputH,
outputW,
@@ -1375,19 +1356,16 @@ void GpuMatrix::avgPool3DBackward(Matrix& outGrad,
real* outDiff = outGrad.getData();
size_t frameNum = outGrad.getHeight();
size_t channels = outGrad.getWidth() / outputD / outputH / outputW;
- size_t height = imgSizeH;
- size_t width = imgSizeW;
- size_t depth = imgSizeD;
- CHECK(depth * height * width * channels == width_);
+ CHECK(imgSizeD * imgSizeH * imgSizeW * channels == width_);
CHECK(height_ == outGrad.getHeight());
CHECK(outGrad.getWidth() == outputD * outputH * outputW * channels);
hl_avgpool3D_backward(frameNum,
outDiff,
channels,
- depth,
- height,
- width,
+ imgSizeD,
+ imgSizeH,
+ imgSizeW,
outputD,
outputH,
outputW,
@@ -1999,11 +1977,11 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
real* inputData = inputMat.getData();
real* outData = data_;
size_t num = inputMat.getHeight();
- size_t inWidth = imgSizeW;
- size_t inHeight = imgSizeH;
- CHECK(inHeight * inWidth == inputMat.getWidth() / channels);
+ size_t inLength = imgSizeH * imgSizeW;
+ size_t outLength = outputH * outputW;
+ CHECK(inLength == inputMat.getWidth() / channels);
CHECK_EQ(num, this->getHeight());
- CHECK_EQ(channels * outputH * outputW, this->getWidth());
+ CHECK_EQ(channels * outLength, this->getWidth());
size_t outStride = getStride();
/* initialize the data_ */
@@ -2020,24 +1998,24 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
}
for (size_t c = 0; c < channels; ++c) { // channel by channel
for (size_t ph = 0; ph < outputH; ++ph) {
+ int hstart = ph * strideH - paddingH;
+ int hend = std::min(hstart + sizeY, imgSizeH);
+ hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
- int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
- int hend = std::min(hstart + sizeY, inHeight);
- int wend = std::min(wstart + sizeX, inWidth);
- hstart = std::max(hstart, 0);
+ int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0);
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
- outData[ph * outputW + pw] = std::max(outData[ph * outputW + pw],
- inputData[h * inWidth + w]);
+ outData[ph * outputW + pw] = std::max(
+ outData[ph * outputW + pw], inputData[h * imgSizeW + w]);
}
}
}
}
// compute offset
- inputData += inHeight * inWidth;
- outData += outputH * outputW;
+ inputData += inLength;
+ outData += outLength;
}
}
}
@@ -2058,8 +2036,10 @@ void CpuMatrix::maxPoolBackward(Matrix& image,
size_t paddingH,
size_t paddingW) {
size_t num = image.getHeight();
- size_t channels = size_t(width_ / imgSizeH / imgSizeW);
- CHECK(image.getWidth() == imgSizeH * imgSizeW * channels);
+ size_t inLength = imgSizeH * imgSizeW;
+ size_t outLength = outputH * outputW;
+ size_t channels = size_t(width_ / inLength);
+ CHECK(image.getWidth() == inLength * channels);
CHECK(image.getHeight() == height_ && image.getWidth() == width_);
CHECK(outV.getHeight() == outGrad.getHeight() &&
outV.getWidth() == outGrad.getWidth());
@@ -2080,12 +2060,12 @@ void CpuMatrix::maxPoolBackward(Matrix& image,
}
for (size_t c = 0; c < channels; ++c) {
for (size_t ph = 0; ph < outputH; ++ph) {
+ int hstart = ph * strideH - paddingH;
+ int hend = std::min(hstart + sizeY, imgSizeH);
+ hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
- int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
- int hend = std::min(hstart + sizeY, imgSizeH);
int wend = std::min(wstart + sizeX, imgSizeW);
- hstart = std::max(hstart, 0);
wstart = std::max(wstart, 0);
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
@@ -2098,10 +2078,10 @@ void CpuMatrix::maxPoolBackward(Matrix& image,
}
}
// offset
- inData += imgSizeH * imgSizeW;
- tgtGrad += imgSizeH * imgSizeW;
- otData += outputH * outputW;
- otGrad += outputH * outputW;
+ inData += inLength;
+ tgtGrad += inLength;
+ otData += outLength;
+ otGrad += outLength;
}
}
}
@@ -2120,10 +2100,10 @@ void CpuMatrix::avgPoolForward(Matrix& input,
size_t paddingW) {
// The main loop
size_t num = input.getHeight();
- size_t inHeight = imgSizeH;
- size_t inWidth = imgSizeW;
- CHECK(inHeight * inWidth * channels == input.getWidth());
- CHECK(outputH * outputW * channels * num == height_ * width_);
+ size_t inLength = imgSizeH * imgSizeW;
+ size_t outLength = outputH * outputW;
+ CHECK(inLength * channels == input.getWidth());
+ CHECK(outLength * channels * num == height_ * width_);
real* tgtData = data_;
real* inData = input.getData();
@@ -2133,30 +2113,27 @@ void CpuMatrix::avgPoolForward(Matrix& input,
}
for (size_t c = 0; c < channels; ++c) {
for (size_t ph = 0; ph < outputH; ++ph) {
+ int hstart = ph * strideH - paddingH;
+ int hend = std::min(hstart + sizeY, imgSizeH);
+ hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
- int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
- int hend = std::min(hstart + sizeY, inHeight + paddingH);
- int wend = std::min(wstart + sizeX, inWidth + paddingW);
- int poolSize = (hend - hstart) * (wend - wstart);
- hstart = std::max(hstart, 0);
+ int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0);
- hend = std::min(hend, static_cast(inHeight));
- wend = std::min(wend, static_cast(inWidth));
-
- CHECK(poolSize);
tgtData[ph * outputW + pw] = 0; // clear
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
- tgtData[ph * outputW + pw] += inData[h * inWidth + w];
+ tgtData[ph * outputW + pw] += inData[h * imgSizeW + w];
}
}
+ int poolSize = (hend - hstart) * (wend - wstart);
+ CHECK(poolSize);
tgtData[ph * outputW + pw] /= poolSize;
}
}
// compute offset
- inData += inHeight * inWidth;
- tgtData += outputH * outputW;
+ inData += inLength;
+ tgtData += outLength;
}
}
}
@@ -2176,7 +2153,9 @@ void CpuMatrix::avgPoolBackward(Matrix& input,
size_t paddingW) {
size_t num = input.getHeight();
size_t channels = input.getWidth() / outputH / outputW;
- CHECK(imgSizeH * imgSizeW * channels == getWidth());
+ size_t inLength = imgSizeH * imgSizeW;
+ size_t outLength = outputH * outputW;
+ CHECK(inLength * channels == getWidth());
real* inData = input.getData();
real* outData = getData();
@@ -2186,16 +2165,14 @@ void CpuMatrix::avgPoolBackward(Matrix& input,
}
for (size_t c = 0; c < channels; ++c) {
for (size_t ph = 0; ph < outputH; ++ph) {
+ int hstart = ph * strideH - paddingH;
+ int hend = std::min(hstart + sizeY, imgSizeH);
+ hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
- int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
- int hend = std::min(hstart + sizeY, imgSizeH + paddingH);
- int wend = std::min(wstart + sizeX, imgSizeW + paddingW);
- int poolSize = (hend - hstart) * (wend - wstart);
- hstart = std::max(hstart, 0);
+ int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0);
- hend = std::min(hend, static_cast(imgSizeH));
- wend = std::min(wend, static_cast(imgSizeW));
+ int poolSize = (hend - hstart) * (wend - wstart);
CHECK(poolSize);
for (int h = hstart; h < hend; ++h) {
@@ -2206,8 +2183,8 @@ void CpuMatrix::avgPoolBackward(Matrix& input,
}
}
// offset
- outData += imgSizeH * imgSizeW;
- inData += outputH * outputW;
+ outData += inLength;
+ inData += outLength;
}
}
}
@@ -2234,12 +2211,11 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
real* outData = getData();
real* maxPoolIdxData = maxPoolIdx.getData();
size_t num = inputMat.getHeight();
- size_t inWidth = imgSizeW;
- size_t inHeight = imgSizeH;
- size_t inDepth = imgSizeD;
- CHECK(inHeight * inWidth * inDepth == inputMat.getWidth() / channels);
+ size_t inLength = imgSizeH * imgSizeW * imgSizeD;
+ size_t outLength = outputH * outputW * outputD;
+ CHECK(inLength == inputMat.getWidth() / channels);
CHECK_EQ(num, this->getHeight());
- CHECK_EQ(channels * outputH * outputW * outputD, this->getWidth());
+ CHECK_EQ(channels * outLength, this->getWidth());
size_t outStride = getStride();
/* initialize the data_ */
@@ -2258,16 +2234,16 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
}
for (size_t c = 0; c < channels; ++c) { // channel by channel
for (size_t pd = 0; pd < outputD; ++pd) {
+ int dstart = pd * strideD - paddingD;
+ int dend = std::min(dstart + sizeZ, imgSizeD);
+ dstart = std::max(dstart, 0);
for (size_t ph = 0; ph < outputH; ++ph) {
+ int hstart = ph * strideH - paddingH;
+ int hend = std::min(hstart + sizeY, imgSizeH);
+ hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
- int dstart = pd * strideD - paddingD;
- int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
- int dend = std::min(dstart + sizeZ, inDepth);
- int hend = std::min(hstart + sizeY, inHeight);
- int wend = std::min(wstart + sizeX, inWidth);
- dstart = std::max(dstart, 0);
- hstart = std::max(hstart, 0);
+ int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0);
int maxIdx = -1;
real maxOutData = outData[(pd * outputH + ph) * outputW + pw];
@@ -2275,9 +2251,9 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (maxOutData <
- inputData[(d * inHeight + h) * inWidth + w]) {
- maxOutData = inputData[(d * inHeight + h) * inWidth + w];
- maxIdx = (d * inHeight + h) * inWidth + w;
+ inputData[(d * imgSizeH + h) * imgSizeW + w]) {
+ maxOutData = inputData[(d * imgSizeH + h) * imgSizeW + w];
+ maxIdx = (d * imgSizeH + h) * imgSizeW + w;
}
}
}
@@ -2288,9 +2264,9 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
}
}
// compute offset
- inputData += inDepth * inHeight * inWidth;
- outData += outputD * outputH * outputW;
- maxPoolIdxData += outputD * outputH * outputW;
+ inputData += inLength;
+ outData += outLength;
+ maxPoolIdxData += outLength;
}
}
}
@@ -2315,7 +2291,9 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad,
real scaleTargets,
real scaleOutput) {
size_t num = getHeight();
- size_t channels = size_t(width_ / imgSizeD / imgSizeH / imgSizeW);
+ size_t inLength = imgSizeH * imgSizeW * imgSizeD;
+ size_t outLength = outputH * outputW * outputD;
+ size_t channels = size_t(width_ / inLength);
CHECK(maxPoolIdx.getHeight() == outGrad.getHeight() &&
maxPoolIdx.getWidth() == outGrad.getWidth());
@@ -2341,9 +2319,9 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad,
}
}
// offset
- tgtGrad += imgSizeD * imgSizeH * imgSizeW;
- otGrad += outputD * outputH * outputW;
- maxPoolIdxData += outputD * outputH * outputW;
+ tgtGrad += inLength;
+ otGrad += outLength;
+ maxPoolIdxData += outLength;
}
}
}
@@ -2367,11 +2345,10 @@ void CpuMatrix::avgPool3DForward(Matrix& input,
size_t paddingW) {
// The main loop
size_t num = input.getHeight();
- size_t inDepth = imgSizeD;
- size_t inHeight = imgSizeH;
- size_t inWidth = imgSizeW;
- CHECK(inDepth * inHeight * inWidth * channels == input.getWidth());
- CHECK(outputD * outputH * outputW * channels * num == height_ * width_);
+ size_t inLength = imgSizeH * imgSizeW * imgSizeD;
+ size_t outLength = outputH * outputW * outputD;
+ CHECK(inLength * channels == input.getWidth());
+ CHECK(outLength * channels * num == height_ * width_);
real* tgtData = getData();
real* inData = input.getData();
@@ -2381,39 +2358,36 @@ void CpuMatrix::avgPool3DForward(Matrix& input,
}
for (size_t c = 0; c < channels; ++c) {
for (size_t pd = 0; pd < outputD; ++pd) {
+ int dstart = pd * strideD - paddingD;
+ int dend = std::min(dstart + sizeZ, imgSizeD);
+ dstart = std::max(dstart, 0);
for (size_t ph = 0; ph < outputH; ++ph) {
+ int hstart = ph * strideH - paddingH;
+ int hend = std::min(hstart + sizeY, imgSizeH);
+ hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
- int dstart = pd * strideD - paddingD;
- int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
- int dend = std::min(dstart + sizeZ, inDepth + paddingD);
- int hend = std::min(hstart + sizeY, inHeight + paddingH);
- int wend = std::min(wstart + sizeX, inWidth + paddingW);
- int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart);
- dstart = std::max(dstart, 0);
- hstart = std::max(hstart, 0);
+ int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0);
- dend = std::min(dend, static_cast(inDepth));
- hend = std::min(hend, static_cast(inHeight));
- wend = std::min(wend, static_cast(inWidth));
- CHECK(poolSize);
tgtData[(pd * outputH + ph) * outputW + pw] = 0; // clear
for (int d = dstart; d < dend; ++d) {
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
tgtData[(pd * outputH + ph) * outputW + pw] +=
- inData[(d * inHeight + h) * inWidth + w];
+ inData[(d * imgSizeH + h) * imgSizeW + w];
}
}
}
+ int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart);
+ CHECK(poolSize);
tgtData[(pd * outputH + ph) * outputW + pw] /= poolSize;
}
}
}
// compute offset
- inData += inDepth * inHeight * inWidth;
- tgtData += outputD * outputH * outputW;
+ inData += inLength;
+ tgtData += outLength;
}
}
}
@@ -2437,8 +2411,10 @@ void CpuMatrix::avgPool3DBackward(Matrix& input,
real scaleTargets,
real scaleOutput) {
size_t num = input.getHeight();
- size_t channels = input.getWidth() / outputD / outputH / outputW;
- CHECK(imgSizeD * imgSizeH * imgSizeW * channels == getWidth());
+ size_t inLength = imgSizeH * imgSizeW * imgSizeD;
+ size_t outLength = outputH * outputW * outputD;
+ size_t channels = input.getWidth() / outLength;
+ CHECK(inLength * channels == getWidth());
real* inData = input.getData();
real* outData = getData();
@@ -2448,21 +2424,18 @@ void CpuMatrix::avgPool3DBackward(Matrix& input,
}
for (size_t c = 0; c < channels; ++c) {
for (size_t pd = 0; pd < outputD; ++pd) {
+ int dstart = pd * strideD - paddingD;
+ int dend = std::min(dstart + sizeZ, imgSizeD);
+ dstart = std::max(dstart, 0);
for (size_t ph = 0; ph < outputH; ++ph) {
+ int hstart = ph * strideH - paddingH;
+ int hend = std::min(hstart + sizeY, imgSizeH);
+ hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
- int dstart = pd * strideD - paddingD;
- int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
- int dend = std::min(dstart + sizeZ, imgSizeD + paddingD);
- int hend = std::min(hstart + sizeY, imgSizeH + paddingH);
- int wend = std::min(wstart + sizeX, imgSizeW + paddingW);
- int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart);
- dstart = std::max(dstart, 0);
- hstart = std::max(hstart, 0);
+ int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0);
- dend = std::min(dend, static_cast(imgSizeD));
- hend = std::min(hend, static_cast(imgSizeH));
- wend = std::min(wend, static_cast(imgSizeW));
+ int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart);
CHECK(poolSize);
for (int d = dstart; d < dend; ++d) {
for (int h = hstart; h < hend; ++h) {
@@ -2476,8 +2449,8 @@ void CpuMatrix::avgPool3DBackward(Matrix& input,
}
}
// offset
- outData += imgSizeD * imgSizeH * imgSizeW;
- inData += outputD * outputH * outputW;
+ outData += inLength;
+ inData += outLength;
}
}
}
diff --git a/paddle/math/NEONFunctions.cpp b/paddle/math/NEONFunctions.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..3bf47901f1069ac228fa1b877e29848d8cc130e8
--- /dev/null
+++ b/paddle/math/NEONFunctions.cpp
@@ -0,0 +1,55 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#if defined(__ARM_NEON__) || defined(__ARM_NEON)
+
+#include "NEONFunctions.h"
+#include
+
+namespace paddle {
+namespace neon {
+
+// b[i] = a[i] > 0.0f ? a[i] : 0.0f
+void relu(const float* a, float* b, int len) {
+ int offset = len % 16;
+ float32x4_t ma0, ma1, ma2, ma3;
+ float32x4_t mb0, mb1, mb2, mb3;
+
+ float32x4_t zero = vdupq_n_f32(0.f);
+ for (int k = 0; k < len / 16; k++, a += 16, b += 16) {
+ ma0 = vld1q_f32(a);
+ ma1 = vld1q_f32(a + 4);
+ ma2 = vld1q_f32(a + 8);
+ ma3 = vld1q_f32(a + 12);
+
+ mb0 = vmaxq_f32(ma0, zero);
+ mb1 = vmaxq_f32(ma1, zero);
+ mb2 = vmaxq_f32(ma2, zero);
+ mb3 = vmaxq_f32(ma3, zero);
+
+ vst1q_f32(b, mb0);
+ vst1q_f32(b + 4, mb1);
+ vst1q_f32(b + 8, mb2);
+ vst1q_f32(b + 12, mb3);
+ }
+
+ for (int i = 0; i < offset; i++) {
+ b[i] = a[i] > 0.0f ? a[i] : 0.0f;
+ }
+}
+
+} // namespace neon
+} // namespace paddle
+
+#endif
diff --git a/paddle/math/NEONFunctions.h b/paddle/math/NEONFunctions.h
new file mode 100644
index 0000000000000000000000000000000000000000..69085e333547a31a341fbfde247f1e30adb957ee
--- /dev/null
+++ b/paddle/math/NEONFunctions.h
@@ -0,0 +1,23 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+
+namespace paddle {
+namespace neon {
+
+void relu(const float* a, float* b, int len);
+
+} // namespace neon
+} // namespace paddle
diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp
index 103f06acc57d7a23f019f5e713f6cacf2179e9e0..061fb22e3fd744d9d9895fd1008089e4a6ce6a0f 100644
--- a/paddle/math/tests/test_matrixCompare.cpp
+++ b/paddle/math/tests/test_matrixCompare.cpp
@@ -825,9 +825,8 @@ void testMaxPoolFwdBwd(int numSamples,
int strideW,
int padH,
int padW) {
- int outH = 0, outW = 0;
- outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
- outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;
+ int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true);
+ int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true);
int inWidth = imgSizeH * imgSizeW * channels;
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
@@ -927,9 +926,8 @@ void testAvgPoolFwdBwd(int numSamples,
int strideW,
int padH,
int padW) {
- int outH = 0, outW = 0;
- outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
- outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;
+ int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true);
+ int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true);
int inWidth = imgSizeH * imgSizeW * channels;
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
diff --git a/paddle/memory/memcpy.cc b/paddle/memory/memcpy.cc
index a19a3e3675e3e2e7cc0c3594f21191f932d6379f..19ec9ba9b26f5919796181a19a048b7edb508bdd 100644
--- a/paddle/memory/memcpy.cc
+++ b/paddle/memory/memcpy.cc
@@ -62,6 +62,24 @@ void Copy(platform::GPUPlace dst_place,
}
}
+template <>
+void Copy(platform::CPUPlace dst_place,
+ void* dst,
+ platform::GPUPlace src_place,
+ const void* src, size_t num) {
+ platform::SetDeviceId(src_place.device);
+ platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
+}
+
+template <>
+void Copy(platform::GPUPlace dst_place,
+ void* dst,
+ platform::CPUPlace src_place,
+ const void* src, size_t num) {
+ platform::SetDeviceId(dst_place.device);
+ platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
+}
+
#endif // PADDLE_ONLY_CPU
} // namespace memory
diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt
index f9ea25ab045a02be5ab9ed81ef9c679126d3a188..e3e934bcccd1a5f34d88a2f33f3708a46ddabe05 100644
--- a/paddle/operators/CMakeLists.txt
+++ b/paddle/operators/CMakeLists.txt
@@ -1,5 +1,7 @@
file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc")
string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}")
+set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/pybind/pybind.h)
+file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n")
function(op_library TARGET)
# op_library is a function to create op library. The interface is same as
# cc_library. But it handle split GPU/CPU code and link some common library
@@ -7,10 +9,11 @@ function(op_library TARGET)
set(OP_LIBRARY ${TARGET} ${OP_LIBRARY} PARENT_SCOPE)
set(cc_srcs)
set(cu_srcs)
- set(op_common_deps operator op_registry)
+ set(op_common_deps operator op_registry math_function)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
+ set(pybind_flag 0)
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
@@ -46,22 +49,42 @@ function(op_library TARGET)
cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
endif()
+
+ # net_op doesn't need pybind
+ if ("${TARGET}" STREQUAL "net_op")
+ set(pybind_flag 1)
+ endif()
+
+ # pybind USE_NO_KERNEL_OP
+ file(READ ${TARGET}.cc TARGET_CONTENT)
+ string(REGEX MATCH "OperatorWithKernel" regex_result "${TARGET_CONTENT}")
+ string(REPLACE "_op" "" TARGET "${TARGET}")
+ if (${pybind_flag} EQUAL 0 AND regex_result STREQUAL "")
+ file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(${TARGET});\n")
+ set(pybind_flag 1)
+ endif()
+
+ # pybind USE_CPU_ONLY_OP
+ list(LENGTH cu_srcs cu_srcs_len)
+ if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0)
+ file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
+ set(pybind_flag 1)
+ endif()
+
+ # pybind USE_OP
+ if (${pybind_flag} EQUAL 0)
+ file(APPEND ${pybind_file} "USE_OP(${TARGET});\n")
+ endif()
endfunction()
add_subdirectory(math)
set(DEPS_OPS
- identity_op
- minus_op
- mul_op
recurrent_op
- scale_op)
-op_library(identity_op DEPS scale_op)
-op_library(minus_op DEPS scale_op)
-op_library(mul_op DEPS math_function)
+ cond_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
- DEPS framework_proto tensor operator net_op)
-op_library(scale_op DEPS net_op)
+ DEPS framework_proto tensor net_op)
+op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc
new file mode 100644
index 0000000000000000000000000000000000000000..0c813748b2989a8f0c00a359345747242dd21dd8
--- /dev/null
+++ b/paddle/operators/accuracy_op.cc
@@ -0,0 +1,71 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "paddle/operators/accuracy_op.h"
+
+namespace paddle {
+namespace operators {
+
+class AccuracyOp : public framework::OperatorWithKernel {
+ public:
+ using framework::OperatorWithKernel::OperatorWithKernel;
+
+ protected:
+ void InferShape(const framework::InferShapeContext &ctx) const override {
+ PADDLE_ENFORCE_NOT_NULL(
+ ctx.InputVar("Inference"),
+ "Input(Inference) of AccuracyOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
+ "Input(Label) of AccuracyOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(
+ ctx.OutputVar("Accuracy"),
+ "Output(Accuracy) of AccuracyOp should not be null.");
+
+ auto *inference = ctx.Input("Inference");
+ auto *label = ctx.Input("Label");
+
+ PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label must be a vector");
+ PADDLE_ENFORCE_EQ(inference->dims()[0], label->dims()[0],
+ "inference size must be the same as label size");
+
+ ctx.Output("Accuracy")->Resize({1});
+ }
+};
+
+class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
+ public:
+ AccuracyOpMaker(framework::OpProto *proto,
+ framework::OpAttrChecker *op_checker)
+ : OpProtoAndCheckerMaker(proto, op_checker) {
+ // TODO(typhoonzero): support both inference value and indices.
+ AddInput("Inference", "topk(indices) the network output");
+ AddInput("Label", "Label of the training data");
+ // TODO(typhoonzero): AddInput("Weight", ...
+ AddOutput("Accuracy", "The accuracy of current batch");
+
+ AddComment(
+ R"DOC(Accuracy. It will print accuracy rate for classification.
+The accuracy is:
+.. math::
+accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})DOC");
+ }
+};
+
+} // namespace operators
+} // namespace paddle
+
+namespace ops = paddle::operators;
+REGISTER_OP_WITHOUT_GRADIENT(accuracy, ops::AccuracyOp, ops::AccuracyOpMaker);
+REGISTER_OP_CPU_KERNEL(accuracy,
+ ops::AccuracyKernel);
diff --git a/paddle/operators/accuracy_op.cu b/paddle/operators/accuracy_op.cu
new file mode 100644
index 0000000000000000000000000000000000000000..0a6a0fd15c73330902552f7a9aa6339de24c1a18
--- /dev/null
+++ b/paddle/operators/accuracy_op.cu
@@ -0,0 +1,81 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include
+#include
+#include "paddle/operators/accuracy_op.h"
+#include "paddle/platform/cuda_helper.h"
+
+namespace paddle {
+namespace operators {
+using platform::PADDLE_CUDA_NUM_THREADS;
+
+template
+__global__ void AccuracyCudaKernel(const int N, const int D, const int* Xdata,
+ const int* labeldata, float* accuracy) {
+ int count = 0;
+ __shared__ int total[BlockSize];
+
+ // support only 1 block
+ for (int i = threadIdx.x; i < (N); i += BlockSize) {
+ for (int j = 0; j < D; ++j) {
+ if (Xdata[i * D + j] == labeldata[i]) {
+ ++count;
+ break;
+ }
+ }
+ }
+ total[threadIdx.x] = count;
+ __syncthreads();
+
+ // reduce the count with init value 0, and output accuracy.
+ int result = thrust::reduce(thrust::device, total, total + BlockSize, 0);
+ if (threadIdx.x == 0) {
+ *accuracy = static_cast(result) / static_cast(N);
+ }
+}
+
+template
+class AccuracyOpCUDAKernel : public framework::OpKernel {
+ public:
+ void Compute(const framework::ExecutionContext& ctx) const override {
+ PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
+ "It must use GPUPlace.");
+ auto* inference = ctx.Input("Inference");
+ auto* label = ctx.Input("Label");
+ auto* accuracy = ctx.Output