Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
44da9b42
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
44da9b42
编写于
2月 25, 2022
作者:
J
joeqiao12
提交者:
GitHub
2月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add reduce_min and reduce_max (#39899)
上级
8895379a
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
532 addition
and
5 deletion
+532
-5
paddle/fluid/operators/reduce_ops/reduce_max_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_max_op_mlu.cc
+93
-0
paddle/fluid/operators/reduce_ops/reduce_min_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_min_op_mlu.cc
+93
-0
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+6
-5
python/paddle/fluid/tests/unittests/mlu/test_reduce_max_op_mlu.py
...addle/fluid/tests/unittests/mlu/test_reduce_max_op_mlu.py
+170
-0
python/paddle/fluid/tests/unittests/mlu/test_reduce_min_op_mlu.py
...addle/fluid/tests/unittests/mlu/test_reduce_min_op_mlu.py
+170
-0
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_max_op_mlu.cc
0 → 100644
浏览文件 @
44da9b42
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ReduceMaxMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
int
out_dtype
=
context
.
Attr
<
int
>
(
"out_dtype"
);
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
input_dims
=
framework
::
vectorize
(
input
->
dims
());
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
for
(
size_t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
reduce_dims
.
push_back
(
static_cast
<
int
>
(
i
));
}
}
else
{
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
if
(
dims
[
i
]
<
0
)
{
reduce_dims
.
push_back
(
dims
[
i
]
+
input_dim_size
);
}
else
{
reduce_dims
.
push_back
(
dims
[
i
]);
}
}
}
auto
place
=
context
.
GetPlace
();
framework
::
Tensor
cast_out
(
input
->
type
());
cast_out
.
Resize
(
output
->
dims
());
cast_out
.
mutable_data
<
T
>
(
place
);
auto
cast_out_dtype
=
framework
::
TransToProtoVarType
(
input
->
dtype
());
if
(
out_dtype
!=
-
1
)
{
cast_out_dtype
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
out_dtype
);
}
if
(
framework
::
TransToProtoVarType
(
input
->
type
())
!=
cast_out_dtype
)
{
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
FP32
)
{
output
->
mutable_data
<
float
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
FP16
)
{
output
->
mutable_data
<
paddle
::
platform
::
float16
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
INT32
)
{
output
->
mutable_data
<
int32_t
>
(
place
);
}
}
else
{
output
->
ShareDataWith
(
cast_out
);
}
MLUCnnlTensorDesc
input_desc
(
*
input
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
input
->
dtype
()));
MLUCnnlTensorDesc
output_desc
(
*
output
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
output
->
dtype
()));
MLUCnnlReduceDesc
reduction_desc
(
reduce_dims
,
CNNL_REDUCE_MAX
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnl
::
Reduce
(
context
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
input_desc
.
get
(),
GetBasePtr
(
input
),
0
/*indices_size*/
,
nullptr
,
nullptr
,
output_desc
.
get
(),
GetBasePtr
(
output
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
reduce_max
,
ops
::
ReduceMaxMLUKernel
<
float
>
,
ops
::
ReduceMaxMLUKernel
<
plat
::
float16
>
,
ops
::
ReduceMaxMLUKernel
<
int
>
);
paddle/fluid/operators/reduce_ops/reduce_min_op_mlu.cc
0 → 100644
浏览文件 @
44da9b42
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ReduceMinMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
int
out_dtype
=
context
.
Attr
<
int
>
(
"out_dtype"
);
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
input_dims
=
framework
::
vectorize
(
input
->
dims
());
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
for
(
size_t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
reduce_dims
.
push_back
(
static_cast
<
int
>
(
i
));
}
}
else
{
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
if
(
dims
[
i
]
<
0
)
{
reduce_dims
.
push_back
(
dims
[
i
]
+
input_dim_size
);
}
else
{
reduce_dims
.
push_back
(
dims
[
i
]);
}
}
}
auto
place
=
context
.
GetPlace
();
framework
::
Tensor
cast_out
(
input
->
type
());
cast_out
.
Resize
(
output
->
dims
());
cast_out
.
mutable_data
<
T
>
(
place
);
auto
cast_out_dtype
=
framework
::
TransToProtoVarType
(
input
->
dtype
());
if
(
out_dtype
!=
-
1
)
{
cast_out_dtype
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
out_dtype
);
}
if
(
framework
::
TransToProtoVarType
(
input
->
type
())
!=
cast_out_dtype
)
{
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
FP32
)
{
output
->
mutable_data
<
float
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
FP16
)
{
output
->
mutable_data
<
paddle
::
platform
::
float16
>
(
place
);
}
else
if
(
cast_out_dtype
==
framework
::
proto
::
VarType
::
INT32
)
{
output
->
mutable_data
<
int32_t
>
(
place
);
}
}
else
{
output
->
ShareDataWith
(
cast_out
);
}
MLUCnnlTensorDesc
input_desc
(
*
input
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
input
->
dtype
()));
MLUCnnlTensorDesc
output_desc
(
*
output
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
output
->
dtype
()));
MLUCnnlReduceDesc
reduction_desc
(
reduce_dims
,
CNNL_REDUCE_MIN
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnl
::
Reduce
(
context
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
input_desc
.
get
(),
GetBasePtr
(
input
),
0
/*indices_size*/
,
nullptr
,
nullptr
,
output_desc
.
get
(),
GetBasePtr
(
output
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
reduce_min
,
ops
::
ReduceMinMLUKernel
<
float
>
,
ops
::
ReduceMinMLUKernel
<
plat
::
float16
>
,
ops
::
ReduceMinMLUKernel
<
int
>
);
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
44da9b42
...
...
@@ -541,11 +541,12 @@ class ReduceOp : public framework::OperatorWithKernel {
#endif
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP16
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
())
||
platform
::
is_npu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
InvalidArgument
(
"float16 can only be used on GPU or NPU place"
));
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
())
||
platform
::
is_npu_place
(
ctx
.
GetPlace
())
||
platform
::
is_mlu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
InvalidArgument
(
"float16 can only be used on GPU or NPU or MLU place"
));
}
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
...
...
python/paddle/fluid/tests/unittests/mlu/test_reduce_max_op_mlu.py
0 → 100644
浏览文件 @
44da9b42
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
paddle
.
enable_static
()
@
skip_check_grad_ci
(
reason
=
"reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestMLUReduceMaxOp
(
OpTest
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_max"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
1
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
max
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
@
skip_check_grad_ci
(
reason
=
"reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMaxOpMultiAxises
(
TestMLUReduceMaxOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_max"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
max
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
@
skip_check_grad_ci
(
reason
=
"reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceAll
(
TestMLUReduceMaxOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_max"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'reduce_all'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
max
()}
@
skip_check_grad_ci
(
reason
=
"reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMaxOpWithOutDtype_int32
(
TestMLUReduceMaxOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_max"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
max
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
int32
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
@
skip_check_grad_ci
(
reason
=
"reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMaxOpWithOutDtype_fp16
(
TestMLUReduceMaxOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_max"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP16
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
max
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float16
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
@
skip_check_grad_ci
(
reason
=
"reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMaxOpWithOutDtype_fp32
(
TestMLUReduceMaxOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_max"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
max
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float32
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_reduce_min_op_mlu.py
0 → 100644
浏览文件 @
44da9b42
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
paddle
.
enable_static
()
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestMLUReduceMinOp
(
OpTest
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
1
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpMultiAxises
(
TestMLUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceAll
(
TestMLUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'reduce_all'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
()}
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_int32
(
TestMLUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
int32
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_fp16
(
TestMLUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP16
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float16
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
@
skip_check_grad_ci
(
reason
=
"reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class
TestReduceMinOpWithOutDtype_fp32
(
TestMLUReduceMinOp
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dim'
:
[
-
2
,
-
1
],
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
tuple
(
self
.
attrs
[
'dim'
])).
astype
(
np
.
float32
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录