提交 448156e4 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/baidu/Paddle into cn_doc

# PaddlePaddle
[![Build Status](https://travis-ci.org/baidu/Paddle.svg?branch=master)](https://travis-ci.org/baidu/Paddle)
[![Coverage Status](https://coveralls.io/repos/github/baidu/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/baidu/Paddle?branch=develop)
[![Join the chat at https://gitter.im/PaddlePaddle/Deep_Learning](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/PaddlePaddle/Deep_Learning?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[![License](https://img.shields.io/badge/license-Apache%202.0-green.svg)](LICENSE)
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/baidu/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/cn/index.html)
[![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/baidu/Paddle?branch=develop)
[![Release](https://img.shields.io/github/release/baidu/Paddle.svg?colorB=fedcba)](https://github.com/baidu/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
Welcome to the PaddlePaddle GitHub.
......
......@@ -17,24 +17,15 @@ import os
from optparse import OptionParser
def extract_dict_features(pair_file, feature_file, src_dict_file,
tgt_dict_file):
src_dict = set()
tgt_dict = set()
with open(pair_file) as fin, open(feature_file, 'w') as feature_out, open(
src_dict_file, 'w') as src_dict_out, open(tgt_dict_file,
'w') as tgt_dict_out:
def extract_dict_features(pair_file, feature_file):
with open(pair_file) as fin, open(feature_file, 'w') as feature_out:
for line in fin:
sentence, labels = line.strip().split('\t')
sentence, predicate, labels = line.strip().split('\t')
sentence_list = sentence.split()
labels_list = labels.split()
src_dict.update(sentence_list)
tgt_dict.update(labels_list)
verb_index = labels_list.index('B-V')
verb_feature = sentence_list[verb_index]
mark = [0] * len(labels_list)
if verb_index > 0:
......@@ -42,47 +33,50 @@ def extract_dict_features(pair_file, feature_file, src_dict_file,
ctx_n1 = sentence_list[verb_index - 1]
else:
ctx_n1 = 'bos'
ctx_n1_feature = ctx_n1
if verb_index > 1:
mark[verb_index - 2] = 1
ctx_n2 = sentence_list[verb_index - 2]
else:
ctx_n2 = 'bos'
mark[verb_index] = 1
ctx_0_feature = sentence_list[verb_index]
ctx_0 = sentence_list[verb_index]
if verb_index < len(labels_list) - 2:
mark[verb_index + 1] = 1
ctx_p1 = sentence_list[verb_index + 1]
else:
ctx_p1 = 'eos'
ctx_p1_feature = ctx_p1
if verb_index < len(labels_list) - 3:
mark[verb_index + 2] = 1
ctx_p2 = sentence_list[verb_index + 2]
else:
ctx_p2 = 'eos'
feature_str = sentence + '\t' \
+ verb_feature + '\t' \
+ ctx_n1_feature + '\t' \
+ ctx_0_feature + '\t' \
+ ctx_p1_feature + '\t' \
+ predicate + '\t' \
+ ctx_n2 + '\t' \
+ ctx_n1 + '\t' \
+ ctx_0 + '\t' \
+ ctx_p1 + '\t' \
+ ctx_p2 + '\t' \
+ ' '.join([str(i) for i in mark]) + '\t' \
+ labels
feature_out.write(feature_str + '\n')
src_dict_out.write('<unk>\n')
src_dict_out.write('\n'.join(list(src_dict)))
tgt_dict_out.write('\n'.join(list(tgt_dict)))
if __name__ == '__main__':
usage = '-p pair_file -f feature_file -s source dictionary -t target dictionary '
usage = '-p pair_file -f feature_file'
parser = OptionParser(usage)
parser.add_option('-p', dest='pair_file', help='the pair file')
parser.add_option(
'-f', dest='feature_file', help='the file to store feature')
parser.add_option(
'-s', dest='src_dict', help='the file to store source dictionary')
parser.add_option(
'-t', dest='tgt_dict', help='the file to store target dictionary')
parser.add_option('-f', dest='feature_file', help='the feature file')
(options, args) = parser.parse_args()
extract_dict_features(options.pair_file, options.feature_file,
options.src_dict, options.tgt_dict)
extract_dict_features(options.pair_file, options.feature_file)
......@@ -51,7 +51,7 @@ def read_sentences(words_file):
for line in fin:
line = line.strip()
if line == '':
sentences.append(s.lower())
sentences.append(s)
s = ''
else:
s += line + ' '
......@@ -64,6 +64,11 @@ def transform_labels(sentences, labels):
if len(labels[i]) == 1:
continue
else:
verb_list = []
for x in labels[i][0]:
if x !='-':
verb_list.append(x)
for j in xrange(1, len(labels[i])):
label_list = labels[i][j]
current_tag = 'O'
......@@ -88,8 +93,7 @@ def transform_labels(sentences, labels):
is_in_bracket = True
else:
print 'error:', ll
sen_lab_pair.append((sentences[i], label_seq))
sen_lab_pair.append((sentences[i], verb_list[j-1], label_seq))
return sen_lab_pair
......@@ -97,9 +101,9 @@ def write_file(sen_lab_pair, output_file):
with open(output_file, 'w') as fout:
for x in sen_lab_pair:
sentence = x[0]
label_seq = ' '.join(x[1])
assert len(sentence.split()) == len(x[1])
fout.write(sentence + '\t' + label_seq + '\n')
label_seq = ' '.join(x[2])
assert len(sentence.split()) == len(x[2])
fout.write(sentence + '\t' + x[1]+'\t' +label_seq + '\n')
if __name__ == '__main__':
......
......@@ -14,6 +14,10 @@
# limitations under the License.
set -e
wget http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/verbDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/targetDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/wordDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/emb --no-check-certificate
tar -xzvf conll05st-tests.tar.gz
rm conll05st-tests.tar.gz
cp ./conll05st-release/test.wsj/words/test.wsj.words.gz .
......@@ -22,4 +26,4 @@ gunzip test.wsj.words.gz
gunzip test.wsj.props.gz
python extract_pairs.py -w test.wsj.words -p test.wsj.props -o test.wsj.seq_pair
python extract_dict_feature.py -p test.wsj.seq_pair -f feature -s src.dict -t tgt.dict
python extract_dict_feature.py -p test.wsj.seq_pair -f feature
......@@ -17,11 +17,15 @@ from paddle.trainer.PyDataProvider2 import *
UNK_IDX = 0
def hook(settings, word_dict, label_dict, **kwargs):
def hook(settings, word_dict, label_dict, predicate_dict, **kwargs):
settings.word_dict = word_dict
settings.label_dict = label_dict
settings.predicate_dict = predicate_dict
#all inputs are integral and sequential type
settings.slots = [
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(predicate_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
......@@ -31,27 +35,33 @@ def hook(settings, word_dict, label_dict, **kwargs):
]
@provider(init_hook=hook)
def process(obj, file_name):
def get_batch_size(yeild_data):
return len(yeild_data[0])
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = \
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
line.strip().split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [obj.word_dict.get(w, UNK_IDX) for w in words]
word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
predicate_slot = [obj.word_dict.get(predicate, UNK_IDX)] * sen_len
ctx_n1_slot = [obj.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [obj.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [obj.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
label_list = label.split()
label_slot = [obj.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, mark_slot, label_slot
label_slot = [settings.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot
......@@ -18,8 +18,9 @@ import sys
from paddle.trainer_config_helpers import *
#file paths
word_dict_file = './data/src.dict'
label_dict_file = './data/tgt.dict'
word_dict_file = './data/wordDict.txt'
label_dict_file = './data/targetDict.txt'
predicate_file= './data/verbDict.txt'
train_list_file = './data/train.list'
test_list_file = './data/test.list'
......@@ -30,8 +31,10 @@ if not is_predict:
#load dictionaries
word_dict = dict()
label_dict = dict()
predicate_dict = dict()
with open(word_dict_file, 'r') as f_word, \
open(label_dict_file, 'r') as f_label:
open(label_dict_file, 'r') as f_label, \
open(predicate_file, 'r') as f_pre:
for i, line in enumerate(f_word):
w = line.strip()
word_dict[w] = i
......@@ -40,6 +43,11 @@ if not is_predict:
w = line.strip()
label_dict[w] = i
for i, line in enumerate(f_pre):
w = line.strip()
predicate_dict[w] = i
if is_test:
train_list_file = None
......@@ -50,91 +58,157 @@ if not is_predict:
module='dataprovider',
obj='process',
args={'word_dict': word_dict,
'label_dict': label_dict})
'label_dict': label_dict,
'predicate_dict': predicate_dict })
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(predicate_dict)
else:
word_dict_len = get_config_arg('dict_len', int)
label_dict_len = get_config_arg('label_len', int)
pred_len = get_config_arg('pred_len', int)
############################## Hyper-parameters ##################################
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 128
hidden_dim = 512
depth = 8
emb_lr = 1e-2
fc_lr = 1e-2
lstm_lr = 2e-2
########################### Optimizer #######################################
settings(
batch_size=150,
learning_method=AdamOptimizer(),
learning_rate=1e-3,
learning_method=MomentumOptimizer(momentum=0),
learning_rate=2e-2,
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
is_async=False,
model_average=ModelAverage(average_window=0.5,
max_average_window=10000),
)
#6 features
####################################### network ##############################
#8 features and 1 target
word = data_layer(name='word_data', size=word_dict_len)
predicate = data_layer(name='verb_data', size=word_dict_len)
predicate = data_layer(name='verb_data', size=pred_len)
ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len)
ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len)
ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len)
ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len)
mark = data_layer(name='mark_data', size=mark_dict_len)
if not is_predict:
target = data_layer(name='target', size=label_dict_len)
ptt = ParameterAttribute(name='src_emb', learning_rate=emb_lr)
layer_attr = ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = ParameterAttribute(learning_rate=fc_lr)
lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=lstm_lr)
para_attr = [fc_para_attr, lstm_para_attr]
word_embedding = embedding_layer(size=word_dim, input=word, param_attr=ptt)
predicate_embedding = embedding_layer(
size=word_dim, input=predicate, param_attr=ptt)
ctx_n1_embedding = embedding_layer(size=word_dim, input=ctx_n1, param_attr=ptt)
ctx_0_embedding = embedding_layer(size=word_dim, input=ctx_0, param_attr=ptt)
ctx_p1_embedding = embedding_layer(size=word_dim, input=ctx_p1, param_attr=ptt)
mark_embedding = embedding_layer(size=mark_dim, input=mark)
default_std=1/math.sqrt(hidden_dim)/3.0
emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.)
std_0 = ParameterAttribute(initial_std=0.)
std_default = ParameterAttribute(initial_std=default_std)
predicate_embedding = embedding_layer(size=word_dim, input=predicate, param_attr=ParameterAttribute(name='vemb',initial_std=default_std))
mark_embedding = embedding_layer(name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
word_input=[word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [embedding_layer(size=word_dim, input=x, param_attr=emb_para) for x in word_input]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0 = mixed_layer(
name='hidden0',
size=hidden_dim,
input=[
full_matrix_projection(input=word_embedding),
full_matrix_projection(input=predicate_embedding),
full_matrix_projection(input=ctx_n1_embedding),
full_matrix_projection(input=ctx_0_embedding),
full_matrix_projection(input=ctx_p1_embedding),
full_matrix_projection(input=mark_embedding),
])
bias_attr=std_default,
input=[ full_matrix_projection(input=emb, param_attr=std_default ) for emb in emb_layers ])
lstm_0 = lstmemory(input=hidden_0, layer_attr=layer_attr)
mix_hidden_lr = 1e-3
lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = ParameterAttribute(initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = lstmemory(name='lstm0',
input=hidden_0,
act=ReluActivation(),
gate_act=SigmoidActivation(),
state_act=SigmoidActivation(),
bias_attr=std_0,
param_attr=lstm_para_attr)
#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
fc = fc_layer(input=input_tmp, size=hidden_dim, param_attr=para_attr)
for i in range(1, depth):
lstm = lstmemory(
input=fc,
mix_hidden = mixed_layer(name='hidden'+str(i),
size=hidden_dim,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
]
)
lstm = lstmemory(name='lstm'+str(i),
input=mix_hidden,
act=ReluActivation(),
reverse=(i % 2) == 1,
layer_attr=layer_attr)
input_tmp = [fc, lstm]
gate_act=SigmoidActivation(),
state_act=SigmoidActivation(),
reverse=((i % 2)==1),
bias_attr=std_0,
param_attr=lstm_para_attr)
prob = fc_layer(
input=input_tmp,
input_tmp = [mix_hidden, lstm]
feature_out = mixed_layer(name='output',
size=label_dict_len,
act=SoftmaxActivation(),
param_attr=para_attr)
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
],
)
if not is_predict:
cls = classification_cost(input=prob, label=target)
outputs(cls)
crf_l = crf_layer( name = 'crf',
size = label_dict_len,
input = feature_out,
label = target,
param_attr=ParameterAttribute(name='crfw',initial_std=default_std, learning_rate=mix_hidden_lr)
)
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
size = label_dict_len,
input = feature_out,
label = target,
param_attr=ParameterAttribute(name='crfw')
)
eval = sum_evaluator(input=crf_dec_l)
outputs(crf_l)
else:
outputs(prob)
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
size = label_dict_len,
input = feature_out,
param_attr=ParameterAttribute(name='crfw')
)
outputs(crf_dec_l)
......@@ -26,7 +26,7 @@ UNK_IDX = 0
class Prediction():
def __init__(self, train_conf, dict_file, model_dir, label_file):
def __init__(self, train_conf, dict_file, model_dir, label_file, predicate_dict_file):
"""
train_conf: trainer configure.
dict_file: word dictionary file name.
......@@ -35,26 +35,41 @@ class Prediction():
self.dict = {}
self.labels = {}
self.predicate_dict={}
self.labels_reverse = {}
self.load_dict_label(dict_file, label_file)
self.load_dict_label(dict_file, label_file, predicate_dict_file)
len_dict = len(self.dict)
len_label = len(self.labels)
conf = parse_config(train_conf, 'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) + ',is_predict=True')
len_pred = len(self.predicate_dict)
conf = parse_config(
train_conf,
'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) +
',pred_len=' + str(len_pred) +
',is_predict=True')
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
self.network.loadParameters(model_dir)
slots = [
integer_value_sequence(len_dict),
integer_value_sequence(len_pred),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(2)
]
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(2)
]
self.converter = DataProviderConverter(slots)
def load_dict_label(self, dict_file, label_file):
def load_dict_label(self, dict_file, label_file, predicate_dict_file):
"""
Load dictionary from self.dict_file.
"""
......@@ -65,39 +80,42 @@ class Prediction():
self.labels[line.strip()] = line_count
self.labels_reverse[line_count] = line.strip()
for line_count, line in enumerate(open(predicate_dict_file, 'r')):
self.predicate_dict[line.strip()] = line_count
def get_data(self, data_file):
"""
Get input data of paddle format.
"""
with open(data_file, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = line.strip(
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = line.strip(
).split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [self.dict.get(w, UNK_IDX) for w in words]
predicate_slot = [self.dict.get(predicate, UNK_IDX)] * sen_len
predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX)] * sen_len
ctx_n2_slot = [self.dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [self.dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [self.dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
yield word_slot, predicate_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, mark_slot
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot
def predict(self, data_file):
def predict(self, data_file, output_file):
"""
data_file: file name of input data.
"""
input = self.converter(self.get_data(data_file))
output = self.network.forwardTest(input)
prob = output[0]["value"]
lab = list(np.argsort(-prob)[:, 0])
lab = output[0]["id"].tolist()
with open(data_file, 'r') as fin, open('predict.res', 'w') as fout:
with open(data_file, 'r') as fin, open(output_file, 'w') as fout:
index = 0
for line in fin:
sen = line.split('\t')[0]
......@@ -110,7 +128,7 @@ class Prediction():
def option_parser():
usage = ("python predict.py -c config -w model_dir "
"-d word dictionary -l label_file -i input_file")
"-d word dictionary -l label_file -i input_file -p pred_dict_file")
parser = OptionParser(usage="usage: %s [options]" % usage)
parser.add_option(
"-c",
......@@ -131,6 +149,13 @@ def option_parser():
dest="label_file",
default=None,
help="label file")
parser.add_option(
"-p",
"--predict_dict_file",
action="store",
dest="predict_dict_file",
default=None,
help="predict_dict_file")
parser.add_option(
"-i",
"--data",
......@@ -144,6 +169,14 @@ def option_parser():
dest="model_path",
default=None,
help="model path")
parser.add_option(
"-o",
"--output_file",
action="store",
dest="output_file",
default=None,
help="output file")
return parser.parse_args()
......@@ -154,10 +187,12 @@ def main():
dict_file = options.dict_file
model_path = options.model_path
label_file = options.label_file
predict_dict_file = options.predict_dict_file
output_file = options.output_file
swig_paddle.initPaddle("--use_gpu=0")
predict = Prediction(train_conf, dict_file, model_path, label_file)
predict.predict(data_file)
predict = Prediction(train_conf, dict_file, model_path, label_file, predict_dict_file)
predict.predict(data_file,output_file)
if __name__ == '__main__':
......
......@@ -26,15 +26,18 @@ LOG=`get_best_pass $log`
LOG=(${LOG})
best_model_path="output/pass-${LOG[1]}"
config_file=db_lstm.py
dict_file=./data/src.dict
label_file=./data/tgt.dict
dict_file=./data/wordDict.txt
label_file=./data/targetDict.txt
predicate_dict_file=./data/verbDict.txt
input_file=./data/feature
output_file=predict.res
python predict.py \
-c $config_file \
-w $best_model_path \
-l $label_file \
-p $predicate_dict_file \
-d $dict_file \
-i $input_file
-i $input_file \
-o $output_file
......@@ -36,4 +36,5 @@ paddle train \
--job=test \
--use_gpu=false \
--config_args=is_test=1 \
--test_all_data_in_one_period=1 \
2>&1 | tee 'test.log'
......@@ -16,11 +16,14 @@
set -e
paddle train \
--config=./db_lstm.py \
--use_gpu=0 \
--log_period=5000 \
--trainer_count=1 \
--show_parameter_stats_period=5000 \
--save_dir=./output \
--trainer_count=4 \
--log_period=10 \
--num_passes=500 \
--use_gpu=false \
--show_parameter_stats_period=10 \
--num_passes=10000 \
--average_test_period=10000000 \
--init_model_path=./data \
--load_missing_parameter_strategy=rand \
--test_all_data_in_one_period=1 \
2>&1 | tee 'train.log'
2>&1 | tee 'train.log'
......@@ -30,8 +30,6 @@ Several new files appear in the `data `directory as follows.
conll05st-release:the test data set of CoNll-2005 shared task
test.wsj.words:the Wall Street Journal data sentences
test.wsj.props: the propositional arguments
src.dict:the dictionary of words in sentences
tgt.dict:the labels dictionary
feature: the extracted features from data set
```
......@@ -67,6 +65,8 @@ def hook(settings, word_dict, label_dict, **kwargs):
settings.label_dict = label_dict
#all inputs are integral and sequential type
settings.slots = [
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(predicate_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
......@@ -77,34 +77,39 @@ def hook(settings, word_dict, label_dict, **kwargs):
```
The corresponding data iterator is as following:
```
@provider(use_seq=True, init_hook=hook)
def process(obj, file_name):
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = line.strip().split('\t')
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
line.strip().split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [obj.word_dict.get(w, UNK_IDX) for w in words]
word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
predicate_slot = [obj.word_dict.get(predicate, UNK_IDX)] * sen_len
ctx_n1_slot = [obj.word_dict.get(ctx_n1, UNK_IDX) ] * sen_len
ctx_0_slot = [obj.word_dict.get(ctx_0, UNK_IDX) ] * sen_len
ctx_p1_slot = [obj.word_dict.get(ctx_p1, UNK_IDX) ] * sen_len
predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
label_list = label.split()
label_slot = [obj.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n1_slot, ctx_0_slot, ctx_p1_slot, mark_slot, label_slot
label_slot = [settings.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot
```
The `process`function yield 7 lists which are six features and labels.
The `process`function yield 9 lists which are 8 features and label.
### Neural Network Config
`db_lstm.py` is the neural network config file to load the dictionaries and define the data provider module and network architecture during the training procedure.
Seven `data_layer` load instances from data provider. Six features are transformed into embedddings respectively, and mixed by `mixed_layer` . Deep bidirectional LSTM layers extract features for the softmax layer. The objective function is cross entropy of labels.
Nine `data_layer` load instances from data provider. Eight features are transformed into embedddings respectively, and mixed by `mixed_layer` . Deep bidirectional LSTM layers extract features for the softmax layer. The objective function is cross entropy of labels.
### Run Training
The script for training is `train.sh`, user just need to execute:
......@@ -115,27 +120,36 @@ The content in `train.sh`:
```
paddle train \
--config=./db_lstm.py \
--use_gpu=0 \
--log_period=5000 \
--trainer_count=1 \
--show_parameter_stats_period=5000 \
--save_dir=./output \
--trainer_count=4 \
--log_period=10 \
--num_passes=500 \
--use_gpu=false \
--show_parameter_stats_period=10 \
--num_passes=10000 \
--average_test_period=10000000 \
--init_model_path=./data \
--load_missing_parameter_strategy=rand \
--test_all_data_in_one_period=1 \
2>&1 | tee 'train.log'
```
- \--config=./db_lstm.py : network config file.
- \--save_di=./output: output path to save models.
- \--trainer_count=4 : set thread number (or GPU count).
- \--log_period=10 : print log every 20 batches.
- \--num_passes=500: set pass number, one pass in PaddlePaddle means training all samples in dataset one time.
- \--use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train.
- \--show_parameter_stats_period=10: show parameter statistic every 100 batches.
- \--test_all_data_in_one_period=1: test all data in every testing.
After training, the models will be saved in directory `output`.
- \--use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train, until now crf_layer do not support GPU
- \--log_period=500: print log every 20 batches.
- \--trainer_count=1: set thread number (or GPU count).
- \--show_parameter_stats_period=5000: show parameter statistic every 100 batches.
- \--save_dir=./output: output path to save models.
- \--num_passes=10000: set pass number, one pass in PaddlePaddle means training all samples in dataset one time.
- \--average_test_period=10000000: do test on average parameter every average_test_period batches
- \--init_model_path=./data: parameter initialization path
- \--load_missing_parameter_strategy=rand: random initialization unexisted parameters
- \--test_all_data_in_one_period=1: test all data in one period
After training, the models will be saved in directory `output`. Our training curve is as following:
<center>
![pic](./curve.jpg)
</center>
### Run testing
The script for testing is `test.sh`, user just need to execute:
......@@ -155,6 +169,7 @@ paddle train \
- \--model_list=$model_list.list: model list file
- \--job=test: indicate the test job
- \--config_args=is_test=1: flag to indicate test
- \--test_all_data_in_one_period=1: test all data in 1 period
### Run prediction
......@@ -166,11 +181,13 @@ The script for prediction is `predict.sh`, user just need to execute:
In `predict.sh`, user should offer the network config file, model path, label file, word dictionary file, feature file
```
python predict.py
-c $config_file
-w $model_path
-l $label_file
-d $dict_file
-i $input_file
-c $config_file \
-w $best_model_path \
-l $label_file \
-p $predicate_dict_file \
-d $dict_file \
-i $input_file \
-o $output_file
```
`predict.py` is the main executable python script, which includes functions: load model, load data, data prediction. The network model will output the probability distribution of labels. In the demo, we take the label with maximum probability as result. User can also implement the beam search or viterbi decoding upon the probability distribution matrix.
......
......@@ -81,5 +81,8 @@ else()
add_library(paddle_cuda ${CUDA_SOURCES})
endif()
add_style_check_target(paddle_cuda ${CUDA_SOURCES})
add_style_check_target(paddle_cuda ${CUDA_HEADERS})
add_style_check_target(paddle_cuda
${CUDA_SOURCES}
${CUDA_HEADERS}
${CUDA_DSO_SOURCES}
${CUDA_CXX_WITH_GPU_SOURCES})
......@@ -104,7 +104,7 @@ CUBLAS_BLAS_ROUTINE_EACH(DYNAMIC_LOAD_CUBLAS_V2_WRAP)
#endif
const char* hl_cublas_get_error_string(cublasStatus_t status) {
switch(status) {
switch (status) {
case CUBLAS_STATUS_NOT_INITIALIZED:
return "[cublas status]: not initialized";
case CUBLAS_STATUS_ALLOC_FAILED:
......@@ -181,7 +181,7 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
real **inout_d = (real **)hl_malloc_device(sizeof(real *));
hl_memcpy(inout_d, inout_h, sizeof(real *));
int *pivot_d = (int *)hl_malloc_device(dimN*sizeof(int));
int *pivot_d = (int *)hl_malloc_device(dimN * sizeof(int));
int *info_d = (int *)t_resource.gpu_mem;
/* Note: cublasSgetrfBatched is used to calculate a number of
......@@ -189,8 +189,7 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
the API for better performance.
*/
CHECK_CUBLAS(CUBLAS_GETRF(t_resource.handle,
dimN, inout_d, lda, pivot_d,
info_d, 1));
dimN, inout_d, lda, pivot_d, info_d, 1));
int info_h;
hl_memcpy(&info_h, info_d, sizeof(int));
......
......@@ -159,13 +159,11 @@ CUDNN_DNN_ROUTINE_EACH_R5(DYNAMIC_LOAD_CUDNN_WRAP)
bool g_is_libcudnn_init = false;
int g_cudnn_lib_version = 0;
void hl_cudnn_desc_init(cudnnTensorDescriptor_t* cudnn_desc)
{
void hl_cudnn_desc_init(cudnnTensorDescriptor_t* cudnn_desc) {
CHECK_CUDNN(dynload::cudnnCreateTensorDescriptor(cudnn_desc));
}
void hl_cudnn_init(cudnnHandle_t *cudnn_handle, cudaStream_t stream)
{
void hl_cudnn_init(cudnnHandle_t *cudnn_handle, cudaStream_t stream) {
size_t cudnn_dso_ver = dynload::cudnnGetVersion();
size_t cudnn_dso_major = cudnn_dso_ver / 1000;
size_t cudnn_cuh_major = CUDNN_VERSION / 1000;
......@@ -212,13 +210,18 @@ void hl_conv_workspace(hl_tensor_descriptor input,
CHECK_NOTNULL(conv);
// Specify workspace limit directly
size_t memoryLimitBytes = (1LL << 20) * FLAGS_cudnn_conv_workspace_limit_in_mb;
size_t memoryLimitBytes =
(1LL << 20) * FLAGS_cudnn_conv_workspace_limit_in_mb;
// cudnn convolution forward configuration
cudnnTensorDescriptor_t fwd_src_desc = GET_TENSOR_DESCRIPTOR(input);
cudnnTensorDescriptor_t fwd_dest_desc = GET_TENSOR_DESCRIPTOR(output);
cudnnFilterDescriptor_t fwd_filter_desc = GET_FILTER_DESCRIPTOR(filter);
cudnnConvolutionDescriptor_t fwd_conv_desc = GET_CONVOLUTION_DESCRIPTOR(conv);
cudnnTensorDescriptor_t fwd_src_desc =
GET_TENSOR_DESCRIPTOR(input);
cudnnTensorDescriptor_t fwd_dest_desc =
GET_TENSOR_DESCRIPTOR(output);
cudnnFilterDescriptor_t fwd_filter_desc =
GET_FILTER_DESCRIPTOR(filter);
cudnnConvolutionDescriptor_t fwd_conv_desc =
GET_CONVOLUTION_DESCRIPTOR(conv);
CHECK_CUDNN(dynload::cudnnGetConvolutionForwardAlgorithm(
t_resource.cudnn_handle,
......@@ -302,8 +305,7 @@ void hl_create_tensor_descriptor(hl_tensor_descriptor* image_desc,
int batch_size,
int feature_maps,
int height,
int width)
{
int width) {
CHECK_NOTNULL(image_desc);
cudnn_tensor_descriptor hl_desc =
......@@ -359,8 +361,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc,
int batch_size,
int feature_maps,
int height,
int width)
{
int width) {
const int stride_w = 1;
const int stride_h = width * stride_w;
const int stride_c = height * stride_h;
......@@ -384,8 +385,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc,
int nStride,
int cStride,
int hStride,
int wStride)
{
int wStride) {
CHECK_NOTNULL(image_desc);
cudnn_tensor_descriptor hl_desc = (cudnn_tensor_descriptor)image_desc;
......@@ -408,8 +408,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc,
hl_desc->width = width;
}
void hl_destroy_tensor_descriptor(hl_tensor_descriptor image_desc)
{
void hl_destroy_tensor_descriptor(hl_tensor_descriptor image_desc) {
CHECK_NOTNULL(image_desc);
cudnn_tensor_descriptor hl_desc = (cudnn_tensor_descriptor)image_desc;
......@@ -430,11 +429,9 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc,
int height_padding,
int width_padding,
int stride_height,
int stride_width)
{
int stride_width) {
cudnnPoolingMode_t cudnn_mode;
switch (mode)
{
switch (mode) {
case HL_POOLING_MAX:
cudnn_mode = CUDNN_POOLING_MAX;
break;
......@@ -478,13 +475,13 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc,
*pooling_desc = (hl_pooling_descriptor)hl_pooling_desc;
}
void hl_destroy_pooling_descriptor(hl_pooling_descriptor pooling_desc)
{
void hl_destroy_pooling_descriptor(hl_pooling_descriptor pooling_desc) {
CHECK_NOTNULL(pooling_desc);
cudnn_pooling_descriptor hl_pooling = (cudnn_pooling_descriptor)pooling_desc;
CHECK_NOTNULL(hl_pooling->desc);
cudnn_pooling_descriptor hl_pooling =
(cudnn_pooling_descriptor)pooling_desc;
CHECK_NOTNULL(hl_pooling->desc);
CHECK_CUDNN(dynload::cudnnDestroyPoolingDescriptor(hl_pooling->desc));
hl_pooling->desc = NULL;
......@@ -496,8 +493,7 @@ void hl_pooling_forward(hl_tensor_descriptor input,
real* input_image,
hl_tensor_descriptor output,
real* output_image,
hl_pooling_descriptor pooling)
{
hl_pooling_descriptor pooling) {
cudnnPoolingDescriptor_t pooling_desc;
cudnnTensorDescriptor_t input_desc;
cudnnTensorDescriptor_t output_desc;
......@@ -531,8 +527,7 @@ void hl_pooling_backward(hl_tensor_descriptor input,
hl_tensor_descriptor output,
real* output_image,
real* output_image_grad,
hl_pooling_descriptor pooling)
{
hl_pooling_descriptor pooling) {
cudnnPoolingDescriptor_t pooling_desc;
cudnnTensorDescriptor_t input_desc;
cudnnTensorDescriptor_t output_desc;
......@@ -571,8 +566,7 @@ void hl_create_filter_descriptor(hl_filter_descriptor* filter,
int input_feature_maps,
int output_feature_maps,
int height,
int width)
{
int width) {
CHECK_NOTNULL(filter);
cudnn_filter_descriptor hl_filter =
......@@ -607,8 +601,7 @@ void hl_create_filter_descriptor(hl_filter_descriptor* filter,
}
void hl_destroy_filter_descriptor(hl_filter_descriptor filter)
{
void hl_destroy_filter_descriptor(hl_filter_descriptor filter) {
CHECK_NOTNULL(filter);
cudnn_filter_descriptor hl_filter = (cudnn_filter_descriptor)filter;
......@@ -627,14 +620,13 @@ void hl_create_convolution_descriptor(hl_convolution_descriptor* conv,
int padding_height,
int padding_width,
int stride_height,
int stride_width)
{
int stride_width) {
CHECK_NOTNULL(conv);
cudnn_convolution_descriptor hl_conv =
(cudnn_convolution_descriptor)malloc(sizeof(_cudnn_convolution_descriptor));
CHECK_NOTNULL(hl_conv);
cudnn_convolution_descriptor hl_conv = (cudnn_convolution_descriptor)
malloc(sizeof(_cudnn_convolution_descriptor));
CHECK_NOTNULL(hl_conv);
CHECK_CUDNN(dynload::cudnnCreateConvolutionDescriptor(&hl_conv->desc));
cudnnConvolutionMode_t mode = CUDNN_CROSS_CORRELATION;
......@@ -667,8 +659,7 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv,
int padding_height,
int padding_width,
int stride_height,
int stride_width)
{
int stride_width) {
CHECK_NOTNULL(conv);
CHECK_NOTNULL(image);
CHECK_NOTNULL(filter);
......@@ -697,8 +688,7 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv,
hl_conv->mode = mode;
}
void hl_destroy_convolution_descriptor(hl_convolution_descriptor conv)
{
void hl_destroy_convolution_descriptor(hl_convolution_descriptor conv) {
CHECK_NOTNULL(conv);
cudnn_convolution_descriptor hl_conv = (cudnn_convolution_descriptor)conv;
......@@ -753,8 +743,7 @@ void hl_convolution_forward(hl_tensor_descriptor input,
void hl_convolution_forward_add_bias(hl_tensor_descriptor bias,
real* bias_data,
hl_tensor_descriptor output,
real* output_data)
{
real* output_data) {
CHECK_NOTNULL(bias);
CHECK_NOTNULL(output);
CHECK_NOTNULL(bias_data);
......@@ -782,8 +771,7 @@ void hl_convolution_forward_add_bias(hl_tensor_descriptor bias,
void hl_convolution_backward_bias(hl_tensor_descriptor bias,
real* bias_grad_data,
hl_tensor_descriptor output,
real* output_grad_data)
{
real* output_grad_data) {
CHECK_NOTNULL(bias);
CHECK_NOTNULL(output);
CHECK_NOTNULL(bias_grad_data);
......@@ -814,7 +802,6 @@ void hl_convolution_backward_filter(hl_tensor_descriptor input,
void* gpuWorkSpace,
size_t sizeInBytes,
int convBwdFilterAlgo) {
CHECK_NOTNULL(input);
CHECK_NOTNULL(output);
CHECK_NOTNULL(filter);
......@@ -889,8 +876,7 @@ void hl_convolution_backward_data(hl_tensor_descriptor input,
void hl_softmax_forward(real *input,
real *output,
int height,
int width)
{
int width) {
#ifndef PADDLE_TYPE_DOUBLE
cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
#else
......@@ -923,8 +909,7 @@ void hl_softmax_forward(real *input,
void hl_softmax_backward(real *output_value,
real *output_grad,
int height,
int width)
{
int width) {
#ifndef PADDLE_TYPE_DOUBLE
cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
#else
......
......@@ -203,7 +203,7 @@ inline pid_t gettid() {
#endif
pid_t tid = syscall(__NR_gettid);
#endif
CHECK_NE(tid, -1);
CHECK_NE((int)tid, -1);
return tid;
}
......@@ -355,7 +355,8 @@ void* hl_malloc_host(size_t size) {
void *dest_h;
CHECK(size) << __func__ << ": the size for device memory is 0, please check.";
CHECK_CUDA(dynload::cudaHostAlloc((void**)&dest_h, size, cudaHostAllocDefault));
CHECK_CUDA(dynload::cudaHostAlloc(
(void**)&dest_h, size, cudaHostAllocDefault));
return dest_h;
}
......@@ -364,7 +365,7 @@ void hl_free_mem_host(void *dest_h) {
CHECK_NOTNULL(dest_h);
cudaError_t err = dynload::cudaFreeHost(dest_h);
CHECK (cudaSuccess == err || cudaErrorCudartUnloading == err)
CHECK(cudaSuccess == err || cudaErrorCudartUnloading == err)
<< hl_get_device_error_string();
}
......@@ -502,7 +503,8 @@ int hl_get_cuda_version() {
return g_cuda_lib_version;
}
void hl_create_thread_resources(int device, thread_device_resources device_res) {
void hl_create_thread_resources(int device,
thread_device_resources device_res) {
CHECK_CUDA(dynload::cudaSetDevice(device));
/* create thread stream */
......
......@@ -78,48 +78,38 @@ __host__ cudaError_t CUDARTAPI cudaLaunchKernel(const void *func,
dim3 blockDim,
void **args,
size_t sharedMem,
cudaStream_t stream)
{
return dynload::cudaLaunchKernel(func, gridDim, blockDim, args, sharedMem, stream);
cudaStream_t stream) {
return dynload::cudaLaunchKernel(func, gridDim, blockDim,
args, sharedMem, stream);
}
#endif /* CUDART_VERSION >= 7000 */
__host__ cudaError_t CUDARTAPI cudaLaunch(const void *func)
{
__host__ cudaError_t CUDARTAPI cudaLaunch(const void *func) {
return dynload::cudaLaunch(func);
}
__host__ cudaError_t CUDARTAPI cudaSetupArgument(const void *arg,
size_t size,
size_t offset)
{
size_t offset) {
return dynload::cudaSetupArgument(arg, size, offset);
}
__host__ cudaError_t CUDARTAPI cudaConfigureCall(dim3 gridDim,
dim3 blockDim,
size_t sharedMem,
cudaStream_t stream)
{
cudaStream_t stream) {
return dynload::cudaConfigureCall(gridDim, blockDim,
sharedMem, stream);
}
extern "C" {
void** CUDARTAPI __cudaRegisterFatBinary(
void *fatCubin
)
{
void** CUDARTAPI __cudaRegisterFatBinary(void *fatCubin) {
return dynload::__cudaRegisterFatBinary(fatCubin);
}
void CUDARTAPI __cudaUnregisterFatBinary(
void **fatCubinHandle
)
{
void CUDARTAPI __cudaUnregisterFatBinary(void **fatCubinHandle) {
return dynload::__cudaUnregisterFatBinary(fatCubinHandle);
}
......
......@@ -19,17 +19,18 @@ limitations under the License. */
P_DEFINE_string(cudnn_dir, "",
"Specify path for loading libcudnn.so. For instance, "
"/usr/local/cudnn/lib64. If empty [default], dlopen will search "
"cudnn from LD_LIBRARY_PATH");
"/usr/local/cudnn/lib64. If empty [default], dlopen "
"will search cudnn from LD_LIBRARY_PATH");
P_DEFINE_string(cuda_dir, "",
"Specify path for loading cuda library, such as libcublas, "
"libcurand. For instance, /usr/local/cuda/lib64. "
"(Note: libcudart can not be specified by cuda_dir, since some "
"libcurand. For instance, /usr/local/cuda/lib64. (Note: "
"libcudart can not be specified by cuda_dir, since some "
"build-in function in cudart already ran before main entry). "
"If empty [default], dlopen will search cuda from LD_LIBRARY_PATH");
"If default, dlopen will search cuda from LD_LIBRARY_PATH");
static inline std::string join(const std::string& part1, const std::string& part2) {
static inline std::string join(const std::string& part1,
const std::string& part2) {
// directory separator
const char sep = '/';
......@@ -62,9 +63,9 @@ static inline void GetDsoHandleFromDefaultPath(
*dso_handle = dlopen(dso_path.c_str(), dynload_flags);
if (nullptr == *dso_handle) {
if (dso_path == "libcudnn.dylib") {
LOG(FATAL) << "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n"
<< "For instance, sudo tar -xzf cudnn-7.5-osx-x64-v5.0-ga.tgz -C "
<< "/usr/local \n sudo chmod a+r /usr/local/cuda/include/cudnn.h "
LOG(FATAL) << "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n" // NOLINT
<< "For instance, sudo tar -xzf cudnn-7.5-osx-x64-v5.0-ga.tgz -C " // NOLINT
<< "/usr/local \n sudo chmod a+r /usr/local/cuda/include/cudnn.h " // NOLINT
<< "/usr/local/cuda/lib/libcudnn*";
}
}
......@@ -96,19 +97,19 @@ static inline void GetDsoHandleFromSearchPath(
CHECK(nullptr != *dso_handle)
<< "Failed to find cuda library: " << dlPath << std::endl
<< "Please specify its path correctly using one of the following ideas: \n"
<< "Please specify its path correctly using one of the following ways: \n" // NOLINT
<< "Idea 1. set cuda and cudnn lib path at runtime. "
<< "http://www.paddlepaddle.org/doc/ui/cmd_argument/argument_outline.html \n"
<< "Method 1. set cuda and cudnn lib path at runtime. "
<< "http://www.paddlepaddle.org/doc/ui/cmd_argument/argument_outline.html \n" // NOLINT
<< "For instance, issue command: paddle train --use_gpu=1 "
<< "--cuda_dir=/usr/local/cudnn/lib --cudnn_dir=/usr/local/cudnn/lib ...\n"
<< "--cuda_dir=/usr/local/cuda/lib64 --cudnn_dir=/usr/local/cudnn/lib ...\n" // NOLINT
<< "Idea 2. set environment variable LD_LIBRARY_PATH on Linux or "
<< "Method 2. set environment variable LD_LIBRARY_PATH on Linux or "
<< "DYLD_LIBRARY_PATH on Mac OS. \n"
<< "For instance, issue command: export LD_LIBRARY_PATH=... \n"
<< "Note: After Mac OS 10.11, using the DYLD_LIBRARY_PATH is impossible "
<< "unless System Integrity Protection (SIP) is disabled. However, @Idea 1"
<< "unless System Integrity Protection (SIP) is disabled. However, method 1 " // NOLINT
<< "always work well.";
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册