diff --git a/paddle/function/CrossMapNormalOp.cpp b/paddle/function/CrossMapNormalOp.cpp index 2d2ff0ca86820412e81df4d9cb5376a48e0020f6..e795567cd12fae808e61bd90504718f91885750d 100644 --- a/paddle/function/CrossMapNormalOp.cpp +++ b/paddle/function/CrossMapNormalOp.cpp @@ -120,25 +120,36 @@ void CrossMapNormalGrad(real* inputsGrad, * The original formula is: * * Input(x, y) - * Output(x, y) = ------------------------------------------------ - * alpha /min(F, f-[N/2] + N) - * (1 + ----- * | (Input(x, y))^2 ) ^ (beta) - * N /max(0, f-[N/2]) + * Output(x, y) = --------------------------------------------- + * -- upper + * (k + alpha * > (Input(x, y))^2) ^ (beta) + * -- lower * - * Argument in the Function: - * Input is NCHW format, while input.shape.ndims() is equal 4. + * upper is `min(F, f-[N/2] + N)` + * lower if `max(0, f-[N/2])` + * + * Function implementation: + * + * inputs and outpus is NCHW format, while input.shape.ndims() is equal 4. * And the meaning of each dimension(0-3) is respectively batch size, * feature maps, rows and columns. - * The above formula is for each image. + * + * Input and Output in the above formula is for each map of one image, and + * Input(x, y), Output(x, y) represents an element in an image. + * + * In the implementation of Function, k is equal to 1, + * so Function has no argument for k. + * + * Function Arguments: * * \param size_ represent N - * \param scale_ represent alpha / N + * \param scale_ represent alpha * \param pow_ represent beta * \param inputs[0] represent Input * \param outputs[0] represent Output * \param outputs[1] represent The denominator in the formula(except beta) * - * note: + * Note: * Save output[1] is to simplify the backward calculation. * TODO, if only consider the forward calculation, we can optimize to * remove the output[1].