diff --git a/paddle/phi/kernels/gpu/index_sample_grad_kernel.cu b/paddle/phi/kernels/gpu/index_sample_grad_kernel.cu old mode 100644 new mode 100755 diff --git a/paddle/phi/kernels/gpu/index_sample_kernel.cu b/paddle/phi/kernels/gpu/index_sample_kernel.cu old mode 100644 new mode 100755 diff --git a/python/paddle/distributed/fleet/base/distributed_strategy.py b/python/paddle/distributed/fleet/base/distributed_strategy.py index 34207f6ce6f3115cc08edbb6866e9a55885da0b5..32656c19a38dc0ab90228fd4e48f405382ac0a4a 100755 --- a/python/paddle/distributed/fleet/base/distributed_strategy.py +++ b/python/paddle/distributed/fleet/base/distributed_strategy.py @@ -103,7 +103,7 @@ class DistributedJobInfo: self.job_info.strategy = dist_strategy -ReduceStrategyFluid = paddle.fluid.BuildStrategy.ReduceStrategy +ReduceStrategyFluid = paddle.static.BuildStrategy.ReduceStrategy ReduceStrategyFleet = int @@ -207,7 +207,7 @@ class DistributedStrategy: strategy.execution_strategy = exe_strategy """ - execution_strategy = paddle.fluid.ExecutionStrategy() + execution_strategy = paddle.static.ExecutionStrategy() fields = self.strategy.execution_strategy.DESCRIPTOR.fields for f in fields: setattr( @@ -255,7 +255,7 @@ class DistributedStrategy: """ - build_strategy = paddle.fluid.BuildStrategy() + build_strategy = paddle.static.BuildStrategy() fields = self.strategy.build_strategy.DESCRIPTOR.fields for f in fields: value = getattr(self.strategy.build_strategy, f.name) diff --git a/python/paddle/distributed/fleet/base/role_maker.py b/python/paddle/distributed/fleet/base/role_maker.py index b001c5482fdfc7af804f89728f9e644db05bd233..e29cee04fca03c49a36f325c66baf306c9fa1e85 100755 --- a/python/paddle/distributed/fleet/base/role_maker.py +++ b/python/paddle/distributed/fleet/base/role_maker.py @@ -19,7 +19,7 @@ import warnings from multiprocessing import Process, Manager import paddle -import paddle.fluid as fluid +import paddle.fluid.core as core from paddle.distributed.fleet.base.private_helper_function import ( wait_server_ready, ) @@ -128,7 +128,7 @@ class Gloo: def _init_fs(self, fs_path, prefix): def init(rank, nodes, role): - gloo = fluid.core.Gloo() + gloo = core.Gloo() gloo.set_rank(rank) gloo.set_size(nodes) gloo.set_prefix(prefix) @@ -156,7 +156,7 @@ class Gloo: def _init_dfs(self, dfs_name, dfs_ugi, dfs_path, prefix): def init(rank, nodes, role): - gloo = fluid.core.Gloo() + gloo = core.Gloo() gloo.set_rank(rank) gloo.set_size(nodes) gloo.set_prefix(prefix) @@ -216,7 +216,7 @@ class Gloo: return _http_server def init(rank, nodes, role): - gloo = fluid.core.Gloo() + gloo = core.Gloo() gloo.set_rank(rank) gloo.set_size(nodes) gloo.set_prefix(prefix) @@ -1175,7 +1175,7 @@ class PaddleCloudRoleMaker(RoleMakerBase): else: self._collective_env() self._role_is_generated = True - if not paddle.fluid.framework._non_static_mode(): + if not paddle.framework.in_dynamic_mode(): self._gloo_init() diff --git a/python/paddle/distributed/fleet/base/util_factory.py b/python/paddle/distributed/fleet/base/util_factory.py index 8717619eafe357252fb737a3b693ce32a62ab1a7..1f9a0c8d5f30c7135181933001c42488b16258a7 100755 --- a/python/paddle/distributed/fleet/base/util_factory.py +++ b/python/paddle/distributed/fleet/base/util_factory.py @@ -16,12 +16,13 @@ """basic collective operations in python""" """remote file system""" +import paddle from ..utils.fs import FS from paddle.fluid.proto import framework_pb2 -from paddle.fluid.framework import Program +from paddle.static import Program from paddle.fluid import debugger from google.protobuf import text_format -import paddle.fluid as fluid +import paddle.framework as framework from collections import OrderedDict from paddle.fluid import core import subprocess @@ -376,7 +377,7 @@ class UtilBase: pruned_vars = [ (v.name, v) for v in pruned_prog.list_vars() - if fluid.io.is_persistable(v) + if paddle.static.io.is_persistable(v) ] pruned_vars = OrderedDict(pruned_vars) pruned_vars_name = [name for name in pruned_vars] @@ -460,7 +461,7 @@ class UtilBase: ) saved_params = [ - v for v in prog.list_vars() if fluid.io.is_persistable(v) + v for v in prog.list_vars() if paddle.static.io.is_persistable(v) ] print( "persistable vars in dump program: {}".format( @@ -487,15 +488,15 @@ class UtilBase: ) return False - place = fluid.CPUPlace() - exe = fluid.Executor(place) - scope = fluid.core.Scope() - with fluid.scope_guard(scope): + place = framework.CPUPlace() + exe = paddle.static.Executor(place) + scope = paddle.static.Scope() + with paddle.static.scope_guard(scope): ( inference_program, feed_target_names, fetch_targets, - ) = fluid.io.load_inference_model( + ) = paddle.fluid.io.load_inference_model( config.dump_model_dir, exe, model_filename=model_filename, @@ -508,7 +509,7 @@ class UtilBase: for each_var in saved_params } for each_var in saved_params: - var_temp = fluid.global_scope().find_var(each_var.name) + var_temp = paddle.static.global_scope().find_var(each_var.name) assert var_temp is not None, ( "can't not find var: " + each_var.name ) @@ -639,7 +640,7 @@ class UtilBase: dtype=feed_config.feeded_vars_types[i], ) feed_tensors.append( - fluid.create_lod_tensor( + paddle.fluid.create_lod_tensor( t, [[1] * config.batch_size], place ) ) @@ -668,7 +669,9 @@ class UtilBase: ) for i in range(len(feed_config.feeded_vars_names)) ] - feeder = fluid.DataFeeder(feed_list=feed_vars, place=place) + feeder = paddle.fluid.DataFeeder( + feed_list=feed_vars, place=place + ) batch_feed = feed_gen( config.batch_size, feed_config.feeded_vars_dims, diff --git a/python/paddle/distributed/fleet/layers/mpu/mp_layers.py b/python/paddle/distributed/fleet/layers/mpu/mp_layers.py index 8224d2a7b98a0941dbc2916f260863d9096e51cb..acbd95f8ff50a32681dffa61e57329740657a259 100644 --- a/python/paddle/distributed/fleet/layers/mpu/mp_layers.py +++ b/python/paddle/distributed/fleet/layers/mpu/mp_layers.py @@ -15,7 +15,7 @@ import paddle from . import mp_ops from paddle.fluid import core -from paddle.fluid.dygraph.layers import Layer +from paddle.nn import Layer from .random import get_rng_state_tracker from paddle.nn import functional as F from ...base import topology as tp diff --git a/python/paddle/distributed/fleet/layers/mpu/mp_ops.py b/python/paddle/distributed/fleet/layers/mpu/mp_ops.py index 83ba760c9e0a788a51133c49f7004f99053bc7d1..8a463e996604e79f016e9c23a34b96af8e60043f 100644 --- a/python/paddle/distributed/fleet/layers/mpu/mp_ops.py +++ b/python/paddle/distributed/fleet/layers/mpu/mp_ops.py @@ -15,17 +15,17 @@ import paddle from paddle import _legacy_C_ops from paddle.fluid import core -from paddle.fluid.framework import _non_static_mode -from paddle.fluid.framework import _in_legacy_dygraph -from paddle.fluid.framework import in_dygraph_mode -from paddle.fluid.framework import _varbase_creator -from paddle.fluid.layer_helper import LayerHelper +from paddle.framework import in_dynamic_mode +from paddle.framework import _in_legacy_dygraph +from paddle.framework import in_dygraph_mode +from paddle.framework import _varbase_creator +from paddle.framework import LayerHelper from paddle.fluid.data_feeder import check_variable_and_dtype -from paddle.fluid.dygraph import layers +from paddle.nn import Layer from paddle.distributed import collective from ....communication.reduce import ReduceOp, _get_reduce_op from paddle.fluid.data_feeder import check_dtype -import paddle.fluid.dygraph_utils as dygraph_utils +from paddle.common_ops_import import dygraph_utils def _c_identity(tensor, group=None): @@ -123,7 +123,7 @@ def _c_concat(tensor, group=None): rank = group.rank nranks = group.nranks - if _non_static_mode(): + if in_dynamic_mode(): return _legacy_C_ops.c_concat( tensor, 'ring_id', @@ -189,7 +189,7 @@ def _c_split(tensor, group=None): else group.nranks ) - if _non_static_mode(): + if in_dynamic_mode(): return _legacy_C_ops.c_split( tensor, 'use_calc_stream', @@ -335,7 +335,7 @@ def _c_lookup_table(table, index, start_index=0, name=None): Returns: Tensor. """ - if _non_static_mode(): + if in_dynamic_mode(): return _legacy_C_ops.c_embedding( table, index, "start_index", start_index ) @@ -354,7 +354,7 @@ def _c_lookup_table(table, index, start_index=0, name=None): return tmp -class _Linear(layers.Layer): +class _Linear(Layer): """ Linear """ @@ -424,7 +424,7 @@ def _c_softmax_with_cross_entropy( if input_dims - 1 == label_dims: label = paddle.unsqueeze(label, axis=-1) - if _non_static_mode(): + if in_dynamic_mode(): softmax, loss = _legacy_C_ops.c_softmax_with_cross_entropy( logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks ) @@ -458,7 +458,7 @@ def _linear(x, weight, bias=None, name=None): """ Fuction Linear """ - if _non_static_mode(): + if in_dynamic_mode(): pre_bias = _varbase_creator(dtype=x.dtype) _legacy_C_ops.matmul( x, @@ -825,7 +825,7 @@ def split( supported_operations ) ) - if _non_static_mode(): + if in_dynamic_mode(): raise ValueError( "paddle.distributed.split cannot be used in dynamic " "graph mode, plese use ParallelEmbedding, ParallelRowLinear, " diff --git a/python/paddle/distributed/fleet/layers/mpu/random.py b/python/paddle/distributed/fleet/layers/mpu/random.py index 17442c1938a1d3264da80e3a05a19c5c41ed63d7..5661804a27966717c13f802cd93011dd831c9f37 100644 --- a/python/paddle/distributed/fleet/layers/mpu/random.py +++ b/python/paddle/distributed/fleet/layers/mpu/random.py @@ -18,8 +18,9 @@ import contextlib from paddle import _legacy_C_ops from paddle.fluid import core from paddle.fluid.data_feeder import check_variable_and_dtype -from paddle.fluid.framework import Variable, _non_static_mode -from paddle.fluid.layer_helper import LayerHelper +from paddle.static import Variable +from paddle.framework import in_dynamic_mode +from paddle.framework import LayerHelper __all__ = [] @@ -209,7 +210,7 @@ def dropout( ) # semantic transfer # dygraph using tracker, doesn't need determinate seed - if _non_static_mode(): + if in_dynamic_mode(): out, mask = _legacy_C_ops.dropout( x, 'dropout_prob', diff --git a/python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py b/python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py index c16f60139dbe4a98da9f749994d8bfe6f03d4588..6b1425c703f970ce6194c8ea154fb12e8e2dba2b 100755 --- a/python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py +++ b/python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py @@ -11,8 +11,9 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and -import paddle.fluid as fluid -from paddle.fluid import core, unique_name +import paddle.static as static +from paddle.fluid import core +from paddle.utils import unique_name from .meta_optimizer_base import MetaOptimizerBase from .common import ( OpRole, @@ -132,7 +133,7 @@ class RawProgramOptimizer(MetaOptimizerBase): self.rank = self.role_maker._worker_index() self.nranks = self.role_maker._worker_num() if startup_program is None: - startup_program = fluid.default_startup_program() + startup_program = static.default_startup_program() self.startup_program = startup_program block = loss.block diff --git a/python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py b/python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py index fe11a788c51e1cf163e2c686c8ec140469e5d728..05fa6e16ca51a095af4bfabfbc328e7ddc4f2966 100755 --- a/python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py +++ b/python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py @@ -13,10 +13,11 @@ # limitations under the License. import os -from paddle.fluid import unique_name, core -import paddle.fluid as fluid +from paddle.fluid import core +from paddle.utils import unique_name +from paddle.fluid.optimizer import PipelineOptimizer from paddle.static import default_startup_program, device_guard -from paddle.fluid import layers +from paddle.static import create_global_var from .common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper, OP_ROLE_KEY from .common import is_backward_op, is_optimizer_op, is_update_op @@ -275,7 +276,7 @@ class ShardingOptimizer(MetaOptimizerBase): ) if self.pp_degree > 1: - pp_optimizer = fluid.optimizer.PipelineOptimizer( + pp_optimizer = PipelineOptimizer( self.inner_opt, self._gradient_merge_acc_step ) self._pp_optimizer = pp_optimizer @@ -1916,7 +1917,7 @@ class ShardingOptimizer(MetaOptimizerBase): def _create_gm_cond(self, main_block): # Add const var - acc_step_var = layers.create_global_var( + acc_step_var = create_global_var( name="gradient_merge_acc_step", shape=[1], value=int(self._gradient_merge_acc_step), @@ -1925,7 +1926,7 @@ class ShardingOptimizer(MetaOptimizerBase): force_cpu=True, ) - zero_var = layers.create_global_var( + zero_var = create_global_var( name="gradient_merge_zero", shape=[1], value=int(0), @@ -1935,7 +1936,7 @@ class ShardingOptimizer(MetaOptimizerBase): ) # Add step var & cond var - current_step_var = layers.create_global_var( + current_step_var = create_global_var( name="gradient_merge_current_step", shape=[1], value=int(0), diff --git a/python/paddle/distributed/fleet/meta_optimizers/tensor_parallel_optimizer.py b/python/paddle/distributed/fleet/meta_optimizers/tensor_parallel_optimizer.py index f798a6d3f430ec1512da54ae88740d35aacf21e6..41ef5f6190ebf9d36616e55132110355137c046b 100644 --- a/python/paddle/distributed/fleet/meta_optimizers/tensor_parallel_optimizer.py +++ b/python/paddle/distributed/fleet/meta_optimizers/tensor_parallel_optimizer.py @@ -11,7 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and -import paddle.fluid as fluid +import paddle.static as static from .meta_optimizer_base import MetaOptimizerBase from .common import ( CollectiveHelper, @@ -174,7 +174,7 @@ class TensorParallelOptimizer(MetaOptimizerBase): self.current_endpoint = self.endpoints[self.role_maker._worker_index()] self.startup_program = startup_program if startup_program is None: - self.startup_program = fluid.default_startup_program() + self.startup_program = static.default_startup_program() optimize_ops, params_grads = self.inner_opt.minimize( loss, self.startup_program, parameter_list, no_grad_set diff --git a/python/paddle/fluid/tests/unittests/test_index_sample_op.py b/python/paddle/fluid/tests/unittests/test_index_sample_op.py old mode 100644 new mode 100755 diff --git a/python/paddle/tensor/search.py b/python/paddle/tensor/search.py old mode 100644 new mode 100755