未验证 提交 42559f72 编写于 作者: B baoachun 提交者: GitHub

add gather_nd trt converter test cases (#35464)

上级 666da145
......@@ -328,6 +328,8 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
}
if (op_type == "gather_nd") {
if (!with_dynamic_shape) return false;
auto* block = desc.Block();
auto x_var_name = desc.Input("X")[0];
auto index_var_name = desc.Input("Index")[0];
......@@ -343,12 +345,17 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
const auto index_shape = index_var_desc->GetShape();
const auto x_shape = x_var_desc->GetShape();
if (x_shape.size() <= 2) {
VLOG(3) << "gather_nd op requires the input's dimension to be greater "
"than 2";
return false;
}
if (x_shape.size() != index_shape.size()) {
VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
<< " ] not equal to x dims size [" << x_shape.size() << "]";
return false;
}
if (!with_dynamic_shape) return false;
}
if (op_type == "yolo_box") {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertGatherNdTest_dim_4_1(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1():
return np.random.random([2, 32, 64, 64]).astype(np.float32)
def generate_input2():
return np.ones([1]).astype(np.int32)
ops_config = [{
"op_type": "gather_nd",
"op_inputs": {
"X": ["input_data"],
"Index": ["index_data"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input1)),
"index_data": TensorConfig(data_gen=partial(generate_input2)),
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [1, 8, 8, 8],
"index_data": [1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 32, 64, 64],
"index_data": [1]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 4, 64, 64],
"index_data": [1]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
def test(self):
self.run_test()
class TrtConvertGatherNdTest_dim_4_1_2(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1():
return np.random.random([2, 32, 64, 64]).astype(np.float32)
def generate_input2():
return np.array([1, 2]).astype(np.int32)
ops_config = [{
"op_type": "gather_nd",
"op_inputs": {
"X": ["input_data"],
"Index": ["index_data"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input1)),
"index_data": TensorConfig(data_gen=partial(generate_input2)),
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [1, 8, 8, 8],
"index_data": [1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 32, 64, 64],
"index_data": [4]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 4, 64, 64],
"index_data": [2]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
def test(self):
self.run_test()
class TrtConvertGatherNdTest_dim_4_2(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1():
return np.random.random([2, 32, 64, 64]).astype(np.float32)
def generate_input2():
return np.ones([2, 2]).astype(np.int32)
ops_config = [{
"op_type": "gather_nd",
"op_inputs": {
"X": ["input_data"],
"Index": ["index_data"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input1)),
"index_data": TensorConfig(data_gen=partial(generate_input2)),
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [1, 8, 8, 8],
"index_data": [1, 2]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 32, 64, 64],
"index_data": [4, 4]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 4, 64, 64],
"index_data": [2, 2]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
def test(self):
self.run_test()
class TrtConvertGatherNdTest_dim_4_3(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1():
return np.random.random([2, 32, 64, 64]).astype(np.float32)
def generate_input2():
return np.ones([2, 2, 4]).astype(np.int32)
ops_config = [{
"op_type": "gather_nd",
"op_inputs": {
"X": ["input_data"],
"Index": ["index_data"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input1)),
"index_data": TensorConfig(data_gen=partial(generate_input2)),
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [1, 8, 8, 8],
"index_data": [1, 2, 2]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 32, 64, 64],
"index_data": [4, 4, 4]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 4, 64, 64],
"index_data": [2, 2, 2]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
def test(self):
self.run_test()
class TrtConvertGatherNdTest_dim_2_2(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1():
return np.random.random([2, 32]).astype(np.float32)
def generate_input2():
return np.ones([2, 2]).astype(np.int32)
ops_config = [{
"op_type": "gather_nd",
"op_inputs": {
"X": ["input_data"],
"Index": ["index_data"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input1)),
"index_data": TensorConfig(data_gen=partial(generate_input2)),
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [1, 4],
"index_data": [1, 1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 64],
"index_data": [4, 2]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 8],
"index_data": [2, 2]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (1, 3), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (1, 3), 1e-5
def add_skip_trt_case(self):
def teller(program_config, predictor_config):
if len(self.dynamic_shape.min_input_shape) != 0:
return True
return False
self.add_skip_case(
teller, SkipReasons.TRT_NOT_SUPPORT,
"Need to repair the case: the output of trt and GPU has diff when inputs' dim is 1 and 2."
)
def test(self):
self.add_skip_trt_case()
self.run_test()
class TrtConvertGatherNdTest_dim_3_3(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1():
return np.random.random([2, 32, 256]).astype(np.float32)
def generate_input2():
return np.ones([2, 2, 2]).astype(np.int32)
ops_config = [{
"op_type": "gather_nd",
"op_inputs": {
"X": ["input_data"],
"Index": ["index_data"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input1)),
"index_data": TensorConfig(data_gen=partial(generate_input2)),
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [1, 4, 4],
"index_data": [1, 1, 1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 64, 512],
"index_data": [4, 2, 4]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 8, 64],
"index_data": [2, 2, 2]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 4), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (1, 3), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (1, 3), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册