From 4244fa6ee72d5de05788dac89aa26d7813357e89 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=82=85=E5=89=91=E5=AF=92?= Date: Tue, 22 Nov 2022 13:39:06 +0800 Subject: [PATCH] =?UTF-8?q?(fluid=E6=B8=85=E7=90=86)remove=20reshape=20in?= =?UTF-8?q?=20nn.py=20under=20fluid=20(#47967)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * remove reshape in nn.py under fluid * remove reshape reference * fix test case * fix test case in distribution.uniform * remove fluid reshape reference --- python/paddle/distribution/normal.py | 4 +- python/paddle/distribution/uniform.py | 7 +- python/paddle/fluid/contrib/layers/nn.py | 9 +- .../paddle/fluid/contrib/layers/rnn_impl.py | 19 +- .../contrib/tests/test_model_cast_to_bf16.py | 9 +- python/paddle/fluid/dygraph/parallel.py | 2 +- python/paddle/fluid/layer_helper_base.py | 5 +- python/paddle/fluid/layers/detection.py | 20 +- python/paddle/fluid/layers/distributions.py | 8 +- python/paddle/fluid/layers/nn.py | 235 ------------------ python/paddle/fluid/layers/rnn.py | 10 +- python/paddle/fluid/layers/tensor.py | 3 +- python/paddle/fluid/nets.py | 15 +- .../tests/book/test_machine_translation.py | 4 +- .../fleet/hybrid_parallel_pp_embedding.py | 4 +- .../fleet/hybrid_parallel_shared_weight.py | 4 +- .../fleet/parallel_dygraph_se_resnext.py | 4 +- .../fleet/parallel_dygraph_transformer.py | 19 +- .../tests/unittests/dist_fleet_simnet_bow.py | 6 +- .../fluid/tests/unittests/dist_transformer.py | 14 +- .../dygraph_to_static/bert_dygraph_model.py | 4 +- .../dygraph_to_static/ifelse_simple_func.py | 4 +- .../seq2seq_dygraph_model.py | 12 +- .../dygraph_to_static/simnet_dygraph_model.py | 4 +- .../unittests/dygraph_to_static/test_bmn.py | 12 +- .../unittests/dygraph_to_static/test_error.py | 12 +- .../unittests/dygraph_to_static/test_lac.py | 8 +- .../unittests/dygraph_to_static/test_mnist.py | 2 +- .../dygraph_to_static/test_mobile_net.py | 4 +- .../dygraph_to_static/test_partial_program.py | 2 +- .../dygraph_to_static/test_ptb_lm.py | 14 +- .../test_reinforcement_learning.py | 2 +- .../dygraph_to_static/test_resnet.py | 2 +- .../dygraph_to_static/test_se_resnet.py | 4 +- .../dygraph_to_static/test_sentiment.py | 38 ++- .../dygraph_to_static/test_simnet.py | 6 +- .../dygraph_to_static/test_tensor_shape.py | 12 +- .../unittests/dygraph_to_static/test_tsm.py | 6 +- .../transformer_dygraph_model.py | 20 +- .../ipu/test_reshape_inplace_op_ipu.py | 2 +- .../unittests/ipu/test_reshape_op_ipu.py | 2 +- .../unittests/ipu/test_varname_inplace_ipu.py | 2 +- .../test_mkldnn_cpu_bfloat16_pass.py | 3 +- .../test_mkldnn_matmul_op_output_fuse_pass.py | 12 +- ...n_reshape_transpose_matmul_v2_fuse_pass.py | 2 +- .../test_trt_conv_quant_dequant_pass.py | 30 +-- .../test_trt_fc_fuse_quant_dequant_pass.py | 8 +- .../test_trt_matmul_quant_dequant.py | 2 +- .../inference/test_trt_multiclass_nms3_op.py | 3 +- .../inference/test_trt_multiclass_nms_op.py | 3 +- .../ir/inference/test_trt_reshape_op.py | 5 +- .../test_trt_shuffle_channel_detect_pass.py | 5 +- .../ir/inference/test_trt_subgraph_pass.py | 3 +- ..._trt_transpose_flatten_concat_fuse_pass.py | 3 +- .../tests/unittests/parallel_dygraph_mnist.py | 2 +- .../parallel_dygraph_sparse_embedding.py | 4 +- .../fluid/tests/unittests/seresnext_net.py | 8 +- .../tests/unittests/test_beam_search_op.py | 3 +- .../tests/unittests/test_dist_fleet_ps.py | 6 +- .../tests/unittests/test_dist_fleet_ps11.py | 6 +- .../tests/unittests/test_dist_fleet_ps12.py | 6 +- .../tests/unittests/test_dist_fleet_ps13.py | 6 +- .../tests/unittests/test_dist_fleet_ps2.py | 6 +- .../tests/unittests/test_dist_fleet_ps3.py | 6 +- .../tests/unittests/test_dist_fleet_ps4.py | 6 +- .../tests/unittests/test_dist_fleet_ps5.py | 6 +- .../tests/unittests/test_dist_fleet_ps6.py | 6 +- .../tests/unittests/test_dist_transpiler.py | 12 +- .../unittests/test_dygraph_mnist_fp16.py | 2 +- .../unittests/test_dygraph_multi_forward.py | 2 +- .../test_eager_deletion_padding_rnn.py | 42 ++-- .../unittests/test_eager_deletion_while_op.py | 8 +- .../test_embedding_id_stop_gradient.py | 2 +- .../test_fuse_relu_depthwise_conv_pass.py | 2 +- .../tests/unittests/test_imperative_basic.py | 14 +- .../tests/unittests/test_imperative_gnn.py | 6 +- ..._imperative_lod_tensor_to_selected_rows.py | 6 +- .../tests/unittests/test_imperative_mnist.py | 2 +- .../test_imperative_ocr_attention_model.py | 41 ++- .../unittests/test_imperative_optimizer.py | 4 +- .../unittests/test_imperative_optimizer_v2.py | 4 +- .../unittests/test_imperative_ptb_rnn.py | 30 +-- .../test_imperative_reinforcement.py | 2 +- .../tests/unittests/test_imperative_resnet.py | 2 +- .../unittests/test_imperative_save_load.py | 30 +-- .../unittests/test_imperative_save_load_v2.py | 30 +-- .../unittests/test_imperative_se_resnext.py | 4 +- ..._imperative_selected_rows_to_lod_tensor.py | 6 +- ...perative_star_gan_with_gradient_penalty.py | 10 +- ..._imperative_transformer_sorted_gradient.py | 19 +- .../unittests/test_ir_memory_optimize_pass.py | 4 +- .../fluid/tests/unittests/test_nn_grad.py | 2 +- .../fluid/tests/unittests/test_reshape_op.py | 35 +-- .../tests/unittests/test_static_save_load.py | 30 +-- .../fluid/tests/unittests/test_var_base.py | 4 +- .../fluid/tests/unittests/test_variable.py | 2 +- .../tests/unittests/test_while_loop_op.py | 2 +- .../tests/unittests/transformer_model.py | 10 +- 98 files changed, 382 insertions(+), 712 deletions(-) diff --git a/python/paddle/distribution/normal.py b/python/paddle/distribution/normal.py index 0dd7db2df9..c2b20297d5 100644 --- a/python/paddle/distribution/normal.py +++ b/python/paddle/distribution/normal.py @@ -184,7 +184,7 @@ class Normal(distribution.Distribution): zero_tmp = tensor.fill_constant_batch_size_like( self.loc + self.scale, batch_shape + shape, self.dtype, 0.0 ) - zero_tmp_reshape = nn.reshape(zero_tmp, output_shape) + zero_tmp_reshape = paddle.reshape(zero_tmp, output_shape) zero_tmp_shape = nn.shape(zero_tmp_reshape) normal_random_tmp = nn.gaussian_random( zero_tmp_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype @@ -199,7 +199,7 @@ class Normal(distribution.Distribution): ) * (tensor.zeros(output_shape, dtype=self.dtype) + self.scale) output = elementwise_add(output, self.loc, name=name) if self.all_arg_is_float: - return nn.reshape(output, shape, name=name) + return paddle.reshape(output, shape, name=name) else: return output diff --git a/python/paddle/distribution/uniform.py b/python/paddle/distribution/uniform.py index 0b4ec6211d..c8f8c40a75 100644 --- a/python/paddle/distribution/uniform.py +++ b/python/paddle/distribution/uniform.py @@ -28,6 +28,7 @@ from paddle.fluid.layers import ( nn, tensor, ) +import paddle class Uniform(distribution.Distribution): @@ -174,8 +175,8 @@ class Uniform(distribution.Distribution): max=1.0, seed=seed, ) - zero_tmp_reshape = nn.reshape(zero_tmp, output_shape) - uniform_random_tmp_reshape = nn.reshape( + zero_tmp_reshape = paddle.reshape(zero_tmp, output_shape) + uniform_random_tmp_reshape = paddle.reshape( uniform_random_tmp, output_shape ) output = uniform_random_tmp_reshape * ( @@ -193,7 +194,7 @@ class Uniform(distribution.Distribution): ) output = elementwise_add(output, self.low, name=name) if self.all_arg_is_float: - return nn.reshape(output, shape, name=name) + return paddle.reshape(output, shape, name=name) else: return output diff --git a/python/paddle/fluid/contrib/layers/nn.py b/python/paddle/fluid/contrib/layers/nn.py index 3695f8cad2..4bfbe75386 100644 --- a/python/paddle/fluid/contrib/layers/nn.py +++ b/python/paddle/fluid/contrib/layers/nn.py @@ -36,7 +36,8 @@ from paddle.fluid import core from paddle.fluid.param_attr import ParamAttr from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_ -from paddle.fluid.layers import slice, reshape +from paddle.fluid.layers import slice +import paddle import warnings from paddle import _C_ops, _legacy_C_ops @@ -1549,17 +1550,17 @@ def tdm_sampler( mask, axes=[1], starts=[start_offset], ends=[end_offset] ) - layer_samples = reshape( + layer_samples = paddle.reshape( layer_samples, [-1, layer_sample_num + positive_flag, 1] ) layer_samples.stop_gradient = True - layer_labels = reshape( + layer_labels = paddle.reshape( layer_labels, [-1, layer_sample_num + positive_flag, 1] ) layer_labels.stop_gradient = True - layer_mask = reshape( + layer_mask = paddle.reshape( layer_mask, [-1, layer_sample_num + positive_flag, 1] ) layer_mask.stop_gradient = True diff --git a/python/paddle/fluid/contrib/layers/rnn_impl.py b/python/paddle/fluid/contrib/layers/rnn_impl.py index 69b48fbe23..78813126e2 100644 --- a/python/paddle/fluid/contrib/layers/rnn_impl.py +++ b/python/paddle/fluid/contrib/layers/rnn_impl.py @@ -19,6 +19,7 @@ from paddle.fluid import layers, unique_name from paddle.fluid.dygraph import Layer from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper from paddle.fluid.layers.control_flow import StaticRNN +import paddle __all__ = ['BasicGRUUnit', 'basic_gru', 'BasicLSTMUnit', 'basic_lstm'] @@ -339,7 +340,7 @@ def basic_gru( if bidirectional: direc_num = 2 if init_hidden: - init_hidden = layers.reshape( + init_hidden = paddle.reshape( init_hidden, shape=[num_layers, direc_num, -1, hidden_size] ) @@ -394,7 +395,7 @@ def basic_gru( last_hidden_array.append(last_hidden) last_hidden_output = layers.concat(last_hidden_array, axis=0) - last_hidden_output = layers.reshape( + last_hidden_output = paddle.reshape( last_hidden_output, shape=[num_layers, -1, hidden_size] ) @@ -419,7 +420,7 @@ def basic_gru( rnn_out = layers.concat([fw_rnn_out, bw_rnn_out], axis=2) last_hidden = layers.concat([fw_last_hidden, bw_last_hidden], axis=1) - last_hidden = layers.reshape( + last_hidden = paddle.reshape( last_hidden, shape=[num_layers * direc_num, -1, hidden_size] ) @@ -625,10 +626,10 @@ def basic_lstm( direc_num = 2 # convert to [num_layers, 2, batch_size, hidden_size] if init_hidden: - init_hidden = layers.reshape( + init_hidden = paddle.reshape( init_hidden, shape=[num_layers, direc_num, -1, hidden_size] ) - init_cell = layers.reshape( + init_cell = paddle.reshape( init_cell, shape=[num_layers, direc_num, -1, hidden_size] ) @@ -701,11 +702,11 @@ def basic_lstm( last_cell_array.append(last_cell) last_hidden_output = layers.concat(last_hidden_array, axis=0) - last_hidden_output = layers.reshape( + last_hidden_output = paddle.reshape( last_hidden_output, shape=[num_layers, -1, hidden_size] ) last_cell_output = layers.concat(last_cell_array, axis=0) - last_cell_output = layers.reshape( + last_cell_output = paddle.reshape( last_cell_output, shape=[num_layers, -1, hidden_size] ) @@ -729,12 +730,12 @@ def basic_lstm( rnn_out = layers.concat([fw_rnn_out, bw_rnn_out], axis=2) last_hidden = layers.concat([fw_last_hidden, bw_last_hidden], axis=1) - last_hidden = layers.reshape( + last_hidden = paddle.reshape( last_hidden, shape=[num_layers * direc_num, -1, hidden_size] ) last_cell = layers.concat([fw_last_cell, bw_last_cell], axis=1) - last_cell = layers.reshape( + last_cell = paddle.reshape( last_cell, shape=[num_layers * direc_num, -1, hidden_size] ) diff --git a/python/paddle/fluid/contrib/tests/test_model_cast_to_bf16.py b/python/paddle/fluid/contrib/tests/test_model_cast_to_bf16.py index c000d55fcc..e04bf0b2b7 100644 --- a/python/paddle/fluid/contrib/tests/test_model_cast_to_bf16.py +++ b/python/paddle/fluid/contrib/tests/test_model_cast_to_bf16.py @@ -107,17 +107,17 @@ class TestModelCastBF16(unittest.TestCase): ret = layers.elementwise_add(t, tt) ret = layers.elementwise_mul(ret, t) - ret = layers.reshape(ret, [0, 0]) + ret = paddle.reshape(ret, [0, 0]) with amp.bf16.bf16_guard(): ret_bf16 = layers.elementwise_add(t_bf16, tt_bf16) ret_bf16 = layers.elementwise_mul(ret_bf16, t_bf16) - ret_bf16 = layers.reshape(ret_bf16, [0, 0]) + ret_bf16 = paddle.reshape(ret_bf16, [0, 0]) with amp.bf16.bf16_guard(): ret_fp32bf16 = layers.elementwise_add(t, tt) ret_fp32bf16 = layers.elementwise_mul(ret_fp32bf16, t) - ret_fp32bf16 = layers.reshape(ret_fp32bf16, [0, 0]) + ret_fp32bf16 = paddle.reshape(ret_fp32bf16, [0, 0]) ( static_ret_bf16, @@ -148,7 +148,8 @@ class TestModelCastBF16(unittest.TestCase): with amp.bf16.bf16_guard(): ret = layers.elementwise_add(t, tt) - ret = layers.reshape(ret, [0, 0], act='elu') + ret = paddle.reshape(ret, [0, 0]) + ret = paddle.nn.functional.elu(ret) ret = layers.elementwise_mul(ret, t) ret = layers.elementwise_add(ret, tt) diff --git a/python/paddle/fluid/dygraph/parallel.py b/python/paddle/fluid/dygraph/parallel.py index 85c95c6b2b..cb030f71a4 100644 --- a/python/paddle/fluid/dygraph/parallel.py +++ b/python/paddle/fluid/dygraph/parallel.py @@ -320,7 +320,7 @@ def _coalesce_tensors(var_groups): for g_var in grad_vars: g_var_shapes.append(g_var.shape) flattened_vars.append( - nn.reshape(x=g_var, shape=[np.prod(g_var.shape)]) + paddle.reshape(x=g_var, shape=[np.prod(g_var.shape)]) ) coalesced_grad = nn.concat(flattened_vars) coalesced_grads_and_grad_vars.append( diff --git a/python/paddle/fluid/layer_helper_base.py b/python/paddle/fluid/layer_helper_base.py index 91ec751cc2..39eb4a0947 100644 --- a/python/paddle/fluid/layer_helper_base.py +++ b/python/paddle/fluid/layer_helper_base.py @@ -14,6 +14,7 @@ import copy import numpy as np +import paddle from .framework import ( Variable, @@ -114,7 +115,7 @@ class LayerHelperBase: ) def _create_weight_normalize(self, attr, shape, dtype): - from .layers import elementwise_mul, elementwise_div, reshape + from .layers import elementwise_mul, elementwise_div # Remove these ops when LayerHelper and layers support indicating # program and block. @@ -275,7 +276,7 @@ class LayerHelperBase: x=v, y=scale if dim is None - else reshape(x=scale, shape=[v.shape[dim]]), + else paddle.reshape(x=scale, shape=[v.shape[dim]]), axis=-1 if dim is None else dim, ) # To serialize the original parameter for inference, maybe a diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index b7a3b2aba9..bfa063c105 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -328,8 +328,8 @@ def retinanet_target_assign( bbox_inside_weight.stop_gradient = True fg_num.stop_gradient = True - cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes)) - bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4)) + cls_logits = paddle.reshape(x=cls_logits, shape=(-1, num_classes)) + bbox_pred = paddle.reshape(x=bbox_pred, shape=(-1, 4)) predicted_cls_logits = paddle.gather(cls_logits, score_index) predicted_bbox_pred = paddle.gather(bbox_pred, loc_index) @@ -510,8 +510,8 @@ def rpn_target_assign( target_bbox.stop_gradient = True bbox_inside_weight.stop_gradient = True - cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1)) - bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4)) + cls_logits = paddle.reshape(x=cls_logits, shape=(-1, 1)) + bbox_pred = paddle.reshape(x=bbox_pred, shape=(-1, 4)) predicted_cls_logits = paddle.gather(cls_logits, score_index) predicted_bbox_pred = paddle.gather(bbox_pred, loc_index) @@ -1750,7 +1750,7 @@ def ssd_loss( # 2. Compute confidence for mining hard examples # 2.1. Get the target label based on matched indices - gt_label = nn.reshape( + gt_label = paddle.reshape( x=gt_label, shape=(len(gt_label.shape) - 1) * (0,) + (-1, 1) ) gt_label.stop_gradient = True @@ -1769,9 +1769,7 @@ def ssd_loss( actual_shape.stop_gradient = True # shape=(-1, 0) is set for compile-time, the correct shape is set by # actual_shape in runtime. - conf_loss = nn.reshape( - x=conf_loss, shape=(-1, 0), actual_shape=actual_shape - ) + conf_loss = paddle.reshape(x=conf_loss, shape=actual_shape) conf_loss.stop_gradient = True neg_indices = helper.create_variable_for_type_inference(dtype='int32') dtype = matched_indices.dtype @@ -1848,7 +1846,7 @@ def ssd_loss( # reshape to [N, Np], N is the batch size and Np is the prior box number. # shape=(-1, 0) is set for compile-time, the correct shape is set by # actual_shape in runtime. - loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape) + loss = paddle.reshape(x=loss, shape=actual_shape) loss = nn.reduce_sum(loss, dim=1, keep_dim=True) if normalize: normalizer = nn.reduce_sum(target_loc_weight) @@ -2477,9 +2475,9 @@ def multi_box_head( box = tensor.concat(reshaped_boxes) var = tensor.concat(reshaped_vars) mbox_locs_concat = tensor.concat(mbox_locs, axis=1) - mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4]) + mbox_locs_concat = paddle.reshape(mbox_locs_concat, shape=[0, -1, 4]) mbox_confs_concat = tensor.concat(mbox_confs, axis=1) - mbox_confs_concat = nn.reshape( + mbox_confs_concat = paddle.reshape( mbox_confs_concat, shape=[0, -1, num_classes] ) diff --git a/python/paddle/fluid/layers/distributions.py b/python/paddle/fluid/layers/distributions.py index e7c846c1fe..196d89db33 100644 --- a/python/paddle/fluid/layers/distributions.py +++ b/python/paddle/fluid/layers/distributions.py @@ -228,7 +228,7 @@ class Uniform(Distribution): uniform_random_tmp * (zero_tmp + self.high - self.low) + self.low ) - return nn.reshape(output, output_shape) + return paddle.reshape(output, output_shape) else: output_shape = shape + batch_shape output = ( @@ -240,7 +240,7 @@ class Uniform(Distribution): + self.low ) if self.all_arg_is_float: - return nn.reshape(output, shape) + return paddle.reshape(output, shape) else: return output @@ -382,7 +382,7 @@ class Normal(Distribution): zero_tmp_shape, mean=0.0, std=1.0, seed=seed ) output = normal_random_tmp * (zero_tmp + self.scale) + self.loc - return nn.reshape(output, output_shape) + return paddle.reshape(output, output_shape) else: output_shape = shape + batch_shape output = ( @@ -394,7 +394,7 @@ class Normal(Distribution): + self.loc ) if self.all_arg_is_float: - return nn.reshape(output, shape) + return paddle.reshape(output, shape) else: return output diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index b699de304e..45dac4372a 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -101,7 +101,6 @@ __all__ = [ 'smooth_l1', 'one_hot', 'autoincreased_step_counter', - 'reshape', 'squeeze', 'unsqueeze', 'lod_reset', @@ -6234,240 +6233,6 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1): return counter -def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): - r""" - :alias_main: paddle.reshape - :alias: paddle.reshape,paddle.tensor.reshape,paddle.tensor.manipulation.reshape - - This operator changes the shape of ``x`` without changing its data. - - The target shape can be given by ``shape`` or ``actual_shape``. - When ``shape`` and ``actual_shape`` are set at the same time, - ``actual_shape`` has a higher priority than ``shape`` - but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to - guarantee shape inference in compile-time. - - Some tricks exist when specifying the target shape. - - 1. -1 means the value of this dimension is inferred from the total element - number of x and remaining dimensions. Thus one and only one dimension can - be set -1. - - 2. 0 means the actual dimension value is going to be copied from the - corresponding dimension of x. The index of 0s in shape can not exceed - the dimension of x. - - Here are some examples to explain it. - - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape - is [6, 8], the reshape operator will transform x into a 2-D tensor with - shape [6, 8] and leaving x's data unchanged. - - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape - specified is [2, 3, -1, 2], the reshape operator will transform x into a - 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this - case, one dimension of the target shape is set to -1, the value of this - dimension is inferred from the total element number of x and remaining - dimensions. - - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape - is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor - with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, - besides -1, 0 means the actual dimension value is going to be copied from - the corresponding dimension of x. - - **Note**: - The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape. - - Args: - x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``. - shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1. - The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. - If ``shape`` is an Tensor, it should be an 1-D Tensor . - actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape - according to this given shape rather than ``shape`` specifying shape. - That is to say ``actual_shape`` has a higher priority - than ``shape(list|tuple)`` but not ``shape(Tensor)``. \ - This argument ``actual_shape`` will be removed in a future version. \ - Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``. - act (str, optional): The non-linear activation to be applied to the reshaped input. Default None. - inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape`` - are the same variable. Otherwise, the input and output of - ``layers.reshape`` are different variable. Default False. Note that if ``x`` - is more than one OPs' input, ``inplace`` must be False. - name(str, optional): The default value is None. Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` . - - Returns: - Tensor: A reshaped Tensor with the same data type as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable. - - - Examples: - .. code-block:: python - - import paddle - import paddle.fluid as fluid - paddle.enable_static() - - # example 1: - # attr shape is a list which doesn't contain Tensors. - data_1 = fluid.data( - name='data_1', shape=[2, 4, 6], dtype='float32') - reshaped_1 = fluid.layers.reshape( - x=data_1, shape=[-1, 0, 3, 2]) - # the shape of reshaped_1 is [2,4,3,2]. - - # example 2: - # attr shape is a list which contains Tensors. - data_2 = fluid.layers.fill_constant([2,25], "int32", 3) - dim = fluid.layers.fill_constant([1], "int32", 5) - reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10]) - # the shape of reshaped_2 is [5,10]. - - # example 3: - data_3 = fluid.data( - name="data_3", shape=[2,4,6], dtype='float32') - reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8]) - # the shape of reshaped_3 is [6,8]. - """ - if in_dygraph_mode(): - tmp_tensor_type = core.eager.Tensor - # TODO(zhiqiu): enable inplace in dygraph mode. - if inplace: - warnings.warn( - "Inplace on reshape is not allowed and will be discarded in dygraph mode currently." - ) - if isinstance(shape, (list, tuple)): - shape = [ - item.numpy().item(0) if isinstance(item, Variable) else item - for item in shape - ] - out = _C_ops.reshape(x, shape) - elif isinstance(shape, tmp_tensor_type): - # TODO: Tensor shape in reshape has not been tested - shape.stop_gradient = True - out = _C_ops.reshape(x, shape) - else: - raise ValueError( - "shape must be an instance of `list`, `tuple` or `Variable`," - " got '{}.'".format(type(shape)) - ) - - return dygraph_utils._append_activation_in_dygraph(out, act) - else: - if _in_legacy_dygraph(): - tmp_tensor_type = Variable - if inplace: - warnings.warn( - "Inplace on reshape is not allowed and will be discarded in dygraph mode currently." - ) - if isinstance(shape, (list, tuple)): - shape = [ - item.numpy().item(0) if isinstance(item, Variable) else item - for item in shape - ] - out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape) - elif isinstance(shape, tmp_tensor_type): - shape.stop_gradient = True - out, _ = _legacy_C_ops.reshape2(x, shape) - else: - raise ValueError( - "shape must be an instance of `list`, `tuple` or `Variable`," - " got '{}.'".format(type(shape)) - ) - - return dygraph_utils._append_activation_in_dygraph(out, act) - - check_variable_and_dtype( - x, - 'x', - [ - 'float16', - 'float32', - 'float64', - 'int16', - 'int32', - 'int64', - 'bool', - 'uint16', - ], - 'reshape', - ) - check_type(shape, 'shape', (list, tuple, Variable), 'reshape') - check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape') - - helper = LayerHelper("reshape2", **locals()) - - def get_attr_shape(list_shape): - unk_dim_idx = -1 - attrs_shape = [] - for dim_idx, dim_size in enumerate(list_shape): - if isinstance(dim_size, Variable): - attrs_shape.append(-1) - else: - attrs_shape.append(dim_size) - if dim_size == -1: - assert unk_dim_idx == -1, ( - "Only one dimension value of 'shape' in reshape can " - "be -1. But received shape[%d] is also -1.\n" - "\n\t# N = x.shape()[2]\t\t# N is an int. " - "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t" - "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])" - "\t# z.shape is [-1, -1, 4]\n\n" - " If your target shape in Reshape represents dynamic shape, " - "please turn it into a Tensor under @to_static. See above example for details." - % dim_idx - ) - unk_dim_idx = dim_idx - elif dim_size == 0: - assert dim_idx < len(x.shape), ( - "The index of 0 in `shape` must be less than " - "the input tensor X's dimensions. " - "But received shape[%d] = 0, X's dimensions = %d." - % (dim_idx, len(x.shape)) - ) - else: - assert dim_size > 0, ( - "Each dimension value of 'shape' in reshape must not " - "be negative except one unknown dimension. " - "But received shape[%d] = %s." - % (dim_idx, str(dim_size)) - ) - return attrs_shape - - inputs = {"X": x} - attrs = {} - if isinstance(shape, Variable): - shape.stop_gradient = True - inputs["Shape"] = shape - elif isinstance(shape, (list, tuple)): - assert len(shape) > 0, ( - "The size of 'shape' in reshape can't be zero, " - "but received %s." % len(shape) - ) - attrs["shape"] = get_attr_shape(shape) - if utils._contain_var(shape): - inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape) - elif isinstance(actual_shape, Variable): - actual_shape.stop_gradient = True - inputs["Shape"] = actual_shape - - out = ( - x - if inplace - else helper.create_variable_for_type_inference(dtype=x.dtype) - ) - x_shape = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type="reshape2", - inputs=inputs, - attrs=attrs, - outputs={"Out": out, "XShape": x_shape}, - ) - - return helper.append_activation(out) - - def squeeze(input, axes, name=None): """ This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will diff --git a/python/paddle/fluid/layers/rnn.py b/python/paddle/fluid/layers/rnn.py index 3401fe4687..9b384203fa 100644 --- a/python/paddle/fluid/layers/rnn.py +++ b/python/paddle/fluid/layers/rnn.py @@ -1036,7 +1036,7 @@ class BeamSearchDecoder(Decoder): x, list(range(2, len(x.shape))) + [0, 1] ) # [..., batch_size, beam_size] # use 0 to copy to avoid wrong shape - x = nn.reshape( + x = paddle.reshape( x, shape=[0] * (len(x.shape) - 2) + [-1] ) # [..., batch_size * beam_size] x = nn.transpose( @@ -1059,7 +1059,7 @@ class BeamSearchDecoder(Decoder): """ check_type(x, 'x', (Variable), 'BeamSearchDecoder._split_batch_beams') # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch - return nn.reshape(x, shape=[-1, self.beam_size] + list(x.shape[1:])) + return paddle.reshape(x, shape=[-1, self.beam_size] + list(x.shape[1:])) def _merge_batch_beams(self, x): r""" @@ -1076,7 +1076,7 @@ class BeamSearchDecoder(Decoder): """ check_type(x, 'x', (Variable), 'BeamSearchDecoder._merge_batch_beams') # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch - return nn.reshape(x, shape=[-1] + list(x.shape[2:])) + return paddle.reshape(x, shape=[-1] + list(x.shape[2:])) def _expand_to_beam_size(self, x): r""" @@ -1311,13 +1311,13 @@ class BeamSearchDecoder(Decoder): ) # TODO: length penalty scores = log_probs - scores = nn.reshape(scores, [-1, self.beam_size * self.vocab_size]) + scores = paddle.reshape(scores, [-1, self.beam_size * self.vocab_size]) # TODO: add grad for topk then this beam search can be used to train topk_scores, topk_indices = paddle.topk(x=scores, k=self.beam_size) beam_indices = paddle.floor_divide(topk_indices, self.vocab_size_tensor) token_indices = paddle.remainder(topk_indices, self.vocab_size_tensor) next_log_probs = self._gather( - nn.reshape(log_probs, [-1, self.beam_size * self.vocab_size]), + paddle.reshape(log_probs, [-1, self.beam_size * self.vocab_size]), topk_indices, self.batch_size, ) diff --git a/python/paddle/fluid/layers/tensor.py b/python/paddle/fluid/layers/tensor.py index 3982bcac6f..d032b8cd20 100644 --- a/python/paddle/fluid/layers/tensor.py +++ b/python/paddle/fluid/layers/tensor.py @@ -1948,7 +1948,8 @@ def eye( if batch_val <= 0: raise TypeError("batch_shape should be a positive int list") - from .nn import reshape, expand + from .nn import expand + from paddle import reshape out = reshape(x=out, shape=re_shape) out = expand(x=out, expand_times=expand_times) diff --git a/python/paddle/fluid/nets.py b/python/paddle/fluid/nets.py index bccb7e0398..eab247452f 100644 --- a/python/paddle/fluid/nets.py +++ b/python/paddle/fluid/nets.py @@ -16,6 +16,7 @@ import paddle from . import layers from .data_feeder import check_variable_and_dtype, convert_dtype from ..utils import deprecated +import paddle __all__ = [ "simple_img_conv_pool", @@ -569,7 +570,7 @@ def scaled_dot_product_attention( # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim] # into a 4-D output: # [batch_size, max_sequence_length, num_heads, hidden_size_per_head]. - reshaped = layers.reshape( + reshaped = paddle.reshape( x=x, shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads], ) @@ -598,7 +599,7 @@ def scaled_dot_product_attention( raise ValueError("Input(x) should be a 4-D Tensor.") trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) - return layers.reshape( + return paddle.reshape( x=trans_x, shape=list( map( @@ -622,12 +623,10 @@ def scaled_dot_product_attention( scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5) product = layers.matmul(x=scaled_q, y=k, transpose_y=True) - weights = layers.reshape( - x=layers.reshape( - x=product, shape=[-1, product.shape[-1]], act="softmax" - ), - shape=product.shape, - ) + x = paddle.reshape(x=product, shape=[-1, product.shape[-1]]) + x = paddle.nn.functional.softmax(x) + weights = paddle.reshape(x=x, shape=product.shape) + if dropout_rate: weights = layers.dropout( weights, dropout_prob=dropout_rate, is_test=False diff --git a/python/paddle/fluid/tests/book/test_machine_translation.py b/python/paddle/fluid/tests/book/test_machine_translation.py index 27da08ea00..20b36550fa 100644 --- a/python/paddle/fluid/tests/book/test_machine_translation.py +++ b/python/paddle/fluid/tests/book/test_machine_translation.py @@ -140,7 +140,9 @@ def decoder_decode(context, is_sparse): topk_scores, topk_indices = pd.topk(current_score, k=beam_size) # calculate accumulated scores after topk to reduce computation cost accu_scores = pd.elementwise_add( - x=pd.log(topk_scores), y=pd.reshape(pre_score, shape=[-1]), axis=0 + x=pd.log(topk_scores), + y=paddle.reshape(pre_score, shape=[-1]), + axis=0, ) selected_ids, selected_scores = pd.beam_search( pre_ids, diff --git a/python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_embedding.py b/python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_embedding.py index 88b4a66d4f..33833454c0 100644 --- a/python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_embedding.py +++ b/python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_embedding.py @@ -55,7 +55,7 @@ class SimpleNet(Layer): x_emb = self.word_embeddings(x1) fc = fluid.layers.matmul(x_emb, self.softmax_weight) fc = fluid.layers.elementwise_add(fc, self.softmax_bias) - projection = fluid.layers.reshape(fc, shape=[-1, vocab_size]) + projection = paddle.reshape(fc, shape=[-1, vocab_size]) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=y1, soft_label=False ) @@ -95,7 +95,7 @@ class BiasNet(Layer): def forward(self, args): fc, x2 = args fc = fluid.layers.elementwise_add(fc, self.softmax_bias) - projection = fluid.layers.reshape(fc, shape=[-1, vocab_size]) + projection = paddle.reshape(fc, shape=[-1, vocab_size]) return projection, x2 diff --git a/python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_shared_weight.py b/python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_shared_weight.py index 7f3fff2da9..aa1489b48b 100644 --- a/python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_shared_weight.py +++ b/python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_shared_weight.py @@ -59,7 +59,7 @@ class SimpleNet(Layer): x_emb = self.word_embeddings(x1) fc = fluid.layers.matmul(x_emb, self.softmax_weight) fc = fluid.layers.elementwise_add(fc, self.softmax_bias) - projection = fluid.layers.reshape(fc, shape=[-1, vocab_size]) + projection = paddle.reshape(fc, shape=[-1, vocab_size]) projection = paddle.matmul(projection, self.word_embeddings.weight) @@ -106,7 +106,7 @@ class BiasNet(Layer): def forward(self, args): fc, x2 = args fc = fluid.layers.elementwise_add(fc, self.softmax_bias) - projection = fluid.layers.reshape(fc, shape=[-1, vocab_size]) + projection = paddle.reshape(fc, shape=[-1, vocab_size]) return projection, x2 diff --git a/python/paddle/fluid/tests/unittests/collective/fleet/parallel_dygraph_se_resnext.py b/python/paddle/fluid/tests/unittests/collective/fleet/parallel_dygraph_se_resnext.py index 9883efbb48..d497c4a369 100644 --- a/python/paddle/fluid/tests/unittests/collective/fleet/parallel_dygraph_se_resnext.py +++ b/python/paddle/fluid/tests/unittests/collective/fleet/parallel_dygraph_se_resnext.py @@ -135,7 +135,7 @@ class SqueezeExcitation(fluid.dygraph.Layer): def forward(self, input): y = self._pool(input) - y = fluid.layers.reshape(y, shape=[-1, self._num_channels]) + y = paddle.reshape(y, shape=[-1, self._num_channels]) y = self._squeeze(y) y = self._excitation(y) y = fluid.layers.elementwise_mul(x=input, y=y, axis=0) @@ -326,7 +326,7 @@ class SeResNeXt(fluid.dygraph.Layer): for bottleneck_block in self.bottleneck_block_list: y = bottleneck_block(y) y = self.pool2d_avg(y) - y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output]) + y = paddle.reshape(y, shape=[-1, self.pool2d_avg_output]) y = self.out(y) return y diff --git a/python/paddle/fluid/tests/unittests/collective/fleet/parallel_dygraph_transformer.py b/python/paddle/fluid/tests/unittests/collective/fleet/parallel_dygraph_transformer.py index f5b5903831..21d357fcdd 100644 --- a/python/paddle/fluid/tests/unittests/collective/fleet/parallel_dygraph_transformer.py +++ b/python/paddle/fluid/tests/unittests/collective/fleet/parallel_dygraph_transformer.py @@ -325,16 +325,16 @@ class MultiHeadAttentionLayer(Layer): v = self._v_fc(values) # split head - reshaped_q = fluid.layers.reshape( - x=q, shape=[0, 0, self._n_head, self._d_key], inplace=False + reshaped_q = paddle.reshape( + x=q, shape=[0, 0, self._n_head, self._d_key] ) transpose_q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3]) - reshaped_k = fluid.layers.reshape( - x=k, shape=[0, 0, self._n_head, self._d_key], inplace=False + reshaped_k = paddle.reshape( + x=k, shape=[0, 0, self._n_head, self._d_key] ) transpose_k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3]) - reshaped_v = fluid.layers.reshape( - x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False + reshaped_v = paddle.reshape( + x=v, shape=[0, 0, self._n_head, self._d_value] ) transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3]) @@ -363,10 +363,9 @@ class MultiHeadAttentionLayer(Layer): if len(out.shape) != 4: raise ValueError("Input(x) should be a 4-D Tensor.") trans_x = fluid.layers.transpose(out, perm=[0, 2, 1, 3]) - final_out = fluid.layers.reshape( + final_out = paddle.reshape( x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], - inplace=False, ) # fc to output @@ -839,8 +838,8 @@ class WrapDecoderLayer(Layer): dec_input, enc_output, trg_slf_attn_bias, trg_src_attn_bias ) - dec_output_reshape = fluid.layers.reshape( - dec_output, shape=[-1, dec_output.shape[-1]], inplace=False + dec_output_reshape = paddle.reshape( + dec_output, shape=[-1, dec_output.shape[-1]] ) if self._weight_sharing: diff --git a/python/paddle/fluid/tests/unittests/dist_fleet_simnet_bow.py b/python/paddle/fluid/tests/unittests/dist_fleet_simnet_bow.py index c9a2a16da2..5ede941c22 100644 --- a/python/paddle/fluid/tests/unittests/dist_fleet_simnet_bow.py +++ b/python/paddle/fluid/tests/unittests/dist_fleet_simnet_bow.py @@ -127,7 +127,7 @@ def train_network( ), is_sparse=is_sparse, ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -154,7 +154,7 @@ def train_network( ), is_sparse=is_sparse, ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -178,7 +178,7 @@ def train_network( ), is_sparse=is_sparse, ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/dist_transformer.py b/python/paddle/fluid/tests/unittests/dist_transformer.py index 88ec3188c9..fbe292e1f3 100644 --- a/python/paddle/fluid/tests/unittests/dist_transformer.py +++ b/python/paddle/fluid/tests/unittests/dist_transformer.py @@ -1142,7 +1142,7 @@ def multi_head_attention( hidden_size = x.shape[-1] # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. - reshaped = layers.reshape( + reshaped = paddle.reshape( x=x, shape=[0, 0, n_head, hidden_size // n_head] ) @@ -1163,7 +1163,7 @@ def multi_head_attention( trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. - return layers.reshape( + return paddle.reshape( x=trans_x, shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])), ) @@ -1585,7 +1585,7 @@ def transformer( ) cost = layers.softmax_with_cross_entropy( - logits=layers.reshape(predict, shape=[-1, trg_vocab_size]), + logits=paddle.reshape(predict, shape=[-1, trg_vocab_size]), label=label, soft_label=True if label_smooth_eps else False, ) @@ -1765,7 +1765,7 @@ def fast_decode( while_op = layers.While(cond) # array states will be stored for each step. ids = layers.array_write( - layers.reshape(start_tokens, (-1, 1)), step_idx + paddle.reshape(start_tokens, (-1, 1)), step_idx ) scores = layers.array_write(init_scores, step_idx) # cell states will be overwrited at each step. @@ -1790,7 +1790,7 @@ def fast_decode( ] with while_op.block(): pre_ids = layers.array_read(array=ids, i=step_idx) - pre_ids = layers.reshape(pre_ids, (-1, 1, 1)) + pre_ids = paddle.reshape(pre_ids, (-1, 1, 1)) pre_scores = layers.array_read(array=scores, i=step_idx) # sequence_expand can gather sequences according to lod thus can be # used in beam search to sift states corresponding to selected ids. @@ -1830,14 +1830,14 @@ def fast_decode( enc_output=pre_enc_output, caches=pre_caches, ) - logits = layers.reshape(logits, (-1, trg_vocab_size)) + logits = paddle.reshape(logits, (-1, trg_vocab_size)) topk_scores, topk_indices = layers.topk( input=layers.softmax(logits), k=beam_size ) accu_scores = layers.elementwise_add( x=layers.log(topk_scores), - y=layers.reshape(pre_scores, shape=[-1]), + y=paddle.reshape(pre_scores, shape=[-1]), axis=0, ) # beam_search op uses lod to distinguish branches. diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/bert_dygraph_model.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/bert_dygraph_model.py index 721bc91221..0bccfea79d 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/bert_dygraph_model.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/bert_dygraph_model.py @@ -295,7 +295,7 @@ class BertModelLayer(Layer): input=enc_output, axes=[1], starts=[0], ends=[1] ) next_sent_feat = self.pooled_fc(next_sent_feat) - next_sent_feat = fluid.layers.reshape( + next_sent_feat = paddle.reshape( next_sent_feat, shape=[-1, self._emb_size] ) @@ -391,7 +391,7 @@ class PretrainModelLayer(Layer): enc_output, next_sent_feat = self.bert_layer( src_ids, position_ids, sentence_ids, input_mask ) - reshaped_emb_out = fluid.layers.reshape( + reshaped_emb_out = paddle.reshape( x=enc_output, shape=[-1, self._emb_size] ) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/ifelse_simple_func.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/ifelse_simple_func.py index d7d1fd4cf9..8459d0d60e 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/ifelse_simple_func.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/ifelse_simple_func.py @@ -173,7 +173,7 @@ def nested_if_else(x_v): def nested_if_else_2(x): - y = fluid.layers.reshape(x, [-1, 1]) + y = paddle.reshape(x, [-1, 1]) b = 2 if b < 1: # var `z` is not visible for outer scope @@ -196,7 +196,7 @@ def nested_if_else_2(x): def nested_if_else_3(x): - y = fluid.layers.reshape(x, [-1, 1]) + y = paddle.reshape(x, [-1, 1]) b = 2 # var `z` is visible for func.body if b < 1: diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/seq2seq_dygraph_model.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/seq2seq_dygraph_model.py index 9f8eba7f59..539400ad92 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/seq2seq_dygraph_model.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/seq2seq_dygraph_model.py @@ -179,10 +179,10 @@ class BaseModel(fluid.dygraph.Layer): return fluid.layers.transpose(x, [1, 0] + list(range(2, len(x.shape)))) def _merge_batch_beams(self, x): - return fluid.layers.reshape(x, shape=(-1, x.shape[2])) + return paddle.reshape(x, shape=(-1, x.shape[2])) def _split_batch_beams(self, x): - return fluid.layers.reshape(x, shape=(-1, self.beam_size, x.shape[1])) + return paddle.reshape(x, shape=(-1, self.beam_size, x.shape[1])) def _expand_to_beam_size(self, x): x = fluid.layers.unsqueeze(x, [1]) @@ -454,7 +454,7 @@ class BaseModel(fluid.dygraph.Layer): log_probs = fluid.layers.elementwise_add( x=step_log_probs, y=beam_state_log_probs, axis=0 ) - scores = fluid.layers.reshape( + scores = paddle.reshape( log_probs, [-1, self.beam_size * self.tar_vocab_size] ) topk_scores, topk_indices = fluid.layers.topk( @@ -646,7 +646,7 @@ class AttentionModel(fluid.dygraph.Layer): return fluid.layers.transpose(x, [1, 0] + list(range(2, len(x.shape)))) def _merge_batch_beams(self, x): - return fluid.layers.reshape(x, shape=(-1, x.shape[2])) + return paddle.reshape(x, shape=(-1, x.shape[2])) def tile_beam_merge_with_batch(self, x): x = fluid.layers.unsqueeze(x, [1]) # [batch_size, 1, ...] @@ -657,7 +657,7 @@ class AttentionModel(fluid.dygraph.Layer): x, list(range(2, len(x.shape))) + [0, 1] ) # [..., batch_size, beam_size] # use 0 to copy to avoid wrong shape - x = fluid.layers.reshape( + x = paddle.reshape( x, shape=[0] * (len(x.shape) - 2) + [-1] ) # [..., batch_size * beam_size] x = fluid.layers.transpose( @@ -666,7 +666,7 @@ class AttentionModel(fluid.dygraph.Layer): return x def _split_batch_beams(self, x): - return fluid.layers.reshape(x, shape=(-1, self.beam_size, x.shape[1])) + return paddle.reshape(x, shape=(-1, self.beam_size, x.shape[1])) def _expand_to_beam_size(self, x): x = fluid.layers.unsqueeze(x, [1]) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/simnet_dygraph_model.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/simnet_dygraph_model.py index 2d58a64ca2..326b2aa022 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/simnet_dygraph_model.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/simnet_dygraph_model.py @@ -503,10 +503,10 @@ class BOW(Layer): # embedding layer left_emb = self.emb_layer(left) right_emb = self.emb_layer(right) - left_emb = fluid.layers.reshape( + left_emb = paddle.reshape( left_emb, shape=[-1, self.seq_len, self.bow_dim] ) - right_emb = fluid.layers.reshape( + right_emb = paddle.reshape( right_emb, shape=[-1, self.seq_len, self.bow_dim] ) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_bmn.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_bmn.py index 9ce37b565b..e4cb3dd381 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_bmn.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_bmn.py @@ -284,9 +284,7 @@ class BMN(fluid.dygraph.Layer): xp = paddle.nn.functional.relu(self.p_conv1(x)) # BM layer xp = fluid.layers.matmul(xp, self.sample_mask) - xp = fluid.layers.reshape( - xp, shape=[0, 0, -1, self.dscale, self.tscale] - ) + xp = paddle.reshape(xp, shape=[0, 0, -1, self.dscale, self.tscale]) xp = self.p_conv3d1(xp) xp = fluid.layers.squeeze(xp, axes=[2]) @@ -319,12 +317,8 @@ def bmn_loss_func( def tem_loss_func(pred_start, pred_end, gt_start, gt_end): def bi_loss(pred_score, gt_label): - pred_score = fluid.layers.reshape( - x=pred_score, shape=[-1], inplace=False - ) - gt_label = fluid.layers.reshape( - x=gt_label, shape=[-1], inplace=False - ) + pred_score = paddle.reshape(x=pred_score, shape=[-1]) + gt_label = paddle.reshape(x=gt_label, shape=[-1]) gt_label.stop_gradient = True pmask = fluid.layers.cast(x=(gt_label > 0.5), dtype=DATATYPE) num_entries = fluid.layers.cast( diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_error.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_error.py index 76b04b8f1b..d7a21f3be6 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_error.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_error.py @@ -41,7 +41,7 @@ def func_error_in_compile_time(x): @paddle.jit.to_static def func_error_in_compile_time_2(x): x = fluid.dygraph.to_variable(x) - x = fluid.layers.reshape(x, shape=[1, 2]) + x = paddle.reshape(x, shape=[1, 2]) return x @@ -49,7 +49,7 @@ def func_error_in_compile_time_2(x): def func_error_in_runtime(x): x = fluid.dygraph.to_variable(x) two = fluid.layers.fill_constant(shape=[1], value=2, dtype="int32") - x = fluid.layers.reshape(x, shape=[1, two]) + x = paddle.reshape(x, shape=[1, two]) return x @@ -101,7 +101,7 @@ def func_error_in_runtime_with_empty_line(x): x = fluid.dygraph.to_variable(x) two = fluid.layers.fill_constant(shape=[1], value=2, dtype="int32") - x = fluid.layers.reshape(x, shape=[1, two]) + x = paddle.reshape(x, shape=[1, two]) return x @@ -290,7 +290,7 @@ class TestErrorStaticLayerCallInCompiletime_2( ), 'def func_error_in_compile_time_2(x):', 'x = fluid.dygraph.to_variable(x)', - 'x = fluid.layers.reshape(x, shape=[1, 2])', + 'x = paddle.reshape(x, shape=[1, 2])', '<--- HERE', 'return x', ] @@ -340,7 +340,7 @@ class TestErrorStaticLayerCallInRuntime(TestErrorStaticLayerCallInCompiletime): ), 'x = fluid.dygraph.to_variable(x)', 'two = fluid.layers.fill_constant(shape=[1], value=2, dtype="int32")', - 'x = fluid.layers.reshape(x, shape=[1, two])', + 'x = paddle.reshape(x, shape=[1, two])', '<--- HERE', 'return x', ] @@ -356,7 +356,7 @@ class TestErrorStaticLayerCallInRuntime2(TestErrorStaticLayerCallInRuntime): self.filepath ), 'two = fluid.layers.fill_constant(shape=[1], value=2, dtype="int32")', - 'x = fluid.layers.reshape(x, shape=[1, two])', + 'x = paddle.reshape(x, shape=[1, two])', '<--- HERE', 'return x', ] diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_lac.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_lac.py index 9d00db1caa..c195081f5a 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_lac.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_lac.py @@ -87,13 +87,9 @@ class DynamicGRU(fluid.dygraph.Layer): input_ = fluid.layers.slice( inputs, axes=[1], starts=[j], ends=[j + 1] ) - input_ = fluid.layers.reshape( - input_, [-1, input_.shape[2]], inplace=False - ) + input_ = paddle.reshape(input_, [-1, input_.shape[2]]) hidden, reset, gate = self.gru_unit(input_, hidden) - hidden_ = fluid.layers.reshape( - hidden, [-1, 1, hidden.shape[1]], inplace=False - ) + hidden_ = paddle.reshape(hidden, [-1, 1, hidden.shape[1]]) res.append(hidden_) if self.is_reverse: diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py index a35aaf57ee..cfe0854269 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py @@ -125,7 +125,7 @@ class MNIST(fluid.dygraph.Layer): def inference(self, inputs): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) - x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape]) + x = paddle.reshape(x, shape=[-1, self.pool_2_shape]) x = self._fc(x) return x diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mobile_net.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mobile_net.py index af50300be3..a3b55386b4 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mobile_net.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mobile_net.py @@ -271,7 +271,7 @@ class MobileNetV1(fluid.dygraph.Layer): for dws in self.dwsl: y = dws(y) y = self.pool2d_avg(y) - y = fluid.layers.reshape(y, shape=[-1, 1024]) + y = paddle.reshape(y, shape=[-1, 1024]) y = self.out(y) return y @@ -438,7 +438,7 @@ class MobileNetV2(fluid.dygraph.Layer): y = inv(y) y = self._conv9(y, if_act=True) y = self._pool2d_avg(y) - y = fluid.layers.reshape(y, shape=[-1, self._out_c]) + y = paddle.reshape(y, shape=[-1, self._out_c]) y = self._fc(y) return y diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_partial_program.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_partial_program.py index 6a2e77bdaa..692bae0218 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_partial_program.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_partial_program.py @@ -186,7 +186,7 @@ class GPT2LMHeadModel(fluid.dygraph.Layer): @declarative def forward(self, x): - x = fluid.layers.reshape(x, shape=[-1, 6]) + x = paddle.reshape(x, shape=[-1, 6]) x1, x2, x3 = fluid.layers.split(input=x, dim=1, num_or_sections=3) return x1 diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py index 6b4da8aa1b..e87c727f7d 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py @@ -115,16 +115,16 @@ class SimpleLSTMRNN(fluid.Layer): ) res.append(step_input) real_res = fluid.layers.concat(res, 1) - real_res = fluid.layers.reshape( + real_res = paddle.reshape( real_res, [-1, self._num_steps, self._hidden_size] ) last_hidden = fluid.layers.concat(hidden_array, 1) - last_hidden = fluid.layers.reshape( + last_hidden = paddle.reshape( last_hidden, shape=[-1, self._num_layers, self._hidden_size] ) last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = fluid.layers.concat(cell_array, 1) - last_cell = fluid.layers.reshape( + last_cell = paddle.reshape( last_cell, shape=[-1, self._num_layers, self._hidden_size] ) last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2]) @@ -189,17 +189,17 @@ class PtbModel(fluid.Layer): @declarative def forward(self, input, label, init_hidden, init_cell): - init_h = fluid.layers.reshape( + init_h = paddle.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size] ) - init_c = fluid.layers.reshape( + init_c = paddle.reshape( init_cell, shape=[self.num_layers, -1, self.hidden_size] ) x_emb = self.embedding(input) - x_emb = fluid.layers.reshape( + x_emb = paddle.reshape( x_emb, shape=[-1, self.num_steps, self.hidden_size] ) if self.dropout is not None and self.dropout > 0.0: @@ -218,7 +218,7 @@ class PtbModel(fluid.Layer): loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) - loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_reinforcement_learning.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_reinforcement_learning.py index c111e5c482..76aae1fd0e 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_reinforcement_learning.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_reinforcement_learning.py @@ -41,7 +41,7 @@ class Policy(Layer): @declarative def forward(self, x): - x = fluid.layers.reshape(x, shape=[1, 4]) + x = paddle.reshape(x, shape=[1, 4]) x = self.affine1(x) x = fluid.layers.dropout(x, self.dropout_ratio) x = fluid.layers.relu(x) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet.py index 594a3fa71f..dfb371f414 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet.py @@ -211,7 +211,7 @@ class ResNet(fluid.dygraph.Layer): for bottleneck_block in self.bottleneck_block_list: y = bottleneck_block(y) y = self.pool2d_avg(y) - y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output]) + y = paddle.reshape(y, shape=[-1, self.pool2d_avg_output]) pred = self.out(y) return pred diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py index ea87ba5ba6..c5a25fca8d 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py @@ -148,7 +148,7 @@ class SqueezeExcitation(fluid.dygraph.Layer): def forward(self, input): y = self._pool(input) - y = fluid.layers.reshape(y, shape=[-1, self._num_channels]) + y = paddle.reshape(y, shape=[-1, self._num_channels]) y = self._fc(y) y = self._excitation(y) y = fluid.layers.elementwise_mul(x=input, y=y, axis=0) @@ -344,7 +344,7 @@ class SeResNeXt(fluid.dygraph.Layer): y = self.pool2d_avg(y) y = fluid.layers.dropout(y, dropout_prob=0.5, seed=100) - y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output]) + y = paddle.reshape(y, shape=[-1, self.pool2d_avg_output]) out = self.out(y) softmax_out = fluid.layers.softmax(out) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_sentiment.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_sentiment.py index 042ba31061..3e4d1ddf8d 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_sentiment.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_sentiment.py @@ -53,7 +53,7 @@ class SimpleConvPool(fluid.dygraph.Layer): def forward(self, inputs): x = paddle.tanh(self._conv2d(inputs)) x = fluid.layers.reduce_max(x, dim=-1) - x = fluid.layers.reshape(x, shape=[self.batch_size, -1]) + x = paddle.reshape(x, shape=[self.batch_size, -1]) return x @@ -92,12 +92,12 @@ class CNN(fluid.dygraph.Layer): @declarative def forward(self, inputs, label=None): emb = self.embedding(inputs) - o_np_mask = ( - fluid.layers.reshape(inputs, [-1, 1]) != self.dict_dim - ).astype(dtype='float32') + o_np_mask = (paddle.reshape(inputs, [-1, 1]) != self.dict_dim).astype( + dtype='float32' + ) mask_emb = fluid.layers.expand(o_np_mask, [1, self.hid_dim]) emb = emb * mask_emb - emb = fluid.layers.reshape( + emb = paddle.reshape( emb, shape=[-1, self.channels, self.seq_len, self.hid_dim] ) conv_3 = self._simple_conv_pool_1(emb) @@ -138,12 +138,12 @@ class BOW(fluid.dygraph.Layer): @declarative def forward(self, inputs, label=None): emb = self.embedding(inputs) - o_np_mask = ( - fluid.layers.reshape(inputs, [-1, 1]) != self.dict_dim - ).astype(dtype='float32') + o_np_mask = (paddle.reshape(inputs, [-1, 1]) != self.dict_dim).astype( + dtype='float32' + ) mask_emb = fluid.layers.expand(o_np_mask, [1, self.hid_dim]) emb = emb * mask_emb - emb = fluid.layers.reshape(emb, shape=[-1, self.seq_len, self.hid_dim]) + emb = paddle.reshape(emb, shape=[-1, self.seq_len, self.hid_dim]) bow_1 = fluid.layers.reduce_sum(emb, dim=1) bow_1 = paddle.tanh(bow_1) fc_1 = self._fc1(bow_1) @@ -186,14 +186,12 @@ class GRU(fluid.dygraph.Layer): @declarative def forward(self, inputs, label=None): emb = self.embedding(inputs) - o_np_mask = ( - fluid.layers.reshape(inputs, [-1, 1]) != self.dict_dim - ).astype('float32') + o_np_mask = (paddle.reshape(inputs, [-1, 1]) != self.dict_dim).astype( + 'float32' + ) mask_emb = fluid.layers.expand(o_np_mask, [1, self.hid_dim]) emb = emb * mask_emb - emb = fluid.layers.reshape( - emb, shape=[self.batch_size, -1, self.hid_dim] - ) + emb = paddle.reshape(emb, shape=[self.batch_size, -1, self.hid_dim]) fc_1 = self._fc1(emb) gru_hidden = self._gru(fc_1) gru_hidden = fluid.layers.reduce_max(gru_hidden, dim=1) @@ -242,14 +240,12 @@ class BiGRU(fluid.dygraph.Layer): @declarative def forward(self, inputs, label=None): emb = self.embedding(inputs) - o_np_mask = ( - fluid.layers.reshape(inputs, [-1, 1]) != self.dict_dim - ).astype('float32') + o_np_mask = (paddle.reshape(inputs, [-1, 1]) != self.dict_dim).astype( + 'float32' + ) mask_emb = fluid.layers.expand(o_np_mask, [1, self.hid_dim]) emb = emb * mask_emb - emb = fluid.layers.reshape( - emb, shape=[self.batch_size, -1, self.hid_dim] - ) + emb = paddle.reshape(emb, shape=[self.batch_size, -1, self.hid_dim]) fc_1 = self._fc1(emb) gru_forward = self._gru_forward(fc_1) gru_backward = self._gru_backward(fc_1) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_simnet.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_simnet.py index 3e70147d30..9762242385 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_simnet.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_simnet.py @@ -145,9 +145,9 @@ def train(conf_dict, to_static): ) for left, pos_right, neg_right in train_loader(): - left = fluid.layers.reshape(left, shape=[-1, 1]) - pos_right = fluid.layers.reshape(pos_right, shape=[-1, 1]) - neg_right = fluid.layers.reshape(neg_right, shape=[-1, 1]) + left = paddle.reshape(left, shape=[-1, 1]) + pos_right = paddle.reshape(pos_right, shape=[-1, 1]) + neg_right = paddle.reshape(neg_right, shape=[-1, 1]) net.train() global_step += 1 left_feat, pos_score = net(left, pos_right) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_tensor_shape.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_tensor_shape.py index 5d06d1c694..2087e615a5 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_tensor_shape.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_tensor_shape.py @@ -22,7 +22,7 @@ from paddle.fluid.dygraph.jit import declarative def dyfunc_tensor_shape_1(x): x = fluid.dygraph.to_variable(x) - res = fluid.layers.reshape(x, shape=x.shape) + res = paddle.reshape(x, shape=x.shape) return res @@ -38,13 +38,13 @@ def dyfunc_tensor_shape_3(x): # Transform y.shape but run y.shape actually because y is not Tensor x = fluid.dygraph.to_variable(x) y = np.ones(5) - res = fluid.layers.reshape(x, shape=y.shape) + res = paddle.reshape(x, shape=y.shape) return res def dyfunc_tensor_shape_4(x): x = fluid.dygraph.to_variable(x) - res = fluid.layers.reshape(x, shape=(-1, x.shape[0], len(x.shape))) + res = paddle.reshape(x, shape=(-1, x.shape[0], len(x.shape))) return res @@ -54,7 +54,7 @@ def dyfunc_tensor_shape_5(x): # paddle.jit.dy2static.convert_var_shape(x)[0]))` x = fluid.dygraph.to_variable(x) s = x.shape[0] - res = fluid.layers.reshape(x, shape=(-1, s)) + res = paddle.reshape(x, shape=(-1, s)) return res @@ -64,7 +64,7 @@ def dyfunc_tensor_shape_6(x): # paddle.jit.dy2static.convert_var_shape(x)[0:]))` x = fluid.dygraph.to_variable(x) s = x.shape[0:] - res = fluid.layers.reshape(x, shape=s) + res = paddle.reshape(x, shape=s) return res @@ -103,7 +103,7 @@ def dyfunc_paddle_shape_api(x): def dyfunc_with_if_1(x): x = fluid.dygraph.to_variable(x) - res = fluid.layers.reshape(x, [-1, 1]) + res = paddle.reshape(x, [-1, 1]) x_shape_0 = x.shape[0] if x_shape_0 < 1: # `res.shape[0]` is transformed into diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_tsm.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_tsm.py index cc307e5a7b..dde28dadfd 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_tsm.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_tsm.py @@ -200,16 +200,16 @@ class TSM_ResNet(fluid.dygraph.Layer): @declarative def forward(self, inputs): - y = fluid.layers.reshape(inputs, [-1] + self.reshape_list) + y = paddle.reshape(inputs, [-1] + self.reshape_list) y = self.conv(y) y = self.pool2d_max(y) for bottleneck_block in self.bottleneck_block_list: y = bottleneck_block(y) y = self.pool2d_avg(y) y = fluid.layers.dropout(y, dropout_prob=0.5) - y = fluid.layers.reshape(y, [-1, self.seg_num, y.shape[1]]) + y = paddle.reshape(y, [-1, self.seg_num, y.shape[1]]) y = fluid.layers.reduce_mean(y, dim=1) - y = fluid.layers.reshape(y, shape=[-1, 2048]) + y = paddle.reshape(y, shape=[-1, 2048]) y = self.out(y) return y diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py index a2c6b4c225..e26699bacf 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/transformer_dygraph_model.py @@ -138,11 +138,11 @@ class MultiHeadAttention(Layer): k = self.k_fc(keys) v = self.v_fc(values) # split head - q = layers.reshape(x=q, shape=[0, 0, self.n_head, self.d_key]) + q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key]) q = layers.transpose(x=q, perm=[0, 2, 1, 3]) - k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key]) + k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key]) k = layers.transpose(x=k, perm=[0, 2, 1, 3]) - v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value]) + v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value]) v = layers.transpose(x=v, perm=[0, 2, 1, 3]) if cache is not None: @@ -161,7 +161,7 @@ class MultiHeadAttention(Layer): weights = layers.dropout(weights, dropout_prob=self.dropout_rate) out = layers.matmul(weights, v) out = layers.transpose(out, perm=[0, 2, 1, 3]) - out = layers.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) + out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) out = self.proj_fc(out) return out @@ -557,7 +557,7 @@ class WrapDecoder(Layer): dec_output = self.decoder( dec_input, enc_output, trg_slf_attn_bias, trg_src_attn_bias, caches ) - dec_output = layers.reshape( + dec_output = paddle.reshape( dec_output, shape=[-1, dec_output.shape[-1]], ) @@ -694,7 +694,7 @@ class Transformer(Layer): max_len=256, ): def expand_to_beam_size(tensor, beam_size): - tensor = layers.reshape( + tensor = paddle.reshape( tensor, [tensor.shape[0], 1] + list(tensor.shape[1:]) ) tile_dims = [1] * len(tensor.shape) @@ -709,7 +709,7 @@ class Transformer(Layer): + list(range(0, var_dim_in_state)), ) - tensor = layers.reshape( + tensor = paddle.reshape( tensor, [0] * (len(tensor.shape) - var_dim_in_state) + [batch_size * beam_size], @@ -733,7 +733,7 @@ class Transformer(Layer): list(range(var_dim_in_state, len(tensor.shape))) + list(range(0, var_dim_in_state)), ) - tensor = layers.reshape( + tensor = paddle.reshape( tensor, [0] * (len(tensor.shape) - var_dim_in_state) + [batch_size, beam_size], @@ -849,7 +849,7 @@ class Transformer(Layer): log_probs = layers.elementwise_add( x=step_log_probs, y=log_probs, axis=0 ) - log_probs = layers.reshape( + log_probs = paddle.reshape( log_probs, [-1, beam_size * self.trg_vocab_size] ) scores = log_probs @@ -868,7 +868,7 @@ class Transformer(Layer): finished = layers.logical_or( finished, layers.equal(token_indices, end_token_tensor) ) - trg_word = layers.reshape(token_indices, [-1, 1]) + trg_word = paddle.reshape(token_indices, [-1, 1]) predict_ids.append(token_indices) parent_ids.append(beam_indices) diff --git a/python/paddle/fluid/tests/unittests/ipu/test_reshape_inplace_op_ipu.py b/python/paddle/fluid/tests/unittests/ipu/test_reshape_inplace_op_ipu.py index c6016d2ec1..47ed9bb7d4 100644 --- a/python/paddle/fluid/tests/unittests/ipu/test_reshape_inplace_op_ipu.py +++ b/python/paddle/fluid/tests/unittests/ipu/test_reshape_inplace_op_ipu.py @@ -50,7 +50,7 @@ class TestBase(IPUOpTest): name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32' ) add = paddle.fluid.layers.elementwise_add(x, x) - out = paddle.fluid.layers.reshape(add, **self.attrs) + out = paddle.reshape(add, **self.attrs) self.fetch_list = [out.name] def run_model(self, exec_mode): diff --git a/python/paddle/fluid/tests/unittests/ipu/test_reshape_op_ipu.py b/python/paddle/fluid/tests/unittests/ipu/test_reshape_op_ipu.py index 74bae31111..1363faac99 100644 --- a/python/paddle/fluid/tests/unittests/ipu/test_reshape_op_ipu.py +++ b/python/paddle/fluid/tests/unittests/ipu/test_reshape_op_ipu.py @@ -47,7 +47,7 @@ class TestBase(IPUOpTest): x = paddle.static.data( name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32' ) - out = paddle.fluid.layers.reshape(x=x, **self.attrs) + out = paddle.reshape(x=x, **self.attrs) self.fetch_list = [out.name] def run_model(self, exec_mode): diff --git a/python/paddle/fluid/tests/unittests/ipu/test_varname_inplace_ipu.py b/python/paddle/fluid/tests/unittests/ipu/test_varname_inplace_ipu.py index e42e5b4d54..0445dd808e 100644 --- a/python/paddle/fluid/tests/unittests/ipu/test_varname_inplace_ipu.py +++ b/python/paddle/fluid/tests/unittests/ipu/test_varname_inplace_ipu.py @@ -59,7 +59,7 @@ class TestBase(IPUOpTest): dtype=self.feed_dtype[0], ) add1 = paddle.fluid.layers.elementwise_add(x, x) - reshape = paddle.fluid.layers.reshape(add1, **self.attrs) + reshape = paddle.reshape(add1, **self.attrs) add2 = paddle.fluid.layers.elementwise_add(reshape, reshape) scale1 = paddle.fluid.layers.scale(add2) scale2 = paddle.fluid.layers.scale(scale1, scale=1.3, bias=0.5) diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_cpu_bfloat16_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_cpu_bfloat16_pass.py index 2cd9cbcb05..5792db6af9 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_cpu_bfloat16_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_cpu_bfloat16_pass.py @@ -17,6 +17,7 @@ import numpy as np from inference_pass_test import InferencePassTest import paddle.fluid as fluid from paddle.fluid.core import PassVersionChecker +import paddle class TestMKLDNNCpuBfloat16Pass(InferencePassTest): @@ -27,7 +28,7 @@ class TestMKLDNNCpuBfloat16Pass(InferencePassTest): name='x', shape=[-1] + self.shape_x, dtype=self.d_type ) out = fluid.layers.transpose(x, perm=[0, 1, 2, 3]) - out = fluid.layers.reshape(out, [0, 0, 0, 0]) + out = paddle.reshape(out, [0, 0, 0, 0]) out = fluid.layers.fc(out, size=1) self.feeds = { diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_matmul_op_output_fuse_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_matmul_op_output_fuse_pass.py index 1991f3592f..a320dfbe4d 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_matmul_op_output_fuse_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_matmul_op_output_fuse_pass.py @@ -14,7 +14,7 @@ import unittest import numpy as np - +import paddle import paddle.fluid as fluid from inference_pass_test import InferencePassTest @@ -37,9 +37,7 @@ class TestMKLDNNMatmulFuseOp(InferencePassTest): ) out = fluid.layers.matmul(x, y) out = fluid.layers.transpose(out, perm=[0, 2, 1, 3]) - out = fluid.layers.reshape( - out, [0, 0, self.shape_y[0] * self.shape_y[2]] - ) + out = paddle.reshape(out, [0, 0, self.shape_y[0] * self.shape_y[2]]) out = fluid.layers.relu(out) return out @@ -80,7 +78,7 @@ class TestMKLDNNMatmulOpNotFusedWrongTransposeAxis(TestMKLDNNMatmulFuseOp): ) out = fluid.layers.matmul(x, y) out = fluid.layers.transpose(out, perm=[0, 1, 2, 3]) - out = fluid.layers.reshape(out, [0, 0, 0, 0]) + out = paddle.reshape(out, [0, 0, 0, 0]) out = fluid.layers.fc(out, size=1) return out @@ -106,9 +104,7 @@ class TestMKLDNNMatmulOpNotFusedBreakPattern(TestMKLDNNMatmulFuseOp): out = fluid.layers.transpose( out, perm=[0, 1, 2, 3] ) # breaks pattern - out = fluid.layers.reshape( - out, [0, 0, self.shape_y[0] * self.shape_y[2]] - ) + out = paddle.reshape(out, [0, 0, self.shape_y[0] * self.shape_y[2]]) out = fluid.layers.relu(out) return out diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_reshape_transpose_matmul_v2_fuse_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_reshape_transpose_matmul_v2_fuse_pass.py index b62b3eaf51..188d111c45 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_reshape_transpose_matmul_v2_fuse_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_reshape_transpose_matmul_v2_fuse_pass.py @@ -33,7 +33,7 @@ class TestReshapeTransposeMatmulV2OneDNNFusePass(InferencePassTest): weight = fluid.layers.create_parameter( shape=self.weight_shape, dtype="float32" ) - reshape = fluid.layers.reshape(data, shape=self.reshape_shape) + reshape = paddle.reshape(data, shape=self.reshape_shape) transpose = fluid.layers.transpose(reshape, self.tranpose_perm) matmul = paddle.matmul( transpose, diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_quant_dequant_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_quant_dequant_pass.py index f19de2a3bb..8ca6bbad04 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_quant_dequant_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_conv_quant_dequant_pass.py @@ -30,9 +30,9 @@ class QuantDequantTensorRTSubgraphPassConvTest(QuantDequantTest): self.data = fluid.data( name='data', shape=[1, 28, 28], dtype='float32' ) - data_reshape = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14]) + data_reshape = paddle.reshape(self.data, shape=[1, 4, 14, 14]) self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') - label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1]) + label_shape = paddle.reshape(self.label, shape=[1, 1, 1]) conv_out = fluid.layers.conv2d( input=data_reshape, num_filters=self.conv_num_filters, @@ -44,13 +44,13 @@ class QuantDequantTensorRTSubgraphPassConvTest(QuantDequantTest): act=None, ) if self.conv_padding == [1, 1]: - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816]) + cout = paddle.reshape(conv_out, shape=[1, 1, 10816]) elif self.conv_padding == 'VALID': - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 7744]) + cout = paddle.reshape(conv_out, shape=[1, 1, 7744]) elif self.conv_padding == 'SAME': - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 12544]) + cout = paddle.reshape(conv_out, shape=[1, 1, 12544]) elif self.conv_groups == 4: - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816]) + cout = paddle.reshape(conv_out, shape=[1, 1, 10816]) result = fluid.layers.relu(cout) loss = fluid.layers.cross_entropy(input=result, label=label_shape) avg_loss = paddle.mean(loss) @@ -140,9 +140,9 @@ class DynamicShapeQuantDequantTensorRTSubgraphPassConvTest(QuantDequantTest): self.data = fluid.data( name='data', shape=[1, 28, 28], dtype='float32' ) - data_reshape = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14]) + data_reshape = paddle.reshape(self.data, shape=[1, 4, 14, 14]) self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') - label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1]) + label_shape = paddle.reshape(self.label, shape=[1, 1, 1]) conv_out = fluid.layers.conv2d( input=data_reshape, num_filters=self.conv_num_filters, @@ -153,7 +153,7 @@ class DynamicShapeQuantDequantTensorRTSubgraphPassConvTest(QuantDequantTest): use_cudnn=self.use_cudnn, act=None, ) - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816]) + cout = paddle.reshape(conv_out, shape=[1, 1, 10816]) result = fluid.layers.relu(cout) loss = fluid.layers.cross_entropy(input=result, label=label_shape) avg_loss = paddle.mean(loss) @@ -234,9 +234,9 @@ class QuantDequantTensorRTSubgraphPassConvTransposeTest(QuantDequantTest): self.data = fluid.data( name='data', shape=[1, 28, 28], dtype='float32' ) - data_reshape = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14]) + data_reshape = paddle.reshape(self.data, shape=[1, 4, 14, 14]) self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') - label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1]) + label_shape = paddle.reshape(self.label, shape=[1, 1, 1]) conv_out = fluid.layers.conv2d_transpose( input=data_reshape, num_filters=self.conv_num_filters, @@ -248,13 +248,13 @@ class QuantDequantTensorRTSubgraphPassConvTransposeTest(QuantDequantTest): act=None, ) if self.conv_padding == [1, 1]: - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 14400]) + cout = paddle.reshape(conv_out, shape=[1, 1, 14400]) elif self.conv_padding == 'VALID': - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 18496]) + cout = paddle.reshape(conv_out, shape=[1, 1, 18496]) elif self.conv_padding == 'SAME': - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 12544]) + cout = paddle.reshape(conv_out, shape=[1, 1, 12544]) elif self.conv_groups == 4: - cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816]) + cout = paddle.reshape(conv_out, shape=[1, 1, 10816]) result = fluid.layers.relu(cout) loss = fluid.layers.cross_entropy(input=result, label=label_shape) avg_loss = paddle.mean(loss) diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_fc_fuse_quant_dequant_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_fc_fuse_quant_dequant_pass.py index 179dcd140d..908b7c2ad3 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_fc_fuse_quant_dequant_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_fc_fuse_quant_dequant_pass.py @@ -102,7 +102,7 @@ class FCQuantDequantFusePassTRTDims3Cols2Test(QuantDequantTest): bias_attr=False, act=None, ) - c_out = fluid.layers.reshape(fc_out, shape=[0, 784]) + c_out = paddle.reshape(fc_out, shape=[0, 784]) result = fluid.layers.relu(c_out) loss = fluid.layers.cross_entropy(input=result, label=self.label) avg_loss = paddle.mean(loss) @@ -162,8 +162,8 @@ class FCQuantDequantFusePassTRTDims3Cols3Test(QuantDequantTest): name='data', shape=[1, 28, 28], dtype='float32' ) self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') - label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1]) - reshape_out = fluid.layers.reshape(self.data, shape=[1, 14, 14, 4]) + label_shape = paddle.reshape(self.label, shape=[1, 1, 1]) + reshape_out = paddle.reshape(self.data, shape=[1, 14, 14, 4]) fc_out = fluid.layers.fc( input=reshape_out, size=14, @@ -171,7 +171,7 @@ class FCQuantDequantFusePassTRTDims3Cols3Test(QuantDequantTest): bias_attr=False, act=None, ) - c_out = fluid.layers.reshape(fc_out, shape=[1, 1, 2744]) + c_out = paddle.reshape(fc_out, shape=[1, 1, 2744]) result = fluid.layers.relu(c_out) loss = fluid.layers.cross_entropy(input=result, label=label_shape) avg_loss = paddle.mean(loss) diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul_quant_dequant.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul_quant_dequant.py index 75db2ebb22..f530a2bb12 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul_quant_dequant.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul_quant_dequant.py @@ -126,7 +126,7 @@ class TensorRTMatMulQuantDequantDims4Test(QuantDequantTest): name='data', shape=[1, 28, 28], dtype='float32' ) self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') - reshape_out = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14]) + reshape_out = paddle.reshape(self.data, shape=[1, 4, 14, 14]) matmul_out = fluid.layers.matmul( x=reshape_out, y=reshape_out, diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_multiclass_nms3_op.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_multiclass_nms3_op.py index 05df3b6508..5d7f12e554 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_multiclass_nms3_op.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_multiclass_nms3_op.py @@ -22,6 +22,7 @@ from paddle.fluid.framework import in_dygraph_mode from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.core import PassVersionChecker from paddle.fluid.core import AnalysisConfig +import paddle def multiclass_nms( @@ -235,7 +236,7 @@ class TensorRTMultiClassNMS3Test(InferencePassTest): nms_eta=self.nms_eta, ) mutliclass_nms_out = multiclass_nms_out + 1.0 - multiclass_nms_out = fluid.layers.reshape( + multiclass_nms_out = paddle.reshape( multiclass_nms_out, [self.bs, 1, self.keep_top_k, 6], name='reshape', diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_multiclass_nms_op.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_multiclass_nms_op.py index ead11ba7ae..bc432a69a2 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_multiclass_nms_op.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_multiclass_nms_op.py @@ -20,6 +20,7 @@ import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.core import PassVersionChecker from paddle.fluid.core import AnalysisConfig +import paddle class TensorRTMultiClassNMSTest(InferencePassTest): @@ -62,7 +63,7 @@ class TensorRTMultiClassNMSTest(InferencePassTest): normalized=self.normalized, ) mutliclass_nms_out = multiclass_nms_out + 1.0 - multiclass_nms_out = fluid.layers.reshape( + multiclass_nms_out = paddle.reshape( multiclass_nms_out, [self.bs, 1, self.keep_top_k, 6], name='reshape', diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_reshape_op.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_reshape_op.py index 075919b7bf..8972067760 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_reshape_op.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_reshape_op.py @@ -19,6 +19,7 @@ import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.core import PassVersionChecker from paddle.fluid.core import AnalysisConfig +import paddle class TRTReshapeTest(InferencePassTest): @@ -48,7 +49,7 @@ class TRTReshapeTest(InferencePassTest): self.fetch_list = [out] def append_reshape(self, data, reshape): - return fluid.layers.reshape(data, reshape) + return paddle.reshape(data, reshape) def test_check_output(self): if core.is_compiled_with_cuda(): @@ -101,7 +102,7 @@ class TRTReshapeTest2(TRTReshapeTest): data = fluid.data( name='data', shape=self.data_shape, dtype='float32' ) - reshape_out = fluid.layers.reshape(x=data, shape=self.reshape) + reshape_out = paddle.reshape(x=data, shape=self.reshape) out = fluid.layers.batch_norm(reshape_out, is_test=True) self.feeds = { 'data': np.random.random(self.data_shape).astype('float32') diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_shuffle_channel_detect_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_shuffle_channel_detect_pass.py index d5bbbcde1e..754149f7b3 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_shuffle_channel_detect_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_shuffle_channel_detect_pass.py @@ -18,6 +18,7 @@ from inference_pass_test import InferencePassTest import paddle.fluid as fluid from paddle.fluid.core import PassVersionChecker from paddle.fluid.core import AnalysisConfig +import paddle class ShuffleChannelFuseTRTPassTest(InferencePassTest): @@ -26,9 +27,9 @@ class ShuffleChannelFuseTRTPassTest(InferencePassTest): data = fluid.data( name="data", shape=[-1, 6, 64, 64], dtype="float32" ) - reshape1 = fluid.layers.reshape(x=data, shape=[-1, 2, 3, 64, 64]) + reshape1 = paddle.reshape(x=data, shape=[-1, 2, 3, 64, 64]) trans = fluid.layers.transpose(x=reshape1, perm=[0, 2, 1, 3, 4]) - reshape2 = fluid.layers.reshape(x=trans, shape=[-1, 6, 64, 64]) + reshape2 = paddle.reshape(x=trans, shape=[-1, 6, 64, 64]) out = fluid.layers.batch_norm(reshape2, is_test=True) self.feeds = { diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py index 16621212e8..b91b068adb 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py @@ -21,6 +21,7 @@ import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.core import PassVersionChecker from paddle.fluid.core import AnalysisConfig +import paddle class TensorRTSubgraphPassFcTest(InferencePassTest): @@ -30,7 +31,7 @@ class TensorRTSubgraphPassFcTest(InferencePassTest): name="data", shape=[-1, 6, 64, 64], dtype="float32" ) fc_out = fluid.layers.fc(input=[data], act=None, size=1000) - reshape_out = fluid.layers.reshape(x=fc_out, shape=[1, 1000]) + reshape_out = paddle.reshape(x=fc_out, shape=[1, 1000]) self.feeds = { "data": np.random.random([1, 6, 64, 64]).astype("float32"), } diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_transpose_flatten_concat_fuse_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_transpose_flatten_concat_fuse_pass.py index 409d36600d..8fc8b464dd 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_transpose_flatten_concat_fuse_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_transpose_flatten_concat_fuse_pass.py @@ -18,6 +18,7 @@ from inference_pass_test import InferencePassTest import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.core import AnalysisConfig +import paddle class TransposeFlattenConcatFusePassTRTTest(InferencePassTest): @@ -36,7 +37,7 @@ class TransposeFlattenConcatFusePassTRTTest(InferencePassTest): concat_out = fluid.layers.concat([flatt1, flatt2], axis=1) # There is no parameters for above structure. # Hence, append a batch_norm to avoid failure caused by load_combined. - reshape_out = fluid.layers.reshape(concat_out, [-1, 0, 1, 1]) + reshape_out = paddle.reshape(concat_out, [-1, 0, 1, 1]) out = fluid.layers.batch_norm(reshape_out, is_test=True) self.feeds = { diff --git a/python/paddle/fluid/tests/unittests/parallel_dygraph_mnist.py b/python/paddle/fluid/tests/unittests/parallel_dygraph_mnist.py index e63adefa3d..f7ccdc3bea 100644 --- a/python/paddle/fluid/tests/unittests/parallel_dygraph_mnist.py +++ b/python/paddle/fluid/tests/unittests/parallel_dygraph_mnist.py @@ -100,7 +100,7 @@ class MNIST(fluid.dygraph.Layer): def forward(self, inputs, label): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) - x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape]) + x = paddle.reshape(x, shape=[-1, self.pool_2_shape]) cost = self._fc(x) loss = fluid.layers.cross_entropy(cost, label) avg_loss = paddle.mean(loss) diff --git a/python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_embedding.py b/python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_embedding.py index af6471611e..1163a99552 100644 --- a/python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_embedding.py +++ b/python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_embedding.py @@ -68,11 +68,11 @@ class SimpleNet(fluid.Layer): x_emb = self.embedding(input) fc = fluid.layers.matmul(x_emb, self.softmax_weight) fc = fluid.layers.elementwise_add(fc, self.softmax_bias) - projection = fluid.layers.reshape(fc, shape=[-1, self.vocab_size]) + projection = paddle.reshape(fc, shape=[-1, self.vocab_size]) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) - loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/seresnext_net.py b/python/paddle/fluid/tests/unittests/seresnext_net.py index b2bc25e35a..32dbeb71b9 100644 --- a/python/paddle/fluid/tests/unittests/seresnext_net.py +++ b/python/paddle/fluid/tests/unittests/seresnext_net.py @@ -48,9 +48,7 @@ def squeeze_excitation(input, num_channels, reduction_ratio): # input=input, pool_size=0, pool_type='avg', global_pooling=True) conv = input shape = conv.shape - reshape = fluid.layers.reshape( - x=conv, shape=[-1, shape[1], shape[2] * shape[3]] - ) + reshape = paddle.reshape(x=conv, shape=[-1, shape[1], shape[2] * shape[3]]) pool = fluid.layers.reduce_mean(input=reshape, dim=2) squeeze = fluid.layers.fc( @@ -161,9 +159,7 @@ def SE_ResNeXt50Small(use_feed): ) shape = conv.shape - reshape = fluid.layers.reshape( - x=conv, shape=[-1, shape[1], shape[2] * shape[3]] - ) + reshape = paddle.reshape(x=conv, shape=[-1, shape[1], shape[2] * shape[3]]) pool = fluid.layers.reduce_mean(input=reshape, dim=2) dropout = ( pool diff --git a/python/paddle/fluid/tests/unittests/test_beam_search_op.py b/python/paddle/fluid/tests/unittests/test_beam_search_op.py index 7d99fad642..60989a0b60 100644 --- a/python/paddle/fluid/tests/unittests/test_beam_search_op.py +++ b/python/paddle/fluid/tests/unittests/test_beam_search_op.py @@ -18,6 +18,7 @@ import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid.framework import Program, program_guard +import paddle def create_tensor(scope, name, np_data): @@ -312,7 +313,7 @@ class TestBeamSearchOpError(unittest.TestCase): topk_scores, topk_indices = fluid.layers.topk(probs, k=4) accu_scores = fluid.layers.elementwise_add( x=fluid.layers.log(x=topk_scores), - y=fluid.layers.reshape(pre_scores, shape=[-1]), + y=paddle.reshape(pre_scores, shape=[-1]), axis=0, ) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps.py index 87bf029956..df912af7fe 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps.py @@ -84,7 +84,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=is_sparse, ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -116,7 +116,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=is_sparse, ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -147,7 +147,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=is_sparse, ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps11.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps11.py index d70ed0b903..6be2ad229a 100755 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps11.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps11.py @@ -80,7 +80,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -108,7 +108,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -135,7 +135,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps12.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps12.py index d8506f64a4..8718931752 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps12.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps12.py @@ -83,7 +83,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -111,7 +111,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -138,7 +138,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps13.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps13.py index 0d531054a7..0b6e1c9c48 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps13.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps13.py @@ -86,7 +86,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -116,7 +116,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -145,7 +145,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps2.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps2.py index 8d0fdd6f9c..e95a42a44a 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps2.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps2.py @@ -85,7 +85,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -116,7 +116,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -145,7 +145,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps3.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps3.py index 80830b9693..33af7401ae 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps3.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps3.py @@ -84,7 +84,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=is_sparse, ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -116,7 +116,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=is_sparse, ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -147,7 +147,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=is_sparse, ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps4.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps4.py index 61561621d3..ce828ff213 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps4.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps4.py @@ -82,7 +82,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -112,7 +112,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -141,7 +141,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps5.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps5.py index 8729c4d639..692c84ac51 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps5.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps5.py @@ -84,7 +84,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=is_sparse, ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -116,7 +116,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=is_sparse, ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -147,7 +147,7 @@ class TestPSPassWithBow(unittest.TestCase): ), is_sparse=False, ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps6.py b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps6.py index 83c710c4ea..3dbef1bd2a 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_fleet_ps6.py +++ b/python/paddle/fluid/tests/unittests/test_dist_fleet_ps6.py @@ -82,7 +82,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim]) + q_emb = paddle.reshape(q_emb, [-1, emb_dim]) # vsum q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') q_ss = paddle.nn.functional.softsign(q_sum) @@ -112,7 +112,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim]) + pt_emb = paddle.reshape(pt_emb, [-1, emb_dim]) # vsum pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') pt_ss = paddle.nn.functional.softsign(pt_sum) @@ -141,7 +141,7 @@ class TestPSPassWithBow(unittest.TestCase): learning_rate=emb_lr, ), ) - nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim]) + nt_emb = paddle.reshape(nt_emb, [-1, emb_dim]) # vsum nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') nt_ss = paddle.nn.functional.softsign(nt_sum) diff --git a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py index 7b5fe2c114..ce02bc4af7 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py +++ b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py @@ -381,7 +381,7 @@ class TestFakeInit(TranspilerTest): ), ) - neg_word_reshape = fluid.layers.reshape(inputs[2], shape=[-1, 1]) + neg_word_reshape = paddle.reshape(inputs[2], shape=[-1, 1]) neg_word_reshape.stop_gradient = True neg_emb_w = fluid.layers.embedding( @@ -391,7 +391,7 @@ class TestFakeInit(TranspilerTest): param_attr=fluid.ParamAttr(name='emb_w', learning_rate=1.0), ) - neg_emb_w_re = fluid.layers.reshape( + neg_emb_w_re = paddle.reshape( neg_emb_w, shape=[-1, neg_num, embedding_size] ) @@ -402,7 +402,7 @@ class TestFakeInit(TranspilerTest): param_attr=fluid.ParamAttr(name='emb_b', learning_rate=1.0), ) - neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num]) + neg_emb_b_vec = paddle.reshape(neg_emb_b, shape=[-1, neg_num]) true_logits = fluid.layers.elementwise_add( fluid.layers.reduce_sum( @@ -413,14 +413,12 @@ class TestFakeInit(TranspilerTest): true_emb_b, ) - input_emb_re = fluid.layers.reshape( - input_emb, shape=[-1, 1, embedding_size] - ) + input_emb_re = paddle.reshape(input_emb, shape=[-1, 1, embedding_size]) neg_matmul = fluid.layers.matmul( input_emb_re, neg_emb_w_re, transpose_y=True ) - neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num]) + neg_matmul_re = paddle.reshape(neg_matmul, shape=[-1, neg_num]) neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec) # nce loss label_ones = fluid.layers.fill_constant_batch_size_like( diff --git a/python/paddle/fluid/tests/unittests/test_dygraph_mnist_fp16.py b/python/paddle/fluid/tests/unittests/test_dygraph_mnist_fp16.py index 7e7fab954b..f96595588c 100644 --- a/python/paddle/fluid/tests/unittests/test_dygraph_mnist_fp16.py +++ b/python/paddle/fluid/tests/unittests/test_dygraph_mnist_fp16.py @@ -115,7 +115,7 @@ class MNIST(fluid.dygraph.Layer): def forward(self, inputs, label): x = paddle.nn.functional.relu(self._simple_img_conv_pool_1(inputs)) x = paddle.nn.functional.relu(self._simple_img_conv_pool_2(x)) - x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape]) + x = paddle.reshape(x, shape=[-1, self.pool_2_shape]) cost = self._linear(x) loss = fluid.layers.cross_entropy(cost, label) avg_loss = paddle.mean(loss) diff --git a/python/paddle/fluid/tests/unittests/test_dygraph_multi_forward.py b/python/paddle/fluid/tests/unittests/test_dygraph_multi_forward.py index 02ce69de22..08bb8fceb4 100644 --- a/python/paddle/fluid/tests/unittests/test_dygraph_multi_forward.py +++ b/python/paddle/fluid/tests/unittests/test_dygraph_multi_forward.py @@ -104,7 +104,7 @@ class MNIST(fluid.dygraph.Layer): def forward(self, inputs): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) - x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape]) + x = paddle.reshape(x, shape=[-1, self.pool_2_shape]) x = self._fc(x) return x diff --git a/python/paddle/fluid/tests/unittests/test_eager_deletion_padding_rnn.py b/python/paddle/fluid/tests/unittests/test_eager_deletion_padding_rnn.py index e1271f30c4..220a6d13b8 100644 --- a/python/paddle/fluid/tests/unittests/test_eager_deletion_padding_rnn.py +++ b/python/paddle/fluid/tests/unittests/test_eager_deletion_padding_rnn.py @@ -149,8 +149,8 @@ def lm_model( pre_cell = layers.slice( init_cell, axes=[0], starts=[i], ends=[i + 1] ) - pre_hidden = layers.reshape(pre_hidden, shape=[-1, hidden_size]) - pre_cell = layers.reshape(pre_cell, shape=[-1, hidden_size]) + pre_hidden = paddle.reshape(pre_hidden, shape=[-1, hidden_size]) + pre_cell = paddle.reshape(pre_cell, shape=[-1, hidden_size]) hidden_array.append(pre_hidden) cell_array.append(pre_cell) @@ -270,12 +270,8 @@ def lm_model( pre_cell = layers.slice( init_cell, axes=[0], starts=[i], ends=[i + 1] ) - pre_hidden = layers.reshape( - pre_hidden, shape=[-1, hidden_size], inplace=True - ) - pre_cell = layers.reshape( - pre_cell, shape=[-1, hidden_size], inplace=True - ) + pre_hidden = paddle.reshape(pre_hidden, shape=[-1, hidden_size]) + pre_cell = paddle.reshape(pre_cell, shape=[-1, hidden_size]) hidden_array.append(pre_hidden) cell_array.append(pre_cell) @@ -286,7 +282,7 @@ def lm_model( for index in range(len): input = sliced_inputs[index] - input = layers.reshape(input, shape=[-1, hidden_size], inplace=True) + input = paddle.reshape(input, shape=[-1, hidden_size]) for k in range(num_layers): pre_hidden = hidden_array[k] pre_cell = cell_array[k] @@ -318,21 +314,19 @@ def lm_model( res.append(input) last_hidden = layers.concat(hidden_array, 1) - last_hidden = layers.reshape( - last_hidden, shape=[-1, num_layers, hidden_size], inplace=True + last_hidden = paddle.reshape( + last_hidden, shape=[-1, num_layers, hidden_size] ) last_hidden = layers.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = layers.concat(cell_array, 1) - last_cell = layers.reshape( + last_cell = paddle.reshape( last_cell, shape=[-1, num_layers, hidden_size] ) last_cell = layers.transpose(x=last_cell, perm=[1, 0, 2]) real_res = layers.concat(res, 0) - real_res = layers.reshape( - real_res, shape=[len, -1, hidden_size], inplace=True - ) + real_res = paddle.reshape(real_res, shape=[len, -1, hidden_size]) real_res = layers.transpose(x=real_res, perm=[1, 0, 2]) return real_res, last_hidden, last_cell @@ -367,10 +361,10 @@ def lm_model( init_cell.persistable = True init_hidden.persistable = True - init_hidden_reshape = layers.reshape( + init_hidden_reshape = paddle.reshape( init_hidden, shape=[num_layers, -1, hidden_size] ) - init_cell_reshape = layers.reshape( + init_cell_reshape = paddle.reshape( init_cell, shape=[num_layers, -1, hidden_size] ) @@ -387,9 +381,7 @@ def lm_model( ), ) - x_emb = layers.reshape( - x_emb, shape=[-1, num_steps, hidden_size], inplace=True - ) + x_emb = paddle.reshape(x_emb, shape=[-1, num_steps, hidden_size]) if dropout is not None and dropout > 0.0: x_emb = layers.dropout( x_emb, @@ -447,9 +439,7 @@ def lm_model( print("type not support") return - rnn_out = layers.reshape( - rnn_out, shape=[-1, num_steps, hidden_size], inplace=True - ) + rnn_out = paddle.reshape(rnn_out, shape=[-1, num_steps, hidden_size]) softmax_weight = layers.create_parameter( [hidden_size, vocab_size], @@ -470,15 +460,13 @@ def lm_model( projection = layers.matmul(rnn_out, softmax_weight) projection = layers.elementwise_add(projection, softmax_bias) - projection = layers.reshape( - projection, shape=[-1, vocab_size], inplace=True - ) + projection = paddle.reshape(projection, shape=[-1, vocab_size]) loss = layers.softmax_with_cross_entropy( logits=projection, label=y, soft_label=False ) - loss = layers.reshape(loss, shape=[-1, num_steps], inplace=True) + loss = paddle.reshape(loss, shape=[-1, num_steps]) loss = layers.reduce_mean(loss, dim=[0]) loss = layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/test_eager_deletion_while_op.py b/python/paddle/fluid/tests/unittests/test_eager_deletion_while_op.py index 1793d69f48..37ee4897e7 100644 --- a/python/paddle/fluid/tests/unittests/test_eager_deletion_while_op.py +++ b/python/paddle/fluid/tests/unittests/test_eager_deletion_while_op.py @@ -107,8 +107,8 @@ class TestEagerDeletionWhileOpBase(unittest.TestCase): with while_op.block(): d = layers.array_read(array=data_array, i=i) prev = layers.array_read(array=mem_array, i=i) - d = layers.reshape(d, shape=[10]) - prev = layers.reshape(prev, shape=[10]) + d = paddle.reshape(d, shape=[10]) + prev = paddle.reshape(prev, shape=[10]) result = layers.sums(input=[d, prev]) i = layers.increment(x=i, in_place=True) @@ -117,8 +117,8 @@ class TestEagerDeletionWhileOpBase(unittest.TestCase): with while_op2.block(): d2 = layers.array_read(array=data_array, i=j) prev2 = layers.array_read(array=mem_array, i=j) - d2 = layers.reshape(d2, shape=[10]) - prev2 = layers.reshape(prev2, shape=[10]) + d2 = paddle.reshape(d2, shape=[10]) + prev2 = paddle.reshape(prev2, shape=[10]) result2 = layers.sums(input=[d2, prev2]) j = layers.increment(x=j, in_place=True) diff --git a/python/paddle/fluid/tests/unittests/test_embedding_id_stop_gradient.py b/python/paddle/fluid/tests/unittests/test_embedding_id_stop_gradient.py index 68f9696ffe..be5fdcba69 100644 --- a/python/paddle/fluid/tests/unittests/test_embedding_id_stop_gradient.py +++ b/python/paddle/fluid/tests/unittests/test_embedding_id_stop_gradient.py @@ -52,7 +52,7 @@ class TestEmbeddingIdStopGradientBase(unittest.TestCase): x = fluid.layers.concat([x_1, x_2], axis=-1) for _ in range(self.reshape_times): - x = fluid.layers.reshape(x, [-1, 1]) + x = paddle.reshape(x, [-1, 1]) x.stop_gradient = stop_gradient diff --git a/python/paddle/fluid/tests/unittests/test_fuse_relu_depthwise_conv_pass.py b/python/paddle/fluid/tests/unittests/test_fuse_relu_depthwise_conv_pass.py index 686a5c1e41..54eacb5ec0 100644 --- a/python/paddle/fluid/tests/unittests/test_fuse_relu_depthwise_conv_pass.py +++ b/python/paddle/fluid/tests/unittests/test_fuse_relu_depthwise_conv_pass.py @@ -54,7 +54,7 @@ def simple_depthwise_net(use_feed): assert use_feed img = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') - hidden = fluid.layers.reshape(img, (-1, 1, 28, 28)) + hidden = paddle.reshape(img, (-1, 1, 28, 28)) for _ in range(4): hidden = sep_conv(hidden, channel=200, stride=2, filter=5) hidden = fluid.layers.relu(hidden) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_basic.py b/python/paddle/fluid/tests/unittests/test_imperative_basic.py index eaa8474c82..197d68db74 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_basic.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_basic.py @@ -140,7 +140,7 @@ class SimpleRNN(fluid.Layer): input = fluid.layers.slice( inputs, axes=[1], starts=[i], ends=[i + 1] ) - input = fluid.layers.reshape(input, shape=[1, 3]) + input = paddle.reshape(input, shape=[1, 3]) out_softmax, pre_hidden = self._cell(input, pre_hidden) outs.append(out_softmax) @@ -739,15 +739,11 @@ class TestImperative(unittest.TestCase): ) a = fluid.layers.expand( - fluid.layers.reshape( - fluid.layers.reduce_sum(inp_data1), [1, 1] - ), + paddle.reshape(fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1], ) b = fluid.layers.expand( - fluid.layers.reshape( - fluid.layers.reduce_sum(inp_data2), [1, 1] - ), + paddle.reshape(fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1], ) cond = fluid.layers.less_than(x=a, y=b) @@ -796,7 +792,7 @@ class TestImperative(unittest.TestCase): np_inp = np_inp.astype(np.float32) with fluid.dygraph.guard(): var_inp = paddle.to_tensor(np_inp) - var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3]) + var_inp = paddle.reshape(var_inp, shape=[1, 4, 3]) simple_rnn = SimpleRNN() outs, pre_hiddens = simple_rnn.forward(var_inp) dy_out = outs[3].numpy() @@ -807,7 +803,7 @@ class TestImperative(unittest.TestCase): with fluid.dygraph.guard(): var_inp2 = paddle.to_tensor(np_inp) - var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3]) + var_inp2 = paddle.reshape(var_inp2, shape=[1, 4, 3]) simple_rnn2 = SimpleRNN() outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2) dy_out2 = outs2[3].numpy() diff --git a/python/paddle/fluid/tests/unittests/test_imperative_gnn.py b/python/paddle/fluid/tests/unittests/test_imperative_gnn.py index a824774bbb..8703bafb26 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_gnn.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_gnn.py @@ -92,7 +92,7 @@ class TestDygraphGNN(unittest.TestCase): model = GCN('test_gcn', 50) logits = model(features, adj) - logits = fluid.layers.reshape(logits, logits.shape[1:]) + logits = paddle.reshape(logits, logits.shape[1:]) # In other example, it's nll with log_softmax. However, paddle's # log_loss only supports binary classification now. loss = fluid.layers.softmax_with_cross_entropy(logits, labels) @@ -130,7 +130,7 @@ class TestDygraphGNN(unittest.TestCase): model = GCN('test_gcn', 50) logits = model(to_variable(features), to_variable(adj)) - logits = fluid.layers.reshape(logits, logits.shape[1:]) + logits = paddle.reshape(logits, logits.shape[1:]) # In other example, it's nll with log_softmax. However, paddle's # log_loss only supports binary classification now. loss = fluid.layers.softmax_with_cross_entropy( @@ -158,7 +158,7 @@ class TestDygraphGNN(unittest.TestCase): model2 = GCN('test_gcn', 50) logits2 = model2(to_variable(features2), to_variable(adj2)) - logits2 = fluid.layers.reshape(logits2, logits2.shape[1:]) + logits2 = paddle.reshape(logits2, logits2.shape[1:]) # In other example, it's nll with log_softmax. However, paddle's # log_loss only supports binary classification now. loss2 = fluid.layers.softmax_with_cross_entropy( diff --git a/python/paddle/fluid/tests/unittests/test_imperative_lod_tensor_to_selected_rows.py b/python/paddle/fluid/tests/unittests/test_imperative_lod_tensor_to_selected_rows.py index ba8e239e3a..73f8973eba 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_lod_tensor_to_selected_rows.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_lod_tensor_to_selected_rows.py @@ -66,13 +66,11 @@ class SimpleNet(fluid.Layer): x_emb, fluid.layers.transpose(self.embedding.weight, perm=[1, 0]) ) projection = fluid.layers.elementwise_add(projection, self.softmax_bias) - projection = fluid.layers.reshape( - projection, shape=[-1, self.vocab_size] - ) + projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) - loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_mnist.py b/python/paddle/fluid/tests/unittests/test_imperative_mnist.py index 5e662331b6..67ad27a1ba 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_mnist.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_mnist.py @@ -103,7 +103,7 @@ class MNIST(fluid.dygraph.Layer): def forward(self, inputs): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) - x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape]) + x = paddle.reshape(x, shape=[-1, self.pool_2_shape]) x = self._fc(x) return x diff --git a/python/paddle/fluid/tests/unittests/test_imperative_ocr_attention_model.py b/python/paddle/fluid/tests/unittests/test_imperative_ocr_attention_model.py index 08a32aeaa9..46b568dec4 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_ocr_attention_model.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_ocr_attention_model.py @@ -195,13 +195,9 @@ class DynamicGRU(fluid.dygraph.Layer): input_ = fluid.layers.slice( inputs, axes=[1], starts=[i], ends=[i + 1] ) - input_ = fluid.layers.reshape( - input_, [-1, input_.shape[2]], inplace=False - ) + input_ = paddle.reshape(input_, [-1, input_.shape[2]]) hidden, reset, gate = self.gru_unit(input_, hidden) - hidden_ = fluid.layers.reshape( - hidden, [-1, 1, hidden.shape[1]], inplace=False - ) + hidden_ = paddle.reshape(hidden, [-1, 1, hidden.shape[1]]) if self.is_reverse: res = [hidden_] + res else: @@ -271,7 +267,7 @@ class EncoderNet(fluid.dygraph.Layer): transpose_conv_features = fluid.layers.transpose( conv_features, perm=[0, 3, 1, 2] ) - sliced_feature = fluid.layers.reshape( + sliced_feature = paddle.reshape( transpose_conv_features, [ -1, @@ -279,7 +275,6 @@ class EncoderNet(fluid.dygraph.Layer): transpose_conv_features.shape[2] * transpose_conv_features.shape[3], ], - inplace=False, ) fc_1 = self.fc_1_layer(sliced_feature) fc_2 = self.fc_2_layer(sliced_feature) @@ -308,8 +303,8 @@ class SimpleAttention(fluid.dygraph.Layer): def forward(self, encoder_vec, encoder_proj, decoder_state): decoder_state_fc = self.fc_1(decoder_state) - decoder_state_proj_reshape = fluid.layers.reshape( - decoder_state_fc, [-1, 1, decoder_state_fc.shape[1]], inplace=False + decoder_state_proj_reshape = paddle.reshape( + decoder_state_fc, [-1, 1, decoder_state_fc.shape[1]] ) decoder_state_expand = fluid.layers.expand( decoder_state_proj_reshape, [1, encoder_proj.shape[1], 1] @@ -320,10 +315,9 @@ class SimpleAttention(fluid.dygraph.Layer): concated = paddle.tanh(x=concated) attention_weight = self.fc_2(concated) - weights_reshape = fluid.layers.reshape( + weights_reshape = paddle.reshape( x=attention_weight, shape=[attention_weight.shape[0], attention_weight.shape[1]], - inplace=False, ) weights_reshape = fluid.layers.softmax(weights_reshape) @@ -364,8 +358,8 @@ class GRUDecoderWithAttention(fluid.dygraph.Layer): current_word = fluid.layers.slice( target_embedding, axes=[1], starts=[i], ends=[i + 1] ) - current_word = fluid.layers.reshape( - current_word, [-1, current_word.shape[2]], inplace=False + current_word = paddle.reshape( + current_word, [-1, current_word.shape[2]] ) context = self.simple_attention( @@ -407,17 +401,16 @@ class OCRAttention(fluid.dygraph.Layer): backward_first = fluid.layers.slice( gru_backward, axes=[1], starts=[0], ends=[1] ) - backward_first = fluid.layers.reshape( - backward_first, [-1, backward_first.shape[2]], inplace=False + backward_first = paddle.reshape( + backward_first, [-1, backward_first.shape[2]] ) decoder_boot = self.fc(backward_first) - label_in = fluid.layers.reshape(label_in, [-1], inplace=False) + label_in = paddle.reshape(label_in, [-1]) trg_embedding = self.embedding(label_in) - trg_embedding = fluid.layers.reshape( + trg_embedding = paddle.reshape( trg_embedding, [-1, Config.max_length, trg_embedding.shape[1]], - inplace=False, ) prediction = self.gru_decoder_with_attention( @@ -497,11 +490,9 @@ class TestDygraphOCRAttention(unittest.TestCase): label_out.stop_gradient = True img = to_variable(image_np) dy_prediction = ocr_attention(img, label_in) - label_out = fluid.layers.reshape( - label_out, [-1, 1], inplace=False - ) - dy_prediction = fluid.layers.reshape( - dy_prediction, [label_out.shape[0], -1], inplace=False + label_out = paddle.reshape(label_out, [-1, 1]) + dy_prediction = paddle.reshape( + dy_prediction, [label_out.shape[0], -1] ) loss = fluid.layers.cross_entropy( input=dy_prediction, label=label_out @@ -577,7 +568,7 @@ class TestDygraphOCRAttention(unittest.TestCase): static_prediction = ocr_attention(images, static_label_in) - static_prediction = fluid.layers.reshape( + static_prediction = paddle.reshape( static_prediction, shape=[-1, Config.num_classes + 2] ) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py b/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py index 070a92ec91..a75208d88d 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py @@ -141,7 +141,7 @@ class TestImperativeOptimizerBase(unittest.TestCase): label = data[1] label.stop_gradient = True - img = fluid.layers.reshape(img, shape=[batch_size, -1]) + img = paddle.reshape(img, shape=[batch_size, -1]) cost = mlp(img) avg_loss = fluid.layers.reduce_mean(cost) dy_out = avg_loss.numpy() @@ -180,7 +180,7 @@ class TestImperativeOptimizerBase(unittest.TestCase): name='pixel', shape=[1, 28, 28], dtype='float32' ) label = fluid.layers.data(name='label', shape=[1], dtype='int64') - img = fluid.layers.reshape(img, shape=[batch_size, 784]) + img = paddle.reshape(img, shape=[batch_size, 784]) cost = mlp(img) avg_loss = fluid.layers.reduce_mean(cost) optimizer.minimize(avg_loss) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_optimizer_v2.py b/python/paddle/fluid/tests/unittests/test_imperative_optimizer_v2.py index 1f34d02eb8..4023d3596b 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_optimizer_v2.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_optimizer_v2.py @@ -139,7 +139,7 @@ class TestImperativeOptimizerBase(unittest.TestCase): label.stop_gradient = True - img = fluid.layers.reshape(img, shape=[batch_size, -1]) + img = paddle.reshape(img, shape=[batch_size, -1]) cost = mlp(img) avg_loss = fluid.layers.reduce_mean(cost) dy_out = avg_loss.numpy() @@ -189,7 +189,7 @@ class TestImperativeOptimizerBase(unittest.TestCase): name='pixel', shape=[1, 28, 28], dtype='float32' ) label = fluid.layers.data(name='label', shape=[1], dtype='int64') - img = fluid.layers.reshape(img, shape=[batch_size, 784]) + img = paddle.reshape(img, shape=[batch_size, 784]) cost = mlp(img) avg_loss = fluid.layers.reduce_mean(cost) optimizer.minimize(avg_loss) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py index df0a8996ac..a3e603b5a9 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py @@ -85,12 +85,10 @@ class SimpleLSTMRNN(fluid.Layer): pre_cell = fluid.layers.slice( init_cell, axes=[0], starts=[i], ends=[i + 1] ) - pre_hidden = fluid.layers.reshape( + pre_hidden = paddle.reshape( pre_hidden, shape=[-1, self._hidden_size] ) - pre_cell = fluid.layers.reshape( - pre_cell, shape=[-1, self._hidden_size] - ) + pre_cell = paddle.reshape(pre_cell, shape=[-1, self._hidden_size]) self.hidden_array.append(pre_hidden) self.cell_array.append(pre_cell) @@ -99,7 +97,7 @@ class SimpleLSTMRNN(fluid.Layer): self._input = fluid.layers.slice( input_embedding, axes=[1], starts=[index], ends=[index + 1] ) - self._input = fluid.layers.reshape( + self._input = paddle.reshape( self._input, shape=[-1, self._hidden_size] ) for k in range(self._num_layers): @@ -130,19 +128,17 @@ class SimpleLSTMRNN(fluid.Layer): dropout_implementation='upscale_in_train', ) res.append( - fluid.layers.reshape( - self._input, shape=[1, -1, self._hidden_size] - ) + paddle.reshape(self._input, shape=[1, -1, self._hidden_size]) ) real_res = fluid.layers.concat(res, 0) real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2]) last_hidden = fluid.layers.concat(self.hidden_array, 1) - last_hidden = fluid.layers.reshape( + last_hidden = paddle.reshape( last_hidden, shape=[-1, self._num_layers, self._hidden_size] ) last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = fluid.layers.concat(self.cell_array, 1) - last_cell = fluid.layers.reshape( + last_cell = paddle.reshape( last_cell, shape=[-1, self._num_layers, self._hidden_size] ) last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2]) @@ -203,16 +199,16 @@ class PtbModel(fluid.Layer): ) def forward(self, input, label, init_hidden, init_cell): - init_h = fluid.layers.reshape( + init_h = paddle.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size] ) - init_c = fluid.layers.reshape( + init_c = paddle.reshape( init_cell, shape=[self.num_layers, -1, self.hidden_size] ) x_emb = self.embedding(input) - x_emb = fluid.layers.reshape( + x_emb = paddle.reshape( x_emb, shape=[-1, self.num_steps, self.hidden_size] ) if self.dropout is not None and self.dropout > 0.0: @@ -224,18 +220,16 @@ class PtbModel(fluid.Layer): rnn_out, last_hidden, last_cell = self.simple_lstm_rnn( x_emb, init_h, init_c ) - rnn_out = fluid.layers.reshape( + rnn_out = paddle.reshape( rnn_out, shape=[-1, self.num_steps, self.hidden_size] ) projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.elementwise_add(projection, self.softmax_bias) - projection = fluid.layers.reshape( - projection, shape=[-1, self.vocab_size] - ) + projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) - loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_reinforcement.py b/python/paddle/fluid/tests/unittests/test_imperative_reinforcement.py index 91f2105f6b..01f34d36c4 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_reinforcement.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_reinforcement.py @@ -36,7 +36,7 @@ class Policy(fluid.dygraph.Layer): self.rewards = [] def forward(self, inputs): - x = fluid.layers.reshape(inputs, shape=[-1, 4]) + x = paddle.reshape(inputs, shape=[-1, 4]) x = self.affine1(x) x = fluid.layers.dropout(x, self.dropout_ratio) x = fluid.layers.relu(x) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_resnet.py b/python/paddle/fluid/tests/unittests/test_imperative_resnet.py index 328245ab9c..0b35486879 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_resnet.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_resnet.py @@ -241,7 +241,7 @@ class ResNet(fluid.Layer): for bottleneck_block in self.bottleneck_block_list: y = bottleneck_block(y) y = self.pool2d_avg(y) - y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output]) + y = paddle.reshape(y, shape=[-1, self.pool2d_avg_output]) y = self.out(y) return y diff --git a/python/paddle/fluid/tests/unittests/test_imperative_save_load.py b/python/paddle/fluid/tests/unittests/test_imperative_save_load.py index a0b75d7160..4968a2fe28 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_save_load.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_save_load.py @@ -80,12 +80,10 @@ class SimpleLSTMRNN(fluid.Layer): pre_cell = fluid.layers.slice( init_cell, axes=[0], starts=[i], ends=[i + 1] ) - pre_hidden = fluid.layers.reshape( + pre_hidden = paddle.reshape( pre_hidden, shape=[-1, self._hidden_size] ) - pre_cell = fluid.layers.reshape( - pre_cell, shape=[-1, self._hidden_size] - ) + pre_cell = paddle.reshape(pre_cell, shape=[-1, self._hidden_size]) self.hidden_array.append(pre_hidden) self.cell_array.append(pre_cell) @@ -94,7 +92,7 @@ class SimpleLSTMRNN(fluid.Layer): self._input = fluid.layers.slice( input_embedding, axes=[1], starts=[index], ends=[index + 1] ) - self._input = fluid.layers.reshape( + self._input = paddle.reshape( self._input, shape=[-1, self._hidden_size] ) for k in range(self._num_layers): @@ -125,19 +123,17 @@ class SimpleLSTMRNN(fluid.Layer): dropout_implementation='upscale_in_train', ) res.append( - fluid.layers.reshape( - self._input, shape=[1, -1, self._hidden_size] - ) + paddle.reshape(self._input, shape=[1, -1, self._hidden_size]) ) real_res = fluid.layers.concat(res, 0) real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2]) last_hidden = fluid.layers.concat(self.hidden_array, 1) - last_hidden = fluid.layers.reshape( + last_hidden = paddle.reshape( last_hidden, shape=[-1, self._num_layers, self._hidden_size] ) last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = fluid.layers.concat(self.cell_array, 1) - last_cell = fluid.layers.reshape( + last_cell = paddle.reshape( last_cell, shape=[-1, self._num_layers, self._hidden_size] ) last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2]) @@ -198,16 +194,16 @@ class PtbModel(fluid.Layer): ) def forward(self, input, label, init_hidden, init_cell): - init_h = fluid.layers.reshape( + init_h = paddle.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size] ) - init_c = fluid.layers.reshape( + init_c = paddle.reshape( init_cell, shape=[self.num_layers, -1, self.hidden_size] ) x_emb = self.embedding(input) - x_emb = fluid.layers.reshape( + x_emb = paddle.reshape( x_emb, shape=[-1, self.num_steps, self.hidden_size] ) if self.dropout is not None and self.dropout > 0.0: @@ -219,19 +215,17 @@ class PtbModel(fluid.Layer): rnn_out, last_hidden, last_cell = self.simple_lstm_rnn( x_emb, init_h, init_c ) - rnn_out = fluid.layers.reshape( + rnn_out = paddle.reshape( rnn_out, shape=[-1, self.num_steps, self.hidden_size] ) projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.elementwise_add(projection, self.softmax_bias) - projection = fluid.layers.reshape( - projection, shape=[-1, self.vocab_size] - ) + projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) - loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_save_load_v2.py b/python/paddle/fluid/tests/unittests/test_imperative_save_load_v2.py index 1274200f31..a450d7e871 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_save_load_v2.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_save_load_v2.py @@ -82,12 +82,10 @@ class SimpleLSTMRNN(fluid.Layer): pre_cell = fluid.layers.slice( init_cell, axes=[0], starts=[i], ends=[i + 1] ) - pre_hidden = fluid.layers.reshape( + pre_hidden = paddle.reshape( pre_hidden, shape=[-1, self._hidden_size] ) - pre_cell = fluid.layers.reshape( - pre_cell, shape=[-1, self._hidden_size] - ) + pre_cell = paddle.reshape(pre_cell, shape=[-1, self._hidden_size]) self.hidden_array.append(pre_hidden) self.cell_array.append(pre_cell) @@ -96,7 +94,7 @@ class SimpleLSTMRNN(fluid.Layer): self._input = fluid.layers.slice( input_embedding, axes=[1], starts=[index], ends=[index + 1] ) - self._input = fluid.layers.reshape( + self._input = paddle.reshape( self._input, shape=[-1, self._hidden_size] ) for k in range(self._num_layers): @@ -127,19 +125,17 @@ class SimpleLSTMRNN(fluid.Layer): dropout_implementation='upscale_in_train', ) res.append( - fluid.layers.reshape( - self._input, shape=[1, -1, self._hidden_size] - ) + paddle.reshape(self._input, shape=[1, -1, self._hidden_size]) ) real_res = fluid.layers.concat(res, 0) real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2]) last_hidden = fluid.layers.concat(self.hidden_array, 1) - last_hidden = fluid.layers.reshape( + last_hidden = paddle.reshape( last_hidden, shape=[-1, self._num_layers, self._hidden_size] ) last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = fluid.layers.concat(self.cell_array, 1) - last_cell = fluid.layers.reshape( + last_cell = paddle.reshape( last_cell, shape=[-1, self._num_layers, self._hidden_size] ) last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2]) @@ -200,16 +196,16 @@ class PtbModel(fluid.Layer): ) def forward(self, input, label, init_hidden, init_cell): - init_h = fluid.layers.reshape( + init_h = paddle.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size] ) - init_c = fluid.layers.reshape( + init_c = paddle.reshape( init_cell, shape=[self.num_layers, -1, self.hidden_size] ) x_emb = self.embedding(input) - x_emb = fluid.layers.reshape( + x_emb = paddle.reshape( x_emb, shape=[-1, self.num_steps, self.hidden_size] ) if self.dropout is not None and self.dropout > 0.0: @@ -221,19 +217,17 @@ class PtbModel(fluid.Layer): rnn_out, last_hidden, last_cell = self.simple_lstm_rnn( x_emb, init_h, init_c ) - rnn_out = fluid.layers.reshape( + rnn_out = paddle.reshape( rnn_out, shape=[-1, self.num_steps, self.hidden_size] ) projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.elementwise_add(projection, self.softmax_bias) - projection = fluid.layers.reshape( - projection, shape=[-1, self.vocab_size] - ) + projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) - loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_se_resnext.py b/python/paddle/fluid/tests/unittests/test_imperative_se_resnext.py index a0518f7ba7..d977dadeeb 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_se_resnext.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_se_resnext.py @@ -123,7 +123,7 @@ class SqueezeExcitation(fluid.dygraph.Layer): def forward(self, input): y = self._pool(input) - y = fluid.layers.reshape(y, shape=[-1, self._num_channels]) + y = paddle.reshape(y, shape=[-1, self._num_channels]) y = self._squeeze(y) y = self._excitation(y) y = fluid.layers.elementwise_mul(x=input, y=y, axis=0) @@ -318,7 +318,7 @@ class SeResNeXt(fluid.dygraph.Layer): for bottleneck_block in self.bottleneck_block_list: y = bottleneck_block(y) y = self.pool2d_avg(y) - y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output]) + y = paddle.reshape(y, shape=[-1, self.pool2d_avg_output]) y = self.out(y) return y diff --git a/python/paddle/fluid/tests/unittests/test_imperative_selected_rows_to_lod_tensor.py b/python/paddle/fluid/tests/unittests/test_imperative_selected_rows_to_lod_tensor.py index c34f0cd0e5..f137de9dc2 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_selected_rows_to_lod_tensor.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_selected_rows_to_lod_tensor.py @@ -75,13 +75,11 @@ class SimpleNet(fluid.Layer): projection = fluid.layers.matmul( fc, fluid.layers.transpose(self.embedding.weight, perm=[1, 0]) ) - projection = fluid.layers.reshape( - projection, shape=[-1, self.vocab_size] - ) + projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) - loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_star_gan_with_gradient_penalty.py b/python/paddle/fluid/tests/unittests/test_imperative_star_gan_with_gradient_penalty.py index 6a6dd3f771..4a99e0fb63 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_star_gan_with_gradient_penalty.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_star_gan_with_gradient_penalty.py @@ -309,9 +309,7 @@ class Generator(fluid.dygraph.Layer): def forward(self, input, label_trg): shape = input.shape - label_trg_e = fluid.layers.reshape( - label_trg, [-1, label_trg.shape[1], 1, 1] - ) + label_trg_e = paddle.reshape(label_trg, [-1, label_trg.shape[1], 1, 1]) label_trg_e = fluid.layers.expand( x=label_trg_e, expand_times=[1, 1, shape[2], shape[3]] ) @@ -380,9 +378,7 @@ class Discriminator(fluid.dygraph.Layer): def loss_cls(cls, label, cfg): cls_shape = cls.shape - cls = fluid.layers.reshape( - cls, [-1, cls_shape[1] * cls_shape[2] * cls_shape[3]] - ) + cls = paddle.reshape(cls, [-1, cls_shape[1] * cls_shape[2] * cls_shape[3]]) return ( fluid.layers.reduce_sum( fluid.layers.sigmoid_cross_entropy_with_logits(cls, label) @@ -432,7 +428,7 @@ def gradient_penalty(f, real, fake, no_grad_set, cfg): gradient = gradient[0] grad_shape = gradient.shape - gradient = fluid.layers.reshape( + gradient = paddle.reshape( gradient, [-1, grad_shape[1] * grad_shape[2] * grad_shape[3]] ) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py b/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py index 1ff8ffbd85..5c6f224a5e 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_transformer_sorted_gradient.py @@ -476,16 +476,16 @@ class MultiHeadAttentionLayer(Layer): v = self._v_fc(values) # split head - reshaped_q = fluid.layers.reshape( - x=q, shape=[0, 0, self._n_head, self._d_key], inplace=False + reshaped_q = paddle.reshape( + x=q, shape=[0, 0, self._n_head, self._d_key] ) transpose_q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3]) - reshaped_k = fluid.layers.reshape( - x=k, shape=[0, 0, self._n_head, self._d_key], inplace=False + reshaped_k = paddle.reshape( + x=k, shape=[0, 0, self._n_head, self._d_key] ) transpose_k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3]) - reshaped_v = fluid.layers.reshape( - x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False + reshaped_v = paddle.reshape( + x=v, shape=[0, 0, self._n_head, self._d_value] ) transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3]) @@ -514,10 +514,9 @@ class MultiHeadAttentionLayer(Layer): if len(out.shape) != 4: raise ValueError("Input(x) should be a 4-D Tensor.") trans_x = fluid.layers.transpose(out, perm=[0, 2, 1, 3]) - final_out = fluid.layers.reshape( + final_out = paddle.reshape( x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], - inplace=False, ) # fc to output @@ -994,8 +993,8 @@ class WrapDecoderLayer(Layer): dec_input, enc_output, trg_slf_attn_bias, trg_src_attn_bias ) - dec_output_reshape = fluid.layers.reshape( - dec_output, shape=[-1, dec_output.shape[-1]], inplace=False + dec_output_reshape = paddle.reshape( + dec_output, shape=[-1, dec_output.shape[-1]] ) if self._weight_sharing: diff --git a/python/paddle/fluid/tests/unittests/test_ir_memory_optimize_pass.py b/python/paddle/fluid/tests/unittests/test_ir_memory_optimize_pass.py index d21156b43e..a15079021e 100644 --- a/python/paddle/fluid/tests/unittests/test_ir_memory_optimize_pass.py +++ b/python/paddle/fluid/tests/unittests/test_ir_memory_optimize_pass.py @@ -43,8 +43,8 @@ def fc_with_inplace_net(use_feed): x, y = _feed_data_helper() fc = fluid.layers.fc(input=x, size=20, act='relu') fc = fluid.layers.fc(input=fc, size=10, act='relu') - reshape = fluid.layers.reshape(x=fc, shape=[-1, 2, 5]) - reshape = fluid.layers.reshape(x=reshape, shape=[-1, 5, 2]) + reshape = paddle.reshape(x=fc, shape=[-1, 2, 5]) + reshape = paddle.reshape(x=reshape, shape=[-1, 5, 2]) y_predict = fluid.layers.fc(input=reshape, size=10, act='softmax') cost = fluid.layers.cross_entropy(input=y_predict, label=y) avg_cost = paddle.mean(cost) diff --git a/python/paddle/fluid/tests/unittests/test_nn_grad.py b/python/paddle/fluid/tests/unittests/test_nn_grad.py index 4b3d92c92d..274aa25142 100644 --- a/python/paddle/fluid/tests/unittests/test_nn_grad.py +++ b/python/paddle/fluid/tests/unittests/test_nn_grad.py @@ -148,7 +148,7 @@ class TestExpandDoubleGradCheck(unittest.TestCase): x = layers.data('x', x_shape, False, dtype) x.persistable = True - out = layers.reshape(x, new_shape) + out = paddle.reshape(x, new_shape) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check( diff --git a/python/paddle/fluid/tests/unittests/test_reshape_op.py b/python/paddle/fluid/tests/unittests/test_reshape_op.py index dad6e3fa32..4445cf3426 100755 --- a/python/paddle/fluid/tests/unittests/test_reshape_op.py +++ b/python/paddle/fluid/tests/unittests/test_reshape_op.py @@ -301,11 +301,6 @@ class TestReshapeAPI(unittest.TestCase): def _executed_api(self): self.reshape = paddle.reshape - def _set_fluid_api(self): - self.fill_constant = fluid.layers.fill_constant - self.data = paddle.static.data - self.reshape = fluid.layers.reshape - def _test_api(self): paddle.enable_static() input = np.random.random([2, 25]).astype("float32") @@ -317,18 +312,16 @@ class TestReshapeAPI(unittest.TestCase): actual_shape = self.data(name="shape", shape=[3], dtype="int32") - # situation 1: have shape( list, no tensor), no actual shape(Tensor) + # situation 1: have shape( list, no tensor) out_1 = self.reshape(x, shape) - # situation 2: have shape(list, no tensor), have actual shape(Tensor) - out_2 = fluid.layers.reshape( - x, shape=shape, actual_shape=actual_shape - ) + # situation 2: have shape(list, no tensor) + out_2 = paddle.reshape(x, actual_shape) - # Situation 3: have shape(list, have tensor), no actual shape(Tensor) + # Situation 3: have shape(list, have tensor) out_3 = self.reshape(x, shape=[positive_five, 10]) - # Situation 4: have shape(Tensor), no actual shape(Tensor) + # Situation 4: have shape(Tensor) out_4 = self.reshape(x, shape=actual_shape) exe = paddle.static.Executor(place=paddle.CPUPlace()) @@ -347,10 +340,6 @@ class TestReshapeAPI(unittest.TestCase): self._set_paddle_api() self._test_api() - def test_fluid_api(self): - self._set_fluid_api() - self._test_api() - def test_imperative(self): self._set_paddle_api() input = np.random.random([2, 25]).astype("float32") @@ -401,10 +390,6 @@ class TestReshapeOpError(unittest.TestCase): self.data = paddle.static.data self.reshape = paddle.reshape - def _set_fluid_api(self): - self.data = fluid.data - self.reshape = fluid.layers.reshape - def _test_errors(self): with program_guard(Program(), Program()): # The x type of reshape_op must be Variable. @@ -439,12 +424,6 @@ class TestReshapeOpError(unittest.TestCase): self.assertRaises(TypeError, test_shape_type) - # The argument actual_shape's type of reshape_op must be Variable or None. - def test_actual_shape_type(): - self.reshape(x3, shape=[25, 2], actual_shape=1) - - self.assertRaises(TypeError, test_actual_shape_type) - # The argument shape have more than one -1. def test_shape_1(): self.reshape(x3, shape=[-1, -1, 5]) @@ -467,10 +446,6 @@ class TestReshapeOpError(unittest.TestCase): self._set_paddle_api() self._test_errors() - def test_fluid_api_error(self): - self._set_fluid_api() - self._test_errors() - class TestDygraphReshapeAPI(unittest.TestCase): def setUp(self): diff --git a/python/paddle/fluid/tests/unittests/test_static_save_load.py b/python/paddle/fluid/tests/unittests/test_static_save_load.py index 5c1e96ebb8..8c4c8aa60d 100644 --- a/python/paddle/fluid/tests/unittests/test_static_save_load.py +++ b/python/paddle/fluid/tests/unittests/test_static_save_load.py @@ -92,12 +92,10 @@ class SimpleLSTMRNN(fluid.Layer): pre_cell = fluid.layers.slice( init_cell, axes=[0], starts=[i], ends=[i + 1] ) - pre_hidden = fluid.layers.reshape( + pre_hidden = paddle.reshape( pre_hidden, shape=[-1, self._hidden_size] ) - pre_cell = fluid.layers.reshape( - pre_cell, shape=[-1, self._hidden_size] - ) + pre_cell = paddle.reshape(pre_cell, shape=[-1, self._hidden_size]) self.hidden_array.append(pre_hidden) self.cell_array.append(pre_cell) @@ -106,7 +104,7 @@ class SimpleLSTMRNN(fluid.Layer): self._input = fluid.layers.slice( input_embedding, axes=[1], starts=[index], ends=[index + 1] ) - self._input = fluid.layers.reshape( + self._input = paddle.reshape( self._input, shape=[-1, self._hidden_size] ) for k in range(self._num_layers): @@ -137,19 +135,17 @@ class SimpleLSTMRNN(fluid.Layer): dropout_implementation='upscale_in_train', ) res.append( - fluid.layers.reshape( - self._input, shape=[1, -1, self._hidden_size] - ) + paddle.reshape(self._input, shape=[1, -1, self._hidden_size]) ) real_res = fluid.layers.concat(res, 0) real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2]) last_hidden = fluid.layers.concat(self.hidden_array, 1) - last_hidden = fluid.layers.reshape( + last_hidden = paddle.reshape( last_hidden, shape=[-1, self._num_layers, self._hidden_size] ) last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = fluid.layers.concat(self.cell_array, 1) - last_cell = fluid.layers.reshape( + last_cell = paddle.reshape( last_cell, shape=[-1, self._num_layers, self._hidden_size] ) last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2]) @@ -210,18 +206,18 @@ class PtbModel(fluid.Layer): ) def forward(self, input, label, init_hidden, init_cell): - init_h = fluid.layers.reshape( + init_h = paddle.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size] ) - init_c = fluid.layers.reshape( + init_c = paddle.reshape( init_cell, shape=[self.num_layers, -1, self.hidden_size] ) # NPU 'tok_k' kernel only support `int32` dtype, so cast `input` from `int64` to `int32`. input = fluid.layers.cast(input, "int32") x_emb = self.embedding(input) - x_emb = fluid.layers.reshape( + x_emb = paddle.reshape( x_emb, shape=[-1, self.num_steps, self.hidden_size] ) if self.dropout is not None and self.dropout > 0.0: @@ -234,18 +230,16 @@ class PtbModel(fluid.Layer): x_emb, init_h, init_c ) - rnn_out = fluid.layers.reshape( + rnn_out = paddle.reshape( rnn_out, shape=[-1, self.num_steps, self.hidden_size] ) projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.elementwise_add(projection, self.softmax_bias) - projection = fluid.layers.reshape( - projection, shape=[-1, self.vocab_size] - ) + projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) - loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) diff --git a/python/paddle/fluid/tests/unittests/test_var_base.py b/python/paddle/fluid/tests/unittests/test_var_base.py index 6adf1c7418..c832093ed5 100644 --- a/python/paddle/fluid/tests/unittests/test_var_base.py +++ b/python/paddle/fluid/tests/unittests/test_var_base.py @@ -727,7 +727,7 @@ class TestVarBase(unittest.TestCase): var3 = var[0:1] var4 = var[::-1] var5 = var[1, 1:, 1:] - var_reshape = fluid.layers.reshape(var, [3, -1, 3]) + var_reshape = paddle.reshape(var, [3, -1, 3]) var6 = var_reshape[:, :, -1] var7 = var[:, :, :-1] var8 = var[:1, :1, :1] @@ -820,7 +820,7 @@ class TestVarBase(unittest.TestCase): var3 = var[0:one] var4 = var[::negative_one] var5 = var[one, one:, one:] - var_reshape = fluid.layers.reshape(var, [3, negative_one, 3]) + var_reshape = paddle.reshape(var, [3, negative_one, 3]) var6 = var_reshape[:, :, negative_one] var7 = var[:, :, :negative_one] var8 = var[:one, :one, :1] diff --git a/python/paddle/fluid/tests/unittests/test_variable.py b/python/paddle/fluid/tests/unittests/test_variable.py index bf9ee54afc..b8e020eca9 100644 --- a/python/paddle/fluid/tests/unittests/test_variable.py +++ b/python/paddle/fluid/tests/unittests/test_variable.py @@ -156,7 +156,7 @@ class TestVariable(unittest.TestCase): var3 = var[0:1] var4 = var[::-1] var5 = var[1, 1:, 1:] - var_reshape = fluid.layers.reshape(var, [3, -1, 3]) + var_reshape = paddle.reshape(var, [3, -1, 3]) var6 = var_reshape[:, :, -1] var7 = var[:, :, :-1] var8 = var[:1, :1, :1] diff --git a/python/paddle/fluid/tests/unittests/test_while_loop_op.py b/python/paddle/fluid/tests/unittests/test_while_loop_op.py index 3c91b8c1e2..deaebf4a45 100644 --- a/python/paddle/fluid/tests/unittests/test_while_loop_op.py +++ b/python/paddle/fluid/tests/unittests/test_while_loop_op.py @@ -92,7 +92,7 @@ class TestApiWhileLoop(unittest.TestCase): test_dict["test_key"] = i test_dict["test_key"] += 1 - test_list[0] = fluid.layers.reshape(test_list[0], [2, -1]) + 1 + test_list[0] = paddle.reshape(test_list[0], [2, -1]) + 1 test_list_dict[0]["test_key"] += 1 test_list_dict[0]["test_key"] = fluid.layers.relu( diff --git a/python/paddle/fluid/tests/unittests/transformer_model.py b/python/paddle/fluid/tests/unittests/transformer_model.py index c45e17ab77..842d9320da 100644 --- a/python/paddle/fluid/tests/unittests/transformer_model.py +++ b/python/paddle/fluid/tests/unittests/transformer_model.py @@ -115,7 +115,7 @@ def multi_head_attention( hidden_size = x.shape[-1] # FIXME(guosheng): Decouple the program desc with batch_size. - reshaped = layers.reshape( + reshaped = paddle.reshape( x=x, shape=[batch_size, -1, n_head, hidden_size // n_head] ) @@ -135,7 +135,7 @@ def multi_head_attention( trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) # FIXME(guosheng): Decouple the program desc with batch_size. - return layers.reshape( + return paddle.reshape( x=trans_x, shape=list( map(int, [batch_size, -1, trans_x.shape[2] * trans_x.shape[3]]) @@ -281,7 +281,7 @@ def prepare_encoder( enc_input = src_word_emb + src_pos_enc # FIXME(guosheng): Decouple the program desc with batch_size. - enc_input = layers.reshape(x=enc_input, shape=[batch_size, -1, src_emb_dim]) + enc_input = paddle.reshape(x=enc_input, shape=[batch_size, -1, src_emb_dim]) return ( layers.dropout(enc_input, dropout_prob=dropout, is_test=False) if dropout @@ -581,7 +581,7 @@ def transformer( # TODO(guosheng): Share the weight matrix between the embedding layers and # the pre-softmax linear transformation. - predict = layers.reshape( + predict = paddle.reshape( x=layers.fc( input=dec_output, size=trg_vocab_size, @@ -590,8 +590,8 @@ def transformer( num_flatten_dims=2, ), shape=[-1, trg_vocab_size], - act="softmax", ) + predict = paddle.nn.functional.softmax(predict) cost = layers.cross_entropy(input=predict, label=gold) weighted_cost = cost * weights -- GitLab