未验证 提交 417fcf4f 编写于 作者: K Kexin Zhao 提交者: GitHub

Modify Pybind LoDTensor API according to length-based LoD (#11106)

* add lod_tensor util and modify pybind

* refind pybind LoDTensor API and modify LoDTensor and DataFeeder test

* fix test error

* fix detection map op test

* fix reorder_lod_tensor test

* fix seq_concat_op

* fix chunk evel op test

* fix target assign op

* fix warp ctc op

* address comments step 1: reverse reset_lod op

* step 2: modify op test

* add warning message

* remove has_valid_lod

* add back has_valid_lod

* address comments

* add exception catching trial
上级 53d1d0f0
......@@ -173,21 +173,6 @@ def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
return avg_cost, feeding_list
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
lod_t = core.LoDTensor()
lod_t.set(flattened_data, place)
lod_t.set_lod([lod])
return lod_t, lod[-1]
def lodtensor_to_ndarray(lod_tensor):
dims = lod_tensor.get_dims()
ndarray = np.zeros(shape=dims).astype('float32')
......
......@@ -125,18 +125,3 @@ def get_model(args):
batch_size=args.batch_size)
return loss, inference_program, adam, train_reader, test_reader, batch_acc
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = numpy.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
......@@ -410,5 +410,38 @@ void LoDTensor::MergeLoDTensor(
}
}
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
LoD length_lod;
length_lod.reserve(offset_lod.size());
for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
std::vector<size_t> level;
if (offset_lod[lvl].size() > 0) {
level.reserve(offset_lod[lvl].size() - 1);
}
for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
}
length_lod.push_back(level);
}
return length_lod;
}
LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
LoD offset_lod;
offset_lod.reserve(length_lod.size());
for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
std::vector<size_t> level;
level.reserve(length_lod[lvl].size() + 1);
size_t tmp = 0;
level.push_back(tmp);
for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
tmp += length_lod[lvl][idx];
level.push_back(tmp);
}
offset_lod.push_back(level);
}
return offset_lod;
}
} // namespace framework
} // namespace paddle
......@@ -226,5 +226,19 @@ extern void WriteToRecordIO(recordio::Writer* writer,
extern std::vector<LoDTensor> ReadFromRecordIO(
recordio::Scanner* scanner, const platform::DeviceContext& dev_ctx);
/*
* Convert between length-based LoD and offset-based LoD.
* The implementation of LoDTensor class use offset-based LoD.
* However, we want to expose the more user-friendly length-based
* LoD to the Python side instead.
*
* Example:
* If offset_lod = [[0, 2, 3],[0, 3, 5, 9]]
* then length_lod = [[2, 1], [3, 2, 4]]
*/
LoD ConvertToLengthBasedLoD(const LoD& offset_lod);
LoD ConvertToOffsetBasedLoD(const LoD& length_lod);
} // namespace framework
} // namespace paddle
......@@ -228,6 +228,38 @@ TEST(LoD, CheckAbsLoD) {
ASSERT_FALSE(CheckAbsLoD(abs_lod0));
}
TEST(LoD, ConvertToLengthBasedLoD) {
LoD offset_lod;
offset_lod.push_back(std::vector<size_t>({0, 2}));
offset_lod.push_back(std::vector<size_t>({0, 1, 3}));
offset_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));
LoD length_lod = ConvertToLengthBasedLoD(offset_lod);
LoD expected;
expected.push_back(std::vector<size_t>({2}));
expected.push_back(std::vector<size_t>({1, 2}));
expected.push_back(std::vector<size_t>({2, 2, 1}));
EXPECT_EQ(length_lod, expected);
}
TEST(LoD, ConvertToOffsetBasedLoD) {
LoD length_lod;
length_lod.push_back(std::vector<size_t>({2}));
length_lod.push_back(std::vector<size_t>({1, 2}));
length_lod.push_back(std::vector<size_t>({2, 2, 1}));
LoD offset_lod = ConvertToOffsetBasedLoD(length_lod);
LoD expected;
expected.push_back(std::vector<size_t>({0, 2}));
expected.push_back(std::vector<size_t>({0, 1, 3}));
expected.push_back(std::vector<size_t>({0, 2, 4, 5}));
EXPECT_EQ(offset_lod, expected);
}
template <typename T>
static void TestRecordIO() {
LoDTensor tensor;
......
......@@ -144,28 +144,74 @@ PYBIND11_PLUGIN(core) {
py::class_<LoDTensor, Tensor>(m, "LoDTensor")
.def_buffer(
[](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
.def(
"__init__",
[](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
.def("__init__",
[](LoDTensor &instance, const std::vector<std::vector<size_t>>
&recursive_sequence_lengths) {
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
new (&instance) LoDTensor(new_lod);
new_lod.reserve(recursive_sequence_lengths.size());
std::copy(recursive_sequence_lengths.begin(),
recursive_sequence_lengths.end(),
std::back_inserter(new_lod));
LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
PADDLE_ENFORCE(
CheckLoD(new_offset_lod, -1),
"the provided recursive_sequence_lengths info is invalid");
new (&instance) LoDTensor(new_offset_lod);
})
.def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
.def("set_lod",
[](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
// the input lod is offset-based level-of-detail info
LOG(WARNING)
<< "set_lod is deprecated and will be removed by 9.2018, "
"please switch to set_recursive_sequence_lengths.";
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
"the provided lod info is invalid");
self.set_lod(new_lod);
})
.def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
auto lod = self.lod();
.def("set_recursive_sequence_lengths",
[](LoDTensor &self, const std::vector<std::vector<size_t>>
&recursive_sequence_lengths) {
// the input recursive_sequence_lengths is length-based
// level-of-detail info
LoD new_lod;
new_lod.reserve(recursive_sequence_lengths.size());
std::copy(recursive_sequence_lengths.begin(),
recursive_sequence_lengths.end(),
std::back_inserter(new_lod));
LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
PADDLE_ENFORCE(
CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
"the provided recursive_sequence_lengths info is invalid");
self.set_lod(new_offset_lod);
})
.def("lod",
[](LoDTensor &self) -> std::vector<std::vector<size_t>> {
// output the offset-based lod info
LOG(WARNING) << "lod is deprecated and will be removed by 9.2018, "
"please switch to recursive_sequence_lengths.";
LoD lod = self.lod();
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
return new_lod;
})
.def("recursive_sequence_lengths",
[](LoDTensor &self) -> std::vector<std::vector<size_t>> {
// output the length-based lod info
LoD lod = ConvertToLengthBasedLoD(self.lod());
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
return new_lod;
})
.def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
// Check that the lod info is valid and match the outermost
// dimension of the LoDTensor data
return CheckLoD(self.lod(), vectorize(self.dims()).front());
});
py::class_<SelectedRows>(m, "SelectedRows")
......
......@@ -47,7 +47,7 @@ class DataToLoDTensorConverter(object):
self.lod = []
for i in six.range(lod_level):
self.lod.append([0])
self.lod.append([])
def feed(self, data):
self._feed_impl_(data, self.lod, self.lod_level)
......@@ -56,8 +56,7 @@ class DataToLoDTensorConverter(object):
if lod_level == 0:
self.data.append(data)
else:
cur_lod_len = len(data)
lod[0].append(lod[0][-1] + cur_lod_len)
lod[0].append(len(data))
for each_data in data:
self._feed_impl_(each_data, lod[1:], lod_level - 1)
......@@ -66,7 +65,7 @@ class DataToLoDTensorConverter(object):
t = core.LoDTensor()
t.set(arr, self.place)
if self.lod_level > 0:
t.set_lod(self.lod)
t.set_recursive_sequence_lengths(self.lod)
return t
......
......@@ -18,80 +18,6 @@ import numpy as np
__all__ = ['create_lod_tensor', 'create_random_int_lodtensor']
def _validate_lod(lod, tensor_height=-1):
"""Check whether the input length-based lod info is valid.
There are several things to check:
1. lod should be a list of lists. Empty list is fine.
2. The length of each sublist (a lod level) should be at least one.
3. Each element in each lod level should be an integer greater than 0.
4. The sum of one lod level should be equal to the length of the next lod level.
5. The sum of the last lod level should be equal to the tensor height.
Bypass this check if user does not provide tensor_height as input.
Args:
lod: the length-based lod info, e.g., [[2, 3], [2, 1, 2, 3, 4]].
tensor_height: the outermost dimension of the tensor with which the input
lod is associated with.
Returns:
A boolean indicating whether the input lod is valid or not.
"""
assert isinstance(lod, list), "lod should be a list"
# Empty lod is fine
if len(lod) == 0:
return True
lod_sum = []
for level in lod:
assert isinstance(level, list), "each item in lod should be a list"
# Each level of lod should have at least one length info
if len(level) < 1:
return False
level_sum = 0
for lod_len in level:
# Each length in a level should be > 0
if lod_len <= 0:
return False
level_sum += lod_len
lod_sum.append(level_sum)
for idx, val in enumerate(lod_sum[:-1]):
# Each level's sum should be equal to
# the number of items in the next level
if val != len(lod[idx + 1]):
return False
if tensor_height == -1:
return True
else:
# Last level's sum should be equal to the tensor height
return lod_sum[-1] == tensor_height
def _convert_lod(lod):
"""Convert a length-based lod to a offset-based lod.
If the length-based lod is [[2, 3], [2, 1, 2, 3, 4]],
then the offset-based lod is [[0, 2, 5], [0, 2, 3, 5, 8, 12]].
Args:
lod: a length-based lod info.
Returns:
A list of lists as the offset-based lod converted to from the input lod.
"""
new_lod = []
for level in lod:
cur_len = 0
new_level = [cur_len]
for lod_len in level:
cur_len += lod_len
new_level.append(cur_len)
new_lod.append(new_level)
return new_lod
def create_lod_tensor(data, lod, place):
"""Create a lod tensor from a numpy array, a list, or an existing lod tensor.
......@@ -139,11 +65,11 @@ def create_lod_tensor(data, lod, place):
flattened_data = flattened_data.reshape([len(flattened_data), 1])
return create_lod_tensor(flattened_data, lod, place)
elif isinstance(data, np.ndarray):
assert _validate_lod(lod,
data.shape[0]), "the provided lod info is invalid"
tensor = core.LoDTensor()
tensor.set(data, place)
tensor.set_lod(_convert_lod(lod))
tensor.set_recursive_sequence_lengths(lod)
assert tensor.has_valid_recursive_sequence_lengths(
), "the provided lod info is invalid"
return tensor
else:
raise TypeError(
......@@ -181,9 +107,8 @@ def create_random_int_lodtensor(lod, base_shape, place, low, high):
A fluid LoDTensor object with tensor data and lod info.
"""
assert isinstance(base_shape, list), "base_shape should be a list"
converted_lod = _convert_lod(lod)
# append the total number of basic elements to the front of its shape
overall_shape = [converted_lod[-1][-1]] + base_shape
overall_shape = [sum(lod[-1])] + base_shape
# the range of integer data elements is [low, high]
data = np.random.random_integers(low, high, overall_shape).astype("int64")
return create_lod_tensor(data, lod, place)
......@@ -22,12 +22,11 @@ class TestDataFeeder(unittest.TestCase):
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
print(result)
self.assertEqual(result['image'].shape(), [2, 1, 28, 28])
self.assertEqual(result['label'].shape(), [2, 1])
self.assertEqual(result['image'].lod(), [])
self.assertEqual(result['label'].lod(), [])
self.assertEqual(result['image'].recursive_sequence_lengths(), [])
self.assertEqual(result['label'].recursive_sequence_lengths(), [])
def test_lod_level_1_converter(self):
# lod_level = 1
......@@ -42,12 +41,12 @@ class TestDataFeeder(unittest.TestCase):
# label = [1] * len(data)
result = feeder.feed(
[([1, 2, 3], [1]), ([4, 5], [1]), ([6, 7, 8, 9], [1])])
print(result)
self.assertEqual(result['sentences'].shape(), [9, 1])
self.assertEqual(result['label'].shape(), [3, 1])
self.assertEqual(result['sentences'].lod(), [[0, 3, 5, 9]])
self.assertEqual(result['label'].lod(), [])
self.assertEqual(result['sentences'].recursive_sequence_lengths(),
[[3, 2, 4]])
self.assertEqual(result['label'].recursive_sequence_lengths(), [])
def test_lod_level_2_converter(self):
# lod_level = 2
......@@ -62,12 +61,12 @@ class TestDataFeeder(unittest.TestCase):
# label = [1] * len(data)
result = feeder.feed(
[([[1, 2, 3], [4, 5]], [1]), ([[6, 7, 8, 9]], [1])])
print(result)
self.assertEqual(result['paragraphs'].shape(), [9, 1])
self.assertEqual(result['label'].shape(), [2, 1])
self.assertEqual(result['paragraphs'].lod(), [[0, 2, 3], [0, 3, 5, 9]])
self.assertEqual(result['label'].lod(), [])
self.assertEqual(result['paragraphs'].recursive_sequence_lengths(),
[[2, 1], [3, 2, 4]])
self.assertEqual(result['label'].recursive_sequence_lengths(), [])
if __name__ == '__main__':
......
......@@ -13,44 +13,41 @@
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.lod_tensor import create_lod_tensor, create_random_int_lodtensor, _validate_lod, _convert_lod
import numpy
from paddle.fluid.lod_tensor import create_lod_tensor, create_random_int_lodtensor
import numpy as np
import unittest
class TestLoDTensor(unittest.TestCase):
def test_validate_lod(self):
lod = (1, 2, 1)
self.assertRaises(AssertionError, _validate_lod, lod, -1)
lod = [[1, 2], (2, 3)]
self.assertRaises(AssertionError, _validate_lod, lod, -1)
lod = [1, 2, 3]
self.assertRaises(AssertionError, _validate_lod, lod, -1)
def test_pybind_lod(self):
tensor = fluid.LoDTensor()
lod = []
self.assertTrue(_validate_lod(lod, -1))
tensor.set_recursive_sequence_lengths(lod)
lod = [[], [1], [3]]
self.assertFalse(_validate_lod(lod, -1))
lod = [[0], [-1], [3]]
self.assertFalse(_validate_lod(lod, -1))
self.assertRaises(Exception, tensor.set_recursive_sequence_lengths, lod)
lod = [[0], [2], [3]]
self.assertRaises(Exception, tensor.set_recursive_sequence_lengths, lod)
# Each level's sum should be equal to the number of items in the next level
# Moreover, last level's sum should be equal to the tensor height
lod = [[2, 3], [1, 3, 1, 2, 1]]
self.assertTrue(_validate_lod(lod, tensor_height=8))
lod = [[1, 3], [2, 1, 3]]
self.assertFalse(_validate_lod(lod, tensor_height=6))
lod = [[1, 3], [2, 1, 3, 4]]
self.assertFalse(_validate_lod(lod, tensor_height=5))
def test_convert_lod(self):
lod = [[1, 2, 3]]
converted_lod = [[0, 1, 3, 6]]
self.assertEqual(_convert_lod(lod), converted_lod)
tensor.set_recursive_sequence_lengths(lod)
self.assertEqual(tensor.recursive_sequence_lengths(), lod)
tensor.set(np.random.random([6, 1]), fluid.CPUPlace())
self.assertTrue(tensor.has_valid_recursive_sequence_lengths())
tensor.set(np.random.random([9, 1]), fluid.CPUPlace())
self.assertFalse(tensor.has_valid_recursive_sequence_lengths())
# Each level's sum should be equal to the number of items in the next level
# Moreover, last level's sum should be equal to the tensor height
lod = [[2, 3], [1, 3, 1, 2, 2]]
tensor.set_recursive_sequence_lengths(lod)
self.assertEqual(tensor.recursive_sequence_lengths(), lod)
tensor.set(np.random.random([8, 1]), fluid.CPUPlace())
self.assertFalse(tensor.has_valid_recursive_sequence_lengths())
lod = [[2, 3], [1, 3, 1, 2, 1]]
converted_lod = [[0, 2, 5], [0, 1, 4, 5, 7, 8]]
self.assertEqual(_convert_lod(lod), converted_lod)
tensor.set_recursive_sequence_lengths(lod)
self.assertTrue(tensor.has_valid_recursive_sequence_lengths())
tensor.set(np.random.random([9, 1]), fluid.CPUPlace())
self.assertFalse(tensor.has_valid_recursive_sequence_lengths())
def test_create_lod_tensor(self):
# Create LoDTensor from a list
......@@ -60,19 +57,19 @@ class TestLoDTensor(unittest.TestCase):
self.assertRaises(AssertionError, create_lod_tensor, data, wrong_lod,
fluid.CPUPlace())
tensor = create_lod_tensor(data, correct_lod, fluid.CPUPlace())
self.assertEqual(tensor.lod(), [[0, 3, 5]])
self.assertEqual(tensor.recursive_sequence_lengths(), correct_lod)
# Create LoDTensor from numpy array
data = numpy.random.random([10, 1])
data = np.random.random([10, 1])
lod = [[2, 1], [3, 3, 4]]
tensor = create_lod_tensor(data, lod, fluid.CPUPlace())
self.assertEqual(tensor.lod(), [[0, 2, 3], [0, 3, 6, 10]])
self.assertEqual(tensor.recursive_sequence_lengths(), lod)
# Create LoDTensor from another LoDTensor, they are differnt instances
new_lod = [[2, 2, 1], [1, 2, 2, 3, 2]]
new_tensor = create_lod_tensor(tensor, new_lod, fluid.CPUPlace())
self.assertEqual(tensor.lod(), [[0, 2, 3], [0, 3, 6, 10]])
self.assertEqual(new_tensor.lod(), [[0, 2, 4, 5], [0, 1, 3, 5, 8, 10]])
self.assertEqual(tensor.recursive_sequence_lengths(), lod)
self.assertEqual(new_tensor.recursive_sequence_lengths(), new_lod)
def test_create_random_int_lodtensor(self):
# The shape of a word, commonly used in speech and NLP problem, is [1]
......@@ -83,7 +80,7 @@ class TestLoDTensor(unittest.TestCase):
high = dict_size - 1
tensor = create_random_int_lodtensor(lod, shape,
fluid.CPUPlace(), low, high)
self.assertEqual(tensor.lod(), [[0, 2, 5, 10]])
self.assertEqual(tensor.recursive_sequence_lengths(), lod)
self.assertEqual(tensor.shape(), [10, 1])
......
......@@ -162,7 +162,7 @@ class OpTest(unittest.TestCase):
tensor = core.LoDTensor()
if isinstance(np_value, tuple):
tensor.set(np_value[0], place)
tensor.set_lod(np_value[1])
tensor.set_recursive_sequence_lengths(np_value[1])
else:
tensor.set(np_value, place)
feed_map[name] = tensor
......@@ -170,7 +170,8 @@ class OpTest(unittest.TestCase):
tensor = core.LoDTensor()
if isinstance(self.inputs[var_name], tuple):
tensor.set(self.inputs[var_name][0], place)
tensor.set_lod(self.inputs[var_name][1])
tensor.set_recursive_sequence_lengths(self.inputs[var_name][
1])
else:
tensor.set(self.inputs[var_name], place)
feed_map[var_name] = tensor
......@@ -293,7 +294,8 @@ class OpTest(unittest.TestCase):
str(place))
if isinstance(expect, tuple):
self.assertListEqual(
actual.lod(), expect[1], "Output (" + sub_out_name +
actual.recursive_sequence_lengths(), expect[1],
"Output (" + sub_out_name +
") has different lod at " + str(place))
else:
idx = find_actual(out_name, fetch_list)
......@@ -307,8 +309,8 @@ class OpTest(unittest.TestCase):
"Output (" + out_name + ") has diff at " + str(place) +
str(actual_t) + "\n" + str(expect_t))
if isinstance(expect, tuple):
self.assertListEqual(actual.lod(), expect[1],
"Output (" + out_name +
self.assertListEqual(actual.recursive_sequence_lengths(),
expect[1], "Output (" + out_name +
") has different lod at " + str(place))
def _get_places(self):
......@@ -408,7 +410,7 @@ class OpTest(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(np_value, place)
if lod is not None:
tensor.set_lod(lod)
tensor.set_recursive_sequence_lengths(lod)
return tensor
@staticmethod
......
......@@ -128,7 +128,7 @@ def create_or_get_tensor(scope, var_name, var, place):
tensor = scope.var(var_name).get_tensor()
if var is not None:
assert isinstance(var, np.ndarray)
tensor.set_lod([[]])
tensor.set_recursive_sequence_lengths([])
tensor.set_dims(var.shape)
tensor.set(var, place)
return tensor
......
......@@ -26,36 +26,36 @@ class TestBeamSearchDecodeOp(unittest.TestCase):
def append_lod_tensor(self, tensor_array, lod, data):
lod_tensor = core.LoDTensor()
lod_tensor.set_lod(lod)
lod_tensor.set_recursive_sequence_lengths(lod)
lod_tensor.set(data, self.place)
tensor_array.append(lod_tensor)
def test_get_set(self):
ids = self.scope.var("ids").get_lod_tensor_array()
self.append_lod_tensor(
ids, [[0, 3, 6], [0, 1, 2, 3, 4, 5, 6]],
ids, [[3, 3], [1, 1, 1, 1, 1, 1]],
np.array(
[1, 2, 3, 4, 5, 6], dtype="int64"))
self.append_lod_tensor(
ids, [[0, 3, 6], [0, 1, 1, 3, 5, 5, 6]],
ids, [[3, 3], [1, 0, 2, 2, 0, 1]],
np.array(
[0, 1, 2, 3, 4, 5], dtype="int64"))
self.append_lod_tensor(
ids, [[0, 3, 6], [0, 0, 1, 2, 3, 4, 5]],
ids, [[3, 3], [0, 1, 1, 1, 1, 1]],
np.array(
[0, 1, 2, 3, 4], dtype="int64"))
scores = self.scope.var("scores").get_lod_tensor_array()
self.append_lod_tensor(
scores, [[0, 3, 6], [0, 1, 2, 3, 4, 5, 6]],
scores, [[3, 3], [1, 1, 1, 1, 1, 1]],
np.array(
[1, 2, 3, 4, 5, 6], dtype="float64"))
self.append_lod_tensor(
scores, [[0, 3, 6], [0, 1, 1, 3, 5, 5, 6]],
scores, [[3, 3], [1, 0, 2, 2, 0, 1]],
np.array(
[0, 1, 2, 3, 4, 5], dtype="float64"))
self.append_lod_tensor(
scores, [[0, 3, 6], [0, 0, 1, 2, 3, 4, 5]],
scores, [[3, 3], [0, 1, 1, 1, 1, 1]],
np.array(
[0, 1, 2, 3, 4], dtype="float64"))
......@@ -73,9 +73,11 @@ class TestBeamSearchDecodeOp(unittest.TestCase):
beam_search_decode_op.run(self.scope, self.place)
expected_lod = [[0, 4, 8], [0, 1, 3, 6, 9, 10, 13, 16, 19]]
self.assertEqual(sentence_ids.lod(), expected_lod)
self.assertEqual(sentence_scores.lod(), expected_lod)
expected_lod = [[4, 4], [1, 2, 3, 3, 1, 3, 3, 3]]
self.assertEqual(sentence_ids.recursive_sequence_lengths(),
expected_lod)
self.assertEqual(sentence_scores.recursive_sequence_lengths(),
expected_lod)
expected_data = np.array(
[2, 1, 0, 3, 1, 0, 3, 2, 1, 5, 4, 3, 2, 4, 4, 3, 6, 5, 4], "int64")
......
......@@ -48,18 +48,18 @@ class BeamSearchOpTester(unittest.TestCase):
op.run(self.scope, core.CPUPlace())
selected_ids = self.scope.find_var("selected_ids").get_tensor()
print 'selected_ids', np.array(selected_ids)
print 'lod', selected_ids.lod()
print 'lod', selected_ids.recursive_sequence_lengths()
def _create_pre_ids(self):
np_data = np.array([[1, 2, 3, 4]], dtype='int64')
tensor = create_tensor(self.scope, "pre_ids", np_data)
def _create_ids(self):
self.lod = [[0, 1, 4], [0, 1, 2, 3, 4]]
self.lod = [[1, 3], [1, 1, 1, 1]]
np_data = np.array(
[[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]], dtype='int64')
tensor = create_tensor(self.scope, "ids", np_data)
tensor.set_lod(self.lod)
tensor.set_recursive_sequence_lengths(self.lod)
def _create_scores(self):
np_data = np.array(
......@@ -71,7 +71,7 @@ class BeamSearchOpTester(unittest.TestCase):
],
dtype='float32')
tensor = create_tensor(self.scope, "scores", np_data)
tensor.set_lod(self.lod)
tensor.set_recursive_sequence_lengths(self.lod)
if __name__ == '__main__':
......
......@@ -65,23 +65,25 @@ def batch_bipartite_match(distance, lod, match_type=None, dist_threshold=None):
distance (numpy.array) : The distance of two entries with shape [M, N].
lod (list of int): The offsets of each input in this batch.
"""
n = len(lod) - 1
n = len(lod)
m = distance.shape[1]
match_indices = -1 * np.ones((n, m), dtype=np.int)
match_dist = np.zeros((n, m), dtype=np.float32)
for i in range(len(lod) - 1):
bipartite_match(distance[lod[i]:lod[i + 1], :], match_indices[i, :],
match_dist[i, :])
cur_offset = 0
for i in range(n):
bipartite_match(distance[cur_offset:(cur_offset + lod[i]), :],
match_indices[i, :], match_dist[i, :])
if match_type == 'per_prediction':
argmax_match(distance[lod[i]:lod[i + 1], :], match_indices[i, :],
match_dist[i, :], dist_threshold)
argmax_match(distance[cur_offset:(cur_offset + lod[i]), :],
match_indices[i, :], match_dist[i, :], dist_threshold)
cur_offset += lod[i]
return match_indices, match_dist
class TestBipartiteMatchOpWithLoD(OpTest):
def setUp(self):
self.op_type = 'bipartite_match'
lod = [[0, 5, 11, 23]]
lod = [[5, 6, 12]]
dist = np.random.random((23, 217)).astype('float32')
match_indices, match_dist = batch_bipartite_match(dist, lod[0])
......@@ -98,7 +100,7 @@ class TestBipartiteMatchOpWithLoD(OpTest):
class TestBipartiteMatchOpWithoutLoD(OpTest):
def setUp(self):
self.op_type = 'bipartite_match'
lod = [[0, 8]]
lod = [[8]]
dist = np.random.random((8, 17)).astype('float32')
match_indices, match_dist = batch_bipartite_match(dist, lod[0])
......@@ -115,7 +117,7 @@ class TestBipartiteMatchOpWithoutLoD(OpTest):
class TestBipartiteMatchOpWithPerPredictionType(OpTest):
def setUp(self):
self.op_type = 'bipartite_match'
lod = [[0, 5, 11, 23]]
lod = [[5, 6, 12]]
dist = np.random.random((23, 237)).astype('float32')
match_indices, match_dist = batch_bipartite_match(dist, lod[0],
'per_prediction', 0.5)
......
......@@ -81,15 +81,19 @@ def batch_box_coder(prior_box, prior_box_var, target_box, lod, code_type,
n = target_box.shape[0]
m = prior_box.shape[0]
output_box = np.zeros((n, m, 4), dtype=np.float32)
for i in range(len(lod) - 1):
cur_offset = 0
for i in range(len(lod)):
if (code_type == "EncodeCenterSize"):
box_coder(target_box[lod[i]:lod[i + 1], :], prior_box,
prior_box_var, output_box[lod[i]:lod[i + 1], :, :],
box_coder(target_box[cur_offset:(cur_offset + lod[i]), :],
prior_box, prior_box_var,
output_box[cur_offset:(cur_offset + lod[i]), :, :],
code_type, box_normalized)
elif (code_type == "DecodeCenterSize"):
box_coder(target_box[lod[i]:lod[i + 1], :, :], prior_box,
prior_box_var, output_box[lod[i]:lod[i + 1], :, :],
box_coder(target_box[cur_offset:(cur_offset + lod[i]), :, :],
prior_box, prior_box_var,
output_box[cur_offset:(cur_offset + lod[i]), :, :],
code_type, box_normalized)
cur_offset += lod[i]
return output_box
......@@ -99,7 +103,7 @@ class TestBoxCoderOp(OpTest):
def setUp(self):
self.op_type = "box_coder"
lod = [[0, 1, 2, 3, 4, 5]]
lod = [[1, 1, 1, 1, 1]]
prior_box = np.random.random((10, 4)).astype('float32')
prior_box_var = np.random.random((10, 4)).astype('float32')
target_box = np.random.random((5, 10, 4)).astype('float32')
......@@ -152,7 +156,7 @@ class TestBoxCoderOpWithLoD(OpTest):
def setUp(self):
self.op_type = "box_coder"
lod = [[0, 4, 12, 20]]
lod = [[4, 8, 8]]
prior_box = np.random.random((10, 4)).astype('float32')
prior_box_var = np.random.random((10, 4)).astype('float32')
target_box = np.random.random((20, 4)).astype('float32')
......
......@@ -144,10 +144,10 @@ class TestChunkEvalOp(OpTest):
starts = sorted(starts)
self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = self.gen_chunks(
infer, label, starts)
self.inputs = {
'Inference': (infer, [starts]),
'Label': (label, [starts])
}
lod = []
for i in range(len(starts) - 1):
lod.append(starts[i + 1] - starts[i])
self.inputs = {'Inference': (infer, [lod]), 'Label': (label, [lod])}
precision = float(
self.num_correct_chunks
) / self.num_infer_chunks if self.num_infer_chunks else 0
......
......@@ -22,9 +22,9 @@ from op_test import OpTest
class CRFDecoding(object):
def __init__(self, emission_weights, transition_weights,
seq_start_positions):
assert (emission_weights.shape[0] == seq_start_positions[-1])
assert (emission_weights.shape[0] == sum(seq_start_positions))
self.tag_num = emission_weights.shape[1]
self.seq_num = len(seq_start_positions) - 1
self.seq_num = len(seq_start_positions)
self.seq_start_positions = seq_start_positions
self.x = emission_weights
......@@ -34,9 +34,9 @@ class CRFDecoding(object):
self.w = transition_weights[2:, :]
self.track = np.zeros(
(seq_start_positions[-1], self.tag_num), dtype="int64")
(sum(seq_start_positions), self.tag_num), dtype="int64")
self.decoded_path = np.zeros(
(seq_start_positions[-1], 1), dtype="int64")
(sum(seq_start_positions), 1), dtype="int64")
def _decode_one_sequence(self, decoded_path, x):
seq_len, tag_num = x.shape
......@@ -71,9 +71,11 @@ class CRFDecoding(object):
decoded_path[i - 1] = max_idx = track[i, max_idx]
def decode(self):
cur_pos = 0
for i in range(self.seq_num):
start = self.seq_start_positions[i]
end = self.seq_start_positions[i + 1]
start = cur_pos
cur_pos += self.seq_start_positions[i]
end = cur_pos
self._decode_one_sequence(self.decoded_path[start:end, :],
self.x[start:end, :])
return self.decoded_path
......@@ -90,11 +92,13 @@ class TestCRFDecodingOp1(OpTest):
TAG_NUM = 17
MAX_SEQ_LEN = 10
lod = [[0]]
lod = [[]]
total_len = 0
for i in range(SEQ_NUM):
lod[-1].append(lod[-1][-1] + random.randint(1, MAX_SEQ_LEN))
lod[-1].append(random.randint(1, MAX_SEQ_LEN))
total_len += lod[-1][-1]
emission = np.random.uniform(-1, 1,
[lod[-1][-1], TAG_NUM]).astype("float64")
[total_len, TAG_NUM]).astype("float64")
transition = np.random.uniform(-0.5, 0.5,
[TAG_NUM + 2, TAG_NUM]).astype("float64")
......@@ -126,7 +130,8 @@ class TestCRFDecodingOp2(OpTest):
self.op_type = "crf_decoding"
TAG_NUM = 5
lod = [[0, 1, 3, 6, 10]]
lod = [[1, 2, 3, 4]]
total_len = sum(lod[-1])
transition = np.repeat(
np.arange(
TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
......@@ -135,13 +140,13 @@ class TestCRFDecodingOp2(OpTest):
emission = np.repeat(
np.arange(
TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
lod[-1][-1],
total_len,
axis=0)
labels = np.random.randint(
low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int64")
low=0, high=TAG_NUM, size=(total_len, 1), dtype="int64")
predicted_labels = np.ones(
(lod[-1][-1], 1), dtype="int64") * (TAG_NUM - 1)
(total_len, 1), dtype="int64") * (TAG_NUM - 1)
expected_output = (labels == predicted_labels).astype("int64")
self.inputs = {
......
......@@ -22,14 +22,16 @@ from test_softmax_op import stable_softmax
def CTCAlign(input, lod, blank, merge_repeated):
lod0 = lod[0]
result = []
for i in range(len(lod0) - 1):
cur_offset = 0
for i in range(len(lod0)):
prev_token = -1
for j in range(lod0[i], lod0[i + 1]):
for j in range(cur_offset, cur_offset + lod0[i]):
token = input[j][0]
if (token != blank) and not (merge_repeated and
token == prev_token):
result.append(token)
prev_token = token
cur_offset += lod0[i]
result = np.array(result).reshape([len(result), 1]).astype("int32")
if len(result) == 0:
result = np.array([-1])
......@@ -39,7 +41,7 @@ def CTCAlign(input, lod, blank, merge_repeated):
class TestCTCAlignOp(OpTest):
def config(self):
self.op_type = "ctc_align"
self.input_lod = [[0, 11, 18]]
self.input_lod = [[11, 7]]
self.blank = 0
self.merge_repeated = False
self.input = np.array(
......@@ -66,7 +68,7 @@ class TestCTCAlignOp(OpTest):
class TestCTCAlignOpCase1(TestCTCAlignOp):
def config(self):
self.op_type = "ctc_align"
self.input_lod = [[0, 11, 19]]
self.input_lod = [[11, 8]]
self.blank = 0
self.merge_repeated = True
self.input = np.array(
......@@ -77,7 +79,7 @@ class TestCTCAlignOpCase1(TestCTCAlignOp):
class TestCTCAlignOpCase2(TestCTCAlignOp):
def config(self):
self.op_type = "ctc_align"
self.input_lod = [[0, 4]]
self.input_lod = [[4]]
self.blank = 0
self.merge_repeated = True
self.input = np.array([0, 0, 0, 0]).reshape([4, 1]).astype("int32")
......
......@@ -74,13 +74,13 @@ class TestDetectionMAPOp(OpTest):
self.evaluate_difficult = True
self.ap_type = "integral"
self.label_lod = [[0, 2, 4]]
self.label_lod = [[2, 2]]
# label difficult xmin ymin xmax ymax
self.label = [[1, 0, 0.1, 0.1, 0.3, 0.3], [1, 1, 0.6, 0.6, 0.8, 0.8],
[2, 0, 0.3, 0.3, 0.6, 0.5], [1, 0, 0.7, 0.1, 0.9, 0.3]]
# label score xmin ymin xmax ymax difficult
self.detect_lod = [[0, 3, 7]]
self.detect_lod = [[3, 4]]
self.detect = [
[1, 0.3, 0.1, 0.0, 0.4, 0.3], [1, 0.7, 0.0, 0.1, 0.2, 0.3],
[1, 0.9, 0.7, 0.6, 0.8, 0.8], [2, 0.8, 0.2, 0.1, 0.4, 0.4],
......@@ -89,7 +89,7 @@ class TestDetectionMAPOp(OpTest):
]
# label score true_pos false_pos
self.tf_pos_lod = [[0, 3, 7]]
self.tf_pos_lod = [[3, 4]]
self.tf_pos = [[1, 0.9, 1, 0], [1, 0.7, 1, 0], [1, 0.3, 0, 1],
[1, 0.2, 1, 0], [2, 0.8, 0, 1], [2, 0.1, 1, 0],
[3, 0.2, 0, 1]]
......@@ -112,15 +112,19 @@ class TestDetectionMAPOp(OpTest):
for i, count in enumerate(class_pos_count):
class_pos_count_dict[i] = count
for i in range(len(true_pos_lod[0]) - 1):
start = true_pos_lod[0][i]
end = true_pos_lod[0][i + 1]
cur_pos = 0
for i in range(len(true_pos_lod[0])):
start = cur_pos
cur_pos += true_pos_lod[0][i]
end = cur_pos
for j in range(start, end):
true_pos_dict[i].append(true_pos[j])
for i in range(len(false_pos_lod[0]) - 1):
start = false_pos_lod[0][i]
end = false_pos_lod[0][i + 1]
cur_pos = 0
for i in range(len(false_pos_lod[0])):
start = cur_pos
cur_pos += false_pos_lod[0][i]
end = cur_pos
for j in range(start, end):
false_pos_dict[i].append(false_pos[j])
......@@ -130,19 +134,19 @@ class TestDetectionMAPOp(OpTest):
label_number = self.class_num
out_class_pos_count = []
out_true_pos_lod = [0]
out_true_pos_lod = []
out_true_pos = []
out_false_pos_lod = [0]
out_false_pos_lod = []
out_false_pos = []
for i in range(label_number):
out_class_pos_count.append([label_count[i]])
true_pos_list = true_pos[i]
out_true_pos += true_pos_list
out_true_pos_lod.append(len(out_true_pos))
out_true_pos_lod.append(len(true_pos_list))
false_pos_list = false_pos[i]
out_false_pos += false_pos_list
out_false_pos_lod.append(len(out_false_pos))
out_false_pos_lod.append(len(false_pos_list))
return out_class_pos_count, out_true_pos, [
out_true_pos_lod
......@@ -241,7 +245,7 @@ class TestDetectionMAPOpSkipDiff(TestDetectionMAPOp):
self.evaluate_difficult = False
self.tf_pos_lod = [[0, 2, 6]]
self.tf_pos_lod = [[2, 4]]
# label score true_pos false_pos
self.tf_pos = [[1, 0.7, 1, 0], [1, 0.3, 0, 1], [1, 0.2, 1, 0],
[2, 0.8, 0, 1], [2, 0.1, 1, 0], [3, 0.2, 0, 1]]
......@@ -267,9 +271,9 @@ class TestDetectionMAPOpMultiBatch(TestDetectionMAPOp):
def init_test_case(self):
super(TestDetectionMAPOpMultiBatch, self).init_test_case()
self.class_pos_count = [0, 2, 1]
self.true_pos_lod = [[0, 0, 3, 5]]
self.true_pos_lod = [[0, 3, 2]]
self.true_pos = [[0.7, 1.], [0.3, 0.], [0.2, 1.], [0.8, 0.], [0.1, 1.]]
self.false_pos_lod = [[0, 0, 3, 5]]
self.false_pos_lod = [[0, 3, 2]]
self.false_pos = [[0.7, 0.], [0.3, 1.], [0.2, 0.], [0.8, 1.], [0.1, 0.]]
......
......@@ -136,16 +136,16 @@ class BaseRNN(object):
feed_dict = dict()
for iname in self.inputs:
lod = [0]
lod = []
np_flatten = []
for seq_id in xrange(len(self.inputs[iname])):
seq_len = len(self.inputs[iname][seq_id])
lod.append(lod[-1] + seq_len)
lod.append(seq_len)
np_flatten.extend(self.inputs[iname][seq_id])
t = fluid.Tensor()
t.set(numpy.array(np_flatten), place)
t.set_lod([lod])
t.set_recursive_sequence_lengths([lod])
feed_dict[iname] = t
for pname in self.params:
......
......@@ -39,20 +39,20 @@ class TestDyRnnStaticInput(unittest.TestCase):
def prepare_x_tensor(self):
self.x_tensor_dim = 10
lod = [[0, 2, 3, 6]]
shape = [lod[0][-1], self.x_tensor_dim]
lod = [[2, 1, 3]]
shape = [sum(lod[0]), self.x_tensor_dim]
self.x_tensor_data = np.random.random(shape).astype('float32')
self.x_tensor = core.LoDTensor()
self.x_tensor.set_lod(lod)
self.x_tensor.set_recursive_sequence_lengths(lod)
self.x_tensor.set(self.x_tensor_data, self.place)
def prepare_static_input_tensor(self):
self.static_input_tensor_dim = 4
lod = [[0, 1, 3, 6]]
shape = [lod[0][-1], self.static_input_tensor_dim]
lod = [[1, 2, 3]]
shape = [sum(lod[0]), self.static_input_tensor_dim]
self.static_input_data = np.random.random(shape).astype('float32')
self.static_input_tensor = core.LoDTensor()
self.static_input_tensor.set_lod(lod)
self.static_input_tensor.set_recursive_sequence_lengths(lod)
self.static_input_tensor.set(self.static_input_data, self.place)
def fetch_value(self, var):
......@@ -69,7 +69,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
ndarray = np.zeros(shape=dims).astype('float32')
for i in xrange(np.product(dims)):
ndarray.ravel()[i] = lod_tensor.get_float_element(i)
return ndarray, lod_tensor.lod()
return ndarray, lod_tensor.recursive_sequence_lengths()
def build_graph(self, only_forward=False):
x_tensor = fluid.layers.data(
......@@ -131,21 +131,20 @@ class TestDyRnnStaticInput(unittest.TestCase):
framework.grad_var_name('static_input_tensor'))
return static_input_grad, loss
def get_seq_len_from_lod(self, lod):
return [lod[0][i + 1] - lod[0][i] for i in xrange(len(lod[0]) - 1)]
def get_expected_static_step_outs(self):
x_lod = self.x_tensor.lod()
x_seq_len = self.get_seq_len_from_lod(x_lod)
x_lod = self.x_tensor.recursive_sequence_lengths()
x_seq_len = x_lod[0]
x_seq_len_sorted = sorted(x_seq_len)
x_sorted_indices = np.argsort(x_seq_len)[::-1]
static_lod = self.static_input_tensor.lod()
static_sliced = [
self.static_input_data[static_lod[0][i]:static_lod[0][i + 1]]
for i in xrange(len(static_lod[0]) - 1)
]
static_seq_len = self.get_seq_len_from_lod(static_lod)
static_lod = self.static_input_tensor.recursive_sequence_lengths()
static_sliced = []
cur_offset = 0
for i in xrange(len(static_lod[0])):
static_sliced.append(self.static_input_data[cur_offset:(
cur_offset + static_lod[0][i])])
cur_offset += static_lod[0][i]
static_seq_len = static_lod[0]
static_reordered = []
for i in xrange(len(x_sorted_indices)):
static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist())
......@@ -159,11 +158,13 @@ class TestDyRnnStaticInput(unittest.TestCase):
for i in xrange(self._max_sequence_len):
end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1)
lod = [0]
lod = []
total_len = 0
for i in xrange(end):
lod.append(static_seq_len_reordered[i] + lod[-1])
lod.append(static_seq_len_reordered[i])
total_len += lod[-1]
static_step_lods.append([lod])
end = lod[-1]
end = total_len
static_step_outs.append(
np.array(static_reordered[:end]).astype('float32'))
......@@ -199,7 +200,9 @@ class TestDyRnnStaticInput(unittest.TestCase):
self.static_input_tensor.set_float_element(i, origin)
numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2
self.assertTrue(np.allclose(actual_gradients, numeric_gradients, 0.001))
self.assertTrue(np.allclose(actual_lod, self.static_input_tensor.lod()))
self.assertTrue(
np.allclose(actual_lod,
self.static_input_tensor.recursive_sequence_lengths()))
if __name__ == '__main__':
......
......@@ -52,23 +52,29 @@ class TestEditDistanceOp(OpTest):
def setUp(self):
self.op_type = "edit_distance"
normalized = False
x1 = np.array([[0, 12, 3, 5, 8, 2]]).astype("int64")
x2 = np.array([[0, 12, 4, 7, 8]]).astype("int64")
x1 = np.array([[12, 3, 5, 8, 2]]).astype("int64")
x2 = np.array([[12, 4, 7, 8]]).astype("int64")
x1 = np.transpose(x1)
x2 = np.transpose(x2)
x1_lod = [0, 1, 5]
x2_lod = [0, 3, 4]
x1_lod = [1, 4]
x2_lod = [3, 1]
num_strs = len(x1_lod) - 1
num_strs = len(x1_lod)
distance = np.zeros((num_strs, 1)).astype("float32")
sequence_num = np.array(2).astype("int64")
x1_offset = 0
x2_offset = 0
for i in range(0, num_strs):
distance[i] = Levenshtein(
hyp=x1[x1_lod[i]:x1_lod[i + 1]],
ref=x2[x2_lod[i]:x2_lod[i + 1]])
hyp=x1[x1_offset:(x1_offset + x1_lod[i])],
ref=x2[x2_offset:(x2_offset + x2_lod[i])])
x1_offset += x1_lod[i]
x2_offset += x2_lod[i]
if normalized is True:
len_ref = x2_lod[i + 1] - x2_lod[i]
len_ref = x2_lod[i]
distance[i] = distance[i] / len_ref
self.attrs = {'normalized': normalized}
self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])}
self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
......@@ -81,23 +87,29 @@ class TestEditDistanceOpNormalized(OpTest):
def setUp(self):
self.op_type = "edit_distance"
normalized = True
x1 = np.array([[0, 10, 3, 6, 5, 8, 2]]).astype("int64")
x2 = np.array([[0, 10, 4, 6, 7, 8]]).astype("int64")
x1 = np.array([[10, 3, 6, 5, 8, 2]]).astype("int64")
x2 = np.array([[10, 4, 6, 7, 8]]).astype("int64")
x1 = np.transpose(x1)
x2 = np.transpose(x2)
x1_lod = [0, 1, 3, 6]
x2_lod = [0, 2, 3, 5]
x1_lod = [1, 2, 3]
x2_lod = [2, 1, 2]
num_strs = len(x1_lod) - 1
num_strs = len(x1_lod)
distance = np.zeros((num_strs, 1)).astype("float32")
sequence_num = np.array(3).astype("int64")
x1_offset = 0
x2_offset = 0
for i in range(0, num_strs):
distance[i] = Levenshtein(
hyp=x1[x1_lod[i]:x1_lod[i + 1]],
ref=x2[x2_lod[i]:x2_lod[i + 1]])
hyp=x1[x1_offset:(x1_offset + x1_lod[i])],
ref=x2[x2_offset:(x2_offset + x2_lod[i])])
x1_offset += x1_lod[i]
x2_offset += x2_lod[i]
if normalized is True:
len_ref = x2_lod[i + 1] - x2_lod[i]
len_ref = x2_lod[i]
distance[i] = distance[i] / len_ref
self.attrs = {'normalized': normalized}
self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])}
self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
......
......@@ -24,17 +24,16 @@ class TestFeedFetch(unittest.TestCase):
input_array = np.ones((4, 4, 6)).astype("float32")
input_array[0, 0, 0] = 3
input_array[3, 3, 5] = 10
input_tensor = core.LoDTensor([[0, 2, 4]])
input_tensor = core.LoDTensor([[2, 2]])
input_tensor.set(input_array, place)
core.set_feed_variable(scope, input_tensor, "feed", 0)
output_tensor = core.get_fetch_variable(scope, "feed", 0)
output_lod = output_tensor.lod()
self.assertEqual(0, output_lod[0][0])
output_lod = output_tensor.recursive_sequence_lengths()
self.assertEqual(2, output_lod[0][0])
self.assertEqual(2, output_lod[0][1])
self.assertEqual(4, output_lod[0][2])
output_array = np.array(output_tensor)
self.assertEqual(3, output_array[0, 0, 0])
......
......@@ -55,7 +55,7 @@ class TestFillConstantBatchSizeLikeWithLoDTensor(OpTest):
self.op_type = "fill_constant_batch_size_like"
self.inputs = {
'Input': (np.random.random((31, 28)).astype("float32"),
[[0, 9, 23, 31]])
[[9, 14, 8]])
}
self.attrs = {
'value': 3.5,
......
......@@ -20,8 +20,8 @@ from test_lstm_op import identity, sigmoid, tanh, relu
class TestGRUOp(OpTest):
lod = [[0, 2, 6, 9]]
batch_size = lod[0][-1]
lod = [[2, 4, 3]]
batch_size = sum(lod[0])
frame_size = 5
activate = {
'identity': identity,
......@@ -33,10 +33,10 @@ class TestGRUOp(OpTest):
@staticmethod
def seq_to_batch(lod, is_reverse):
idx_in_seq_list = []
seq_starts = lod[0]
seq_lens = []
for i in range(len(seq_starts) - 1):
seq_lens.append(seq_starts[i + 1] - seq_starts[i])
seq_lens = lod[0]
seq_starts = [0]
for i in range(len(seq_lens)):
seq_starts.append(seq_starts[-1] + seq_lens[i])
sorted_seqs = sorted(
range(len(seq_lens)), lambda x, y: seq_lens[y] - seq_lens[x])
num_batch = seq_lens[sorted_seqs[0]]
......
......@@ -58,8 +58,8 @@ class TestIOUSimilarityOpWithLoD(TestIOUSimilarityOp):
def setUp(self):
super(TestIOUSimilarityOpWithLoD, self).setUp()
self.boxes1_lod = [[0, 1, 2]]
self.output_lod = [[0, 1, 2]]
self.boxes1_lod = [[1, 1]]
self.output_lod = [[1, 1]]
self.inputs = {'X': (self.boxes1, self.boxes1_lod), 'Y': self.boxes2}
self.outputs = {'Out': (self.output, self.output_lod)}
......
......@@ -105,11 +105,13 @@ class TestLinearChainCrfOp(OpTest):
MAX_SEQ_LEN = 5
# the linear_chain_crf operator only supports sequence (LoD level = 1)
lod = [[0]]
lod = [[]]
seq_start_pos = [0]
for i in range(SEQ_NUM):
lod[-1].append(lod[-1][-1] + random.randint(1, MAX_SEQ_LEN))
emission = np.random.uniform(-1, 1,
[lod[-1][-1], TAG_NUM]).astype("float64")
lod[-1].append(random.randint(1, MAX_SEQ_LEN))
seq_start_pos.append(seq_start_pos[-1] + lod[-1][-1])
emission = np.random.uniform(
-1, 1, [seq_start_pos[-1], TAG_NUM]).astype("float64")
emission_row_max = np.amax(emission, axis=1, keepdims=True)
emission_exps = np.exp(emission - emission_row_max)
......@@ -118,14 +120,14 @@ class TestLinearChainCrfOp(OpTest):
transition_exps = np.exp(transition)
labels = np.random.randint(
low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int64")
low=0, high=TAG_NUM, size=(seq_start_pos[-1], 1), dtype="int64")
self.inputs = {
"Emission": (emission, lod),
"Transition": transition,
"Label": (labels, lod)
}
crf = LinearChainCrfForward(lod[0], emission, emission_row_max,
crf = LinearChainCrfForward(seq_start_pos, emission, emission_row_max,
emission_exps, transition, transition_exps,
labels)
alpha, log_likelihood = crf.crf_forward_compute()
......
......@@ -30,7 +30,8 @@ class TestLoDRankTable(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(numpy.random.random(size=(17, 100)), cpu)
tensor.set_lod([[0, 1, 3], [0, 5, 6, 7], [0, 3, 4, 9, 10, 13, 16, 17]])
tensor.set_recursive_sequence_lengths(
[[1, 2], [5, 1, 1], [3, 1, 5, 1, 3, 3, 1]])
exe.run(scope=scope, feed={'x': tensor})
var = scope.find_var(rank_table.name)
table = var.get_lod_rank_table()
......
......@@ -21,11 +21,15 @@ class TestLodResetOpByAttr(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[0, 3, 5, 10]]
target_lod_0 = [0, 7, 10]
lod = [[3, 2, 5]]
# target_offset_lod and target_lod are the same lod info represented
# in offset-based format and length-based format, respectively.
target_offset_lod = [0, 7, 10]
target_lod = [7, 3]
self.inputs = {'X': (x, lod)}
self.attrs = {'target_lod': target_lod_0}
self.outputs = {'Out': (x, [target_lod_0])}
# The `target_lod` attribute is still based on offset
self.attrs = {'target_lod': target_offset_lod}
self.outputs = {'Out': (x, [target_lod])}
def test_check_output(self):
self.check_output()
......@@ -38,13 +42,16 @@ class TestLodResetOpByInput(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[0, 3, 5, 10]]
target_lod_0 = [0, 4, 7, 10]
lod = [[3, 2, 5]]
# target_offset_lod and target_lod are the same lod info represented
# in offset-based format and length-based format, respectively.
target_offset_lod = [0, 4, 7, 10]
target_lod = [4, 3, 3]
self.inputs = {
'X': (x, lod),
'Y': np.array([target_lod_0]).astype('int32')
'Y': np.array([target_offset_lod]).astype('int32')
}
self.outputs = {'Out': (x, [target_lod_0])}
self.outputs = {'Out': (x, [target_lod])}
def test_check_output(self):
self.check_output()
......@@ -57,15 +64,16 @@ class TestLodResetOpBoth(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[0, 3, 5, 10]]
target_lod_0_attr = [0, 7, 10]
target_lod_0_in = [0, 4, 7, 10]
lod = [[3, 2, 5]]
target_offset_lod_attr = [0, 7, 10]
target_offset_lod_in = [0, 4, 7, 10]
target_lod_in = [4, 3, 3]
self.inputs = {
'X': (x, lod),
'Y': np.array(target_lod_0_in).astype('int32')
'Y': np.array(target_offset_lod_in).astype('int32')
}
self.attrs = {'target_lod': target_lod_0_attr}
self.outputs = {'Out': (x, [target_lod_0_in])}
self.attrs = {'target_lod': target_offset_lod_attr}
self.outputs = {'Out': (x, [target_lod_in])}
def test_check_output(self):
self.check_output()
......@@ -78,11 +86,11 @@ class TestLodResetOpYIsLoDTensor(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[0, 3, 5, 10]]
lod = [[3, 2, 5]]
y = np.random.random((10, 10)).astype("float32")
target_lod_0 = [[0, 4, 7, 10]]
self.inputs = {'X': (x, lod), 'Y': (y, target_lod_0)}
self.outputs = {'Out': (x, target_lod_0)}
target_lod = [[4, 3, 3]]
self.inputs = {'X': (x, lod), 'Y': (y, target_lod)}
self.outputs = {'Out': (x, target_lod)}
def test_check_output(self):
self.check_output()
......
......@@ -27,7 +27,7 @@ class TestLoDTensorArray(unittest.TestCase):
for i in xrange(10):
t = core.LoDTensor()
t.set(numpy.array([i], dtype='float32'), cpu)
t.set_lod([[0, 1]])
t.set_recursive_sequence_lengths([[1]])
tensor_array.append(t)
self.assertEqual(10, len(tensor_array))
......@@ -35,17 +35,17 @@ class TestLoDTensorArray(unittest.TestCase):
for i in xrange(10):
t = tensor_array[i]
self.assertEqual(numpy.array(t), numpy.array([i], dtype='float32'))
self.assertEqual([[0, 1]], t.lod())
self.assertEqual([[1]], t.recursive_sequence_lengths())
t = core.LoDTensor()
t.set(numpy.array([i + 10], dtype='float32'), cpu)
t.set_lod([[0, 2]])
t.set_recursive_sequence_lengths([[1]])
tensor_array[i] = t
t = tensor_array[i]
self.assertEqual(
numpy.array(t), numpy.array(
[i + 10], dtype='float32'))
self.assertEqual([[0, 2]], t.lod())
self.assertEqual([[1]], t.recursive_sequence_lengths())
if __name__ == '__main__':
......
......@@ -29,7 +29,7 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(
numpy.arange(10).reshape(10, 1).astype('int32'), self.place())
tensor.set_lod([[0, 3, 9, 10]])
tensor.set_recursive_sequence_lengths([[3, 6, 1]])
expect = map(lambda x: numpy.array(x).astype('int32'),
[[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]])
self.main(
......@@ -42,7 +42,7 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(
numpy.arange(10).reshape(10, 1).astype('int32'), self.place())
tensor.set_lod([[0, 3, 9, 9, 10]])
tensor.set_recursive_sequence_lengths([[3, 6, 0, 1]])
expect = map(lambda x: numpy.array(x).astype('int32'),
[[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]])
self.main(
......@@ -55,7 +55,7 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(
numpy.arange(20).reshape(20, 1).astype('int32'), self.place())
tensor.set_lod([[0, 2, 5], [0, 3, 9, 11, 17, 20]])
tensor.set_recursive_sequence_lengths([[2, 3], [3, 6, 2, 6, 3]])
expect = [
numpy.array(
......@@ -65,7 +65,7 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
[17, 18, 19], dtype='int32')
]
lod = [[[0, 2, 5]], [[0, 6, 12]], [[0, 3]]]
lod = [[[2, 3]], [[6, 6]], [[3]]]
self.main(
tensor=tensor,
expect_array=expect,
......@@ -77,8 +77,8 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor.set(
numpy.arange(31).reshape(31, 1).astype('int32'), self.place())
tensor.set_lod([[0, 3, 5, 9, 11],
[0, 3, 7, 11, 11, 12, 17, 19, 21, 23, 30, 31]])
tensor.set_recursive_sequence_lengths(
[[3, 2, 4, 2], [3, 4, 4, 0, 1, 5, 2, 2, 2, 7, 1]])
expect = [
numpy.array(
......@@ -88,7 +88,7 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
], [17, 18, 3, 4, 5, 6, 11, 30], [19, 20, 7, 8, 9, 10], [21, 22]]
]
lod = [[[0, 5, 8, 8, 15]], [[0, 2, 6, 7, 8]], [[0, 2, 6]], [[0, 2]]]
lod = [[[5, 3, 0, 7]], [[2, 4, 1, 1]], [[2, 4]], [[2]]]
self.main(
tensor=tensor,
expect_array=expect,
......@@ -99,8 +99,9 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(
numpy.arange(50).reshape(50, 1).astype('int32'), self.place())
tensor.set_lod([[0, 2, 5, 6], [0, 2, 5, 6, 10, 12, 13],
[0, 3, 7, 11, 17, 21, 22, 23, 27, 31, 39, 45, 46, 50]])
tensor.set_recursive_sequence_lengths(
[[2, 3, 1], [2, 3, 1, 4, 2, 1],
[3, 4, 4, 6, 4, 1, 1, 4, 4, 8, 6, 1, 4]])
expect = [
numpy.array(
......@@ -108,8 +109,8 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
for item in [[21, 0, 1, 2, 3, 4, 5, 6, 46, 47, 48, 49], range(
22, 39) + range(7, 21), range(39, 46)]
]
lod = [[[0, 1, 3, 4], [0, 1, 4, 8, 12]],
[[0, 4, 7], [0, 1, 5, 9, 17, 21, 27, 31]], [[0, 2], [0, 6, 7]]]
lod = [[[1, 2, 1], [1, 3, 4, 4]], [[4, 3], [1, 4, 4, 8, 4, 6, 4]],
[[2], [6, 1]]]
self.main(
tensor=tensor,
expect_array=expect,
......@@ -120,8 +121,9 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(
numpy.arange(50).reshape(50, 1).astype('int32'), self.place())
tensor.set_lod([[0, 2, 5, 6], [0, 2, 5, 6, 10, 12, 13],
[0, 3, 7, 11, 17, 21, 22, 23, 27, 31, 39, 45, 46, 50]])
tensor.set_recursive_sequence_lengths(
[[2, 3, 1], [2, 3, 1, 4, 2, 1],
[3, 4, 4, 6, 4, 1, 1, 4, 4, 8, 6, 1, 4]])
self.main(
tensor=tensor,
expect_array=None,
......@@ -162,12 +164,13 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
exp_tensor, exp_lod = exp
exp_tensor = numpy.expand_dims(exp_tensor, axis=1)
self.assertTrue(numpy.allclose(exp_tensor, numpy.array(array[i])))
self.assertEqual(exp_lod, array[i].lod())
self.assertEqual(exp_lod, array[i].recursive_sequence_lengths())
def check_tensor_same(self, actual, expect):
self.assertTrue(
numpy.allclose(numpy.array(actual), numpy.array(expect)))
self.assertEqual(actual.lod(), expect.lod())
self.assertEqual(actual.recursive_sequence_lengths(),
expect.recursive_sequence_lengths())
class TestCPULoDTensorArrayOpGrad(unittest.TestCase):
......@@ -188,7 +191,7 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place)
tensor.set_lod([[0, 3, 9, 10]])
tensor.set_recursive_sequence_lengths([[3, 6, 1]])
g_vars = program.global_block().var(x.name + "@GRAD")
......
......@@ -84,15 +84,17 @@ def lstm(
h = g_o * act_cell(c)
return h, c
def _reverse(x, lod):
def _reverse(x, offset):
y = np.zeros_like(x)
for i in range(len(lod) - 1):
b, e = lod[i], lod[i + 1]
for i in range(len(offset) - 1):
b, e = offset[i], offset[i + 1]
y[b:e, :] = np.flip(x[b:e, :], 0)
return y
offset = lod[0]
batch_size = len(offset) - 1
offset = [0]
for l in lod[0]:
offset.append(offset[-1] + l)
batch_size = len(lod[0])
hidden = []
cell = []
input = _reverse(input, offset) if is_reverse else input
......@@ -100,7 +102,7 @@ def lstm(
input = input + np.tile(w_b, (offset[-1], 1))
for i in range(batch_size):
# compute one sequence
seq_len = offset[i + 1] - offset[i]
seq_len = lod[0][i]
x = input[offset[i]:offset[i + 1], :]
h_pre = h0[i] # 1 x D
c_pre = c0[i] # 1 x D
......@@ -124,7 +126,7 @@ def lstm(
class TestLstmOp(OpTest):
def set_argument(self):
self.lod = [[0, 2, 5, 7]]
self.lod = [[2, 3, 2]]
self.D = 16
self.act_gate = 'sigmoid'
......@@ -139,8 +141,8 @@ class TestLstmOp(OpTest):
self.set_argument()
self.op_type = 'lstm'
T = self.lod[0][-1]
N = len(self.lod[0]) - 1
T = sum(self.lod[0])
N = len(self.lod[0])
x = np.random.normal(size=(T, 4 * self.D)).astype('float64')
if self.has_initial_state:
......@@ -186,7 +188,7 @@ class TestLstmOp(OpTest):
def test_check_grad(self):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchCellPreAct'] = np.zeros(
(N, self.D)).astype('float64')
......@@ -196,7 +198,7 @@ class TestLstmOp(OpTest):
# class TestLstmOpHasInitial(TestLstmOp):
# def set_argument(self):
# self.lod = [[0, 2, 5, 7]]
# self.lod = [[2, 3, 2]]
# self.D = 16
# self.act_gate = 'sigmoid'
......@@ -209,7 +211,7 @@ class TestLstmOp(OpTest):
# def test_check_grad(self):
# # TODO(qingqing) remove folowing lines after the check_grad is refined.
# N = len(self.lod[0]) - 1
# N = len(self.lod[0])
# self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
# self.outputs['BatchCellPreAct'] = np.zeros(
# (N, self.D)).astype('float64')
......@@ -218,7 +220,7 @@ class TestLstmOp(OpTest):
# max_relative_error=5e-4)
# def test_check_grad_ingore_bias(self):
# N = len(self.lod[0]) - 1
# N = len(self.lod[0])
# self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
# self.outputs['BatchCellPreAct'] = np.zeros(
# (N, self.D)).astype('float64')
......@@ -228,7 +230,7 @@ class TestLstmOp(OpTest):
# no_grad_set=set('Bias'))
# def test_check_grad_ingore_weight(self):
# N = len(self.lod[0]) - 1
# N = len(self.lod[0])
# self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
# self.outputs['BatchCellPreAct'] = np.zeros(
# (N, self.D)).astype('float64')
......@@ -238,7 +240,7 @@ class TestLstmOp(OpTest):
# no_grad_set=set('Weight'))
# def test_check_grad_ingore_input(self):
# N = len(self.lod[0]) - 1
# N = len(self.lod[0])
# self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
# self.outputs['BatchCellPreAct'] = np.zeros(
# (N, self.D)).astype('float64')
......@@ -248,7 +250,7 @@ class TestLstmOp(OpTest):
# no_grad_set=set('Input'))
# def test_check_grad_ingore_h0(self):
# N = len(self.lod[0]) - 1
# N = len(self.lod[0])
# self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
# self.outputs['BatchCellPreAct'] = np.zeros(
# (N, self.D)).astype('float64')
......@@ -258,7 +260,7 @@ class TestLstmOp(OpTest):
# no_grad_set=set('H0'))
# def test_check_grad_ingore_c0(self):
# N = len(self.lod[0]) - 1
# N = len(self.lod[0])
# self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
# self.outputs['BatchCellPreAct'] = np.zeros(
# (N, self.D)).astype('float64')
......@@ -269,7 +271,7 @@ class TestLstmOp(OpTest):
# class TestLstmOpRerverse(TestLstmOp):
# def set_argument(self):
# self.lod = [[0, 2, 5, 7]]
# self.lod = [[2, 3, 2]]
# self.D = 16
# self.act_gate = 'sigmoid'
......@@ -282,7 +284,7 @@ class TestLstmOp(OpTest):
# class TestLstmOpNotUsePeepholes(TestLstmOp):
# def set_argument(self):
# self.lod = [[0, 2, 5, 7]]
# self.lod = [[2, 3, 2]]
# self.D = 16
# self.act_gate = 'sigmoid'
......
......@@ -64,15 +64,17 @@ def lstmp(
r = act_proj(r)
return r, c
def _reverse(x, lod):
def _reverse(x, offset):
y = np.zeros_like(x)
for i in range(len(lod) - 1):
b, e = lod[i], lod[i + 1]
for i in range(len(offset) - 1):
b, e = offset[i], offset[i + 1]
y[b:e, :] = np.flip(x[b:e, :], 0)
return y
offset = lod[0]
batch_size = len(offset) - 1
offset = [0]
for l in lod[0]:
offset.append(offset[-1] + l)
batch_size = len(lod[0])
# recurrent projection state
projection = []
cell = []
......@@ -81,7 +83,7 @@ def lstmp(
input = input + np.tile(w_b, (offset[-1], 1))
for i in range(batch_size):
# compute one sequence
seq_len = offset[i + 1] - offset[i]
seq_len = lod[0][i]
x = input[offset[i]:offset[i + 1], :]
r_pre = np.dot(h0[i], w_rh) # 1 x P
r_pre = act_proj(r_pre)
......@@ -117,8 +119,8 @@ class TestLstmpOp(LstmTest.TestLstmOp):
self.reset_argument()
self.op_type = 'lstmp'
T = self.lod[0][-1]
N = len(self.lod[0]) - 1
T = sum(self.lod[0])
N = len(self.lod[0])
x = np.random.normal(size=(T, 4 * self.D)).astype('float64')
if self.has_initial_state:
......@@ -166,7 +168,7 @@ class TestLstmpOp(LstmTest.TestLstmOp):
def test_check_grad(self):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
......@@ -183,7 +185,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
def test_check_grad(self):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
......@@ -195,7 +197,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
max_relative_error=1e-2)
def test_check_grad_ingore_bias(self):
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
......@@ -207,7 +209,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
no_grad_set=set('Bias'))
def test_check_grad_ingore_weight(self):
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
......@@ -219,7 +221,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
no_grad_set=set('Weight'))
def test_check_grad_ingore_proj_weight(self):
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
......@@ -231,7 +233,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
no_grad_set=set('ProjWeight'))
def test_check_grad_ingore_input(self):
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
......@@ -243,7 +245,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
no_grad_set=set('Input'))
def test_check_grad_ingore_h0(self):
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
......@@ -255,7 +257,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
no_grad_set=set('H0'))
def test_check_grad_ingore_c0(self):
N = len(self.lod[0]) - 1
N = len(self.lod[0])
self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
......
......@@ -70,7 +70,7 @@ class TestMineHardExamplesOp(OpTest):
self.updated_match_indices = self.match_indices
self.neg_indices_lod = [[0, 1, 2]]
self.neg_indices_lod = [[1, 1]]
self.neg_indices = np.array([[1], [0]]).astype('int32')
......@@ -92,7 +92,7 @@ class TestMineHardExamplesOpHardExample(TestMineHardExamplesOp):
self.updated_match_indices = np.array([[0, -1, -1],
[-1, -1, -1]]).astype('int32')
self.neg_indices_lod = [[0, 1, 3]]
self.neg_indices_lod = [[1, 2]]
self.neg_indices = np.array([[2], [0], [2]]).astype('int32')
......
......@@ -135,12 +135,12 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
batch_size = scores.shape[0]
det_outs = []
lod = [0]
lod = []
for n in range(batch_size):
nmsed_outs, nmsed_num = multiclass_nms(boxes[n], scores[n], background,
score_threshold, nms_threshold,
nms_top_k, keep_top_k)
lod.append(lod[-1] + nmsed_num)
lod.append(nmsed_num)
if nmsed_num == 0: continue
for c, indices in nmsed_outs.iteritems():
......
......@@ -27,9 +27,9 @@ class TestOneHotOp(OpTest):
self.op_type = 'one_hot'
depth = 10
dimension = 12
x_lod = [[0, 4, 5, 8, 11]]
x = [np.random.randint(0, depth - 1) for i in xrange(x_lod[0][-1])]
x = np.array(x).astype('int').reshape([x_lod[0][-1], 1])
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in xrange(sum(x_lod[0]))]
x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
......@@ -50,9 +50,9 @@ class TestOneHotOp_default_dtype(OpTest):
self.op_type = 'one_hot'
depth = 10
dimension = 12
x_lod = [[0, 4, 5, 8, 11]]
x = [np.random.randint(0, depth - 1) for i in xrange(x_lod[0][-1])]
x = np.array(x).astype('int').reshape([x_lod[0][-1], 1])
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in xrange(sum(x_lod[0]))]
x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
......@@ -75,11 +75,11 @@ class TestOneHotOp_exception(OpTest):
self.place = core.CPUPlace()
self.dimension = 12
self.x = core.LoDTensor()
x_lod = [[0, 4, 5, 8, 11]]
data = [np.random.randint(11, 20) for i in xrange(x_lod[0][-1])]
data = np.array(data).astype('int').reshape([x_lod[0][-1], 1])
x_lod = [[4, 1, 3, 3]]
data = [np.random.randint(11, 20) for i in xrange(sum(x_lod[0]))]
data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
self.x.set(data, self.place)
self.x.set_lod(x_lod)
self.x.set_recursive_sequence_lengths(x_lod)
def test_check_output(self):
program = Program()
......
......@@ -28,7 +28,7 @@ class TestPrintOpCPU(unittest.TestCase):
self.x_tensor = core.LoDTensor()
tensor_np = np.random.random(size=(2, 3)).astype('float32')
self.x_tensor.set(tensor_np, self.place)
self.x_tensor.set_lod([[0, 1, 1]])
self.x_tensor.set_recursive_sequence_lengths([[1, 1]])
def build_network(self, only_forward, **kargs):
x = layers.data('x', shape=[3], dtype='float32', lod_level=1)
......@@ -62,7 +62,7 @@ class TestPrintOpGPU(TestPrintOpCPU):
self.x_tensor = core.LoDTensor()
tensor_np = np.random.random(size=(2, 3)).astype('float32')
self.x_tensor.set(tensor_np, self.place)
self.x_tensor.set_lod([[0, 1, 1]])
self.x_tensor.set_recursive_sequence_lengths([[1, 1]])
if __name__ == '__main__':
......
......@@ -70,11 +70,10 @@ class TestReorderLoDTensor(unittest.TestCase):
lod_level_i = numpy.random.randint(
low=1,
high=5,
size=self.num_seq if i == 0 else lod_level_i[-1])
lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist()
size=self.num_seq if i == 0 else sum(lod_level_i)).tolist()
data_lod.append(lod_level_i)
data_value = numpy.random.random(
size=[data_lod[-1][-1] if data_lod else self.num_seq
size=[sum(data_lod[-1]) if data_lod else self.num_seq
] + data_shape).astype('float32')
self.data[data_name] = (data_value, data_lod)
......@@ -84,29 +83,36 @@ class TestReorderLoDTensor(unittest.TestCase):
tensor = fluid.Tensor()
tensor.set(self.data[desc[0]][0], place)
if self.data[desc[0]][1]:
tensor.set_lod(self.data[desc[0]][1])
tensor.set_recursive_sequence_lengths(self.data[desc[0]][1])
self.inputs[desc[0]] = tensor
def reorder(self):
level = 0
def convert_to_offset(lod):
offset_lod = [[0] for i in lod]
for i, level in enumerate(lod):
for seq_len in level:
offset_lod[i].append(offset_lod[i][-1] + seq_len)
return offset_lod
level = 0
# compute the rank_table according to ref_lod
ref_lod = self.data[self.data_desc[1][0]][1][level]
rank_table = [] # list of (index, length)
for i in range(len(ref_lod) - 1):
rank_table.append((i, ref_lod[i + 1] - ref_lod[i]))
for i in range(len(ref_lod)):
rank_table.append((i, ref_lod[i]))
rank_table = sorted(rank_table, lambda x, y: y[1] - x[1])
# compute the input sequence info according to input_lod
input_value, input_lod = self.data[self.data_desc[0][0]]
offset_lod = convert_to_offset(input_lod)
input_table = [] # list of (offset, length, sub_lod)
if input_lod:
for i in range(len(input_lod[level]) - 1):
if offset_lod:
for i in range(len(offset_lod[level]) - 1):
start_idx = i
end_idx = i + 1
sub_lod = []
for lod_level_i in input_lod[level:]:
for lod_level_i in offset_lod[level:]:
sub_lod_i = []
for idx in range(start_idx, end_idx):
sub_lod_i.append(lod_level_i[idx + 1] - lod_level_i[
......@@ -132,10 +138,9 @@ class TestReorderLoDTensor(unittest.TestCase):
input_seq_sub_lod = input_table[index][2]
if len(output_lod) == 0:
output_lod = [[0] for i in input_seq_sub_lod]
for i, sub_lod_i in enumerate(input_seq_sub_lod):
for idx_sub in sub_lod_i:
output_lod[i].append(output_lod[i][-1] + idx_sub)
output_lod = [[] for i in input_seq_sub_lod]
for i, level in enumerate(input_seq_sub_lod):
output_lod[i].extend(level)
return output_value, output_lod
def test_reorder_lod_tensor(self):
......@@ -148,7 +153,8 @@ class TestReorderLoDTensor(unittest.TestCase):
self.assertTrue(
numpy.allclose(
numpy.array(actual_output), expect_output, atol=0.001))
self.assertEqual(expect_output_lod, actual_output.lod())
self.assertEqual(expect_output_lod,
actual_output.recursive_sequence_lengths())
# check gradient
expect_grad = numpy.ones_like(self.data[self.data_desc[0][0]][0])
expect_grad_lod = self.data[self.data_desc[0][0]][1]
......@@ -156,7 +162,8 @@ class TestReorderLoDTensor(unittest.TestCase):
self.assertTrue(
numpy.allclose(
numpy.array(actual_grad), expect_grad, atol=0.001))
self.assertEqual(expect_grad_lod, actual_grad.lod())
self.assertEqual(expect_grad_lod,
actual_grad.recursive_sequence_lengths())
def test_reorder_tensor(self):
self.data_desc[0][-1] = 0 # input is tensor
......@@ -168,7 +175,8 @@ class TestReorderLoDTensor(unittest.TestCase):
self.assertTrue(
numpy.allclose(
numpy.array(actual_output), expect_output, atol=0.001))
self.assertEqual(expect_output_lod, actual_output.lod())
self.assertEqual(expect_output_lod,
actual_output.recursive_sequence_lengths())
# check gradient
expect_grad = numpy.ones_like(self.data[self.data_desc[0][0]][0])
expect_grad_lod = self.data[self.data_desc[0][0]][1]
......@@ -176,14 +184,14 @@ class TestReorderLoDTensor(unittest.TestCase):
self.assertTrue(
numpy.allclose(
numpy.array(actual_grad), expect_grad, atol=0.001))
self.assertEqual(expect_grad_lod, actual_grad.lod())
self.assertEqual(expect_grad_lod,
actual_grad.recursive_sequence_lengths())
# compare outputs between LodTensors with explicit and implicit lod
# use the same data but set the input lod explicitly
input_lod = [[
i for i in range(len(self.data[self.data_desc[0][0]][0]) + 1)
]]
self.inputs[self.data_desc[0][0]].set_lod(input_lod)
input_lod = [[1] * len(self.data[self.data_desc[0][0]][0])]
self.inputs[self.data_desc[0][0]].set_recursive_sequence_lengths(
input_lod)
# preserve the output of LodTensor with implicit lod to compare
expect_output = [
numpy.array(actual_output) for actual_output in self.actual_outputs
......
......@@ -107,7 +107,7 @@ class TestROIPoolOp(OpTest):
rois = []
self.rois_lod = [[]]
for bno in range(self.batch_size):
self.rois_lod[0].append(len(rois))
self.rois_lod[0].append(bno + 1)
for i in range(bno + 1):
x1 = np.random.random_integers(
0, self.width / self.spatial_scale - self.pooled_width)
......@@ -121,7 +121,6 @@ class TestROIPoolOp(OpTest):
roi = [bno, x1, y1, x2, y2]
rois.append(roi)
self.rois_lod[0].append(len(rois))
self.rois_num = len(rois)
self.rois = np.array(rois).astype("int64")
......
......@@ -19,8 +19,10 @@ from op_test import OpTest
def row_conv_forward(x, lod, wt):
out = np.zeros_like(x)
seq_info = lod[0]
num_sequences = len(seq_info) - 1
num_sequences = len(lod[0])
seq_info = [0]
for seq_len in lod[0]:
seq_info.append(seq_info[-1] + seq_len)
context_length = wt.shape[0]
for i in range(num_sequences): # loop over number of sequences
......@@ -32,7 +34,6 @@ def row_conv_forward(x, lod, wt):
cur_timesteps = end - start
for j in range(cur_timesteps): # loop over different timesteps
for k in range(context_length):
if j + k >= cur_timesteps:
continue
curoutput[j, :] += curinput[j + k, :] * wt[k, :]
......@@ -44,8 +45,8 @@ class TestRowConvOp1(OpTest):
def setUp(self):
self.op_type = "row_conv"
lod = [[0, 2, 5, 7]]
T = lod[0][-1]
lod = [[2, 3, 2]]
T = sum(lod[0])
D = 16
context_length = 2
......@@ -75,8 +76,8 @@ class TestRowConvOp2(OpTest):
def setUp(self):
self.op_type = "row_conv"
lod = [[0, 20, 50, 100]]
T = lod[0][-1]
lod = [[20, 30, 50]]
T = sum(lod[0])
D = 35
context_length = 35
......
......@@ -18,14 +18,19 @@ import sys
from op_test import OpTest
def to_abs_lod(lod):
if len(lod) == 0 or len(lod) == 1:
return lod
def to_abs_offset_lod(lod):
offset_lod = [[0] for i in lod]
for i, level in enumerate(lod):
for seq_len in level:
offset_lod[i].append(offset_lod[i][-1] + seq_len)
if len(offset_lod) == 0 or len(offset_lod) == 1:
return offset_lod
import copy
new_lod = copy.deepcopy(lod)
for idx, val in enumerate(lod[0]):
new_lod[0][idx] = lod[1][val]
return new_lod
new_offset_lod = copy.deepcopy(offset_lod)
for idx, val in enumerate(offset_lod[0]):
new_offset_lod[0][idx] = offset_lod[1][val]
return new_offset_lod
def seq_concat(inputs, level):
......@@ -35,11 +40,11 @@ def seq_concat(inputs, level):
x1 = inputs['X'][1][1][0]
level_idx = len(lod0) - level - 1
outs = []
for i in range(len(lod0[level_idx]) - 1):
sub_x0 = x0[to_abs_lod(lod0)[level_idx][i]:to_abs_lod(lod0)[level_idx][
i + 1], :]
sub_x1 = x1[to_abs_lod(lod1)[level_idx][i]:to_abs_lod(lod1)[level_idx][
i + 1], :]
for i in range(len(lod0[level_idx])):
sub_x0 = x0[to_abs_offset_lod(lod0)[level_idx][i]:to_abs_offset_lod(
lod0)[level_idx][i + 1], :]
sub_x1 = x1[to_abs_offset_lod(lod1)[level_idx][i]:to_abs_offset_lod(
lod1)[level_idx][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=0))
return np.concatenate(outs, axis=0)
......@@ -48,9 +53,9 @@ class TestSeqConcatOp(OpTest):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((4, 8, 3)).astype('float32')
lod1 = [[0, 2, 4], [0, 1, 2, 3, 4]]
lod1 = [[2, 2], [1, 1, 1, 1]]
axis = 1
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
......@@ -72,14 +77,14 @@ class TestSeqConcatOpLevelZeroNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[0, 2, 4], [0, 1, 3, 5, 7]]
lod1 = [[2, 2], [1, 2, 2, 2]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[0, 2, 4], [0, 2, 5, 8, 11]]
out_lod = [[2, 2], [2, 3, 3, 3]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
......@@ -87,14 +92,14 @@ class TestSeqConcatOplevelOneNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[0, 3, 4], [0, 1, 3, 5, 7]]
lod1 = [[3, 1], [1, 2, 2, 2]]
axis = 0
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[0, 5, 8], [0, 1, 2, 3, 5, 7, 8, 9, 11]]
out_lod = [[5, 3], [1, 1, 1, 2, 2, 1, 1, 2]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
......@@ -102,14 +107,14 @@ class TestSeqConcatOpLevelZeroSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 3, 4)).astype('float32')
lod0 = [[0, 1, 2, 3, 4]]
lod0 = [[1, 1, 1, 1]]
x1 = np.random.random((7, 3, 4)).astype('float32')
lod1 = [[0, 1, 3, 5, 7]]
lod1 = [[1, 2, 2, 2]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[0, 2, 5, 8, 11]]
out_lod = [[2, 3, 3, 3]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
......
......@@ -75,35 +75,38 @@ class TestSeqProject(OpTest):
pading_data = self.pad_data
out = np.zeros((self.input_size[0], self.context_length *
self.input_size[1])).astype('float32')
lod = lod[0]
offset = [0]
for seq_len in lod[0]:
offset.append(offset[-1] + seq_len)
begin_pad = np.max([0, -self.context_start])
for i in range(len(lod) - 1):
for i in range(len(offset) - 1):
for j in range(self.context_length):
in_begin = lod[i] + self.context_start + j
in_end = lod[i + 1] + self.context_start + j
out_begin = lod[i]
out_end = lod[i + 1]
if in_begin < lod[i]:
pad_size = np.min([lod[i] - in_begin, lod[i + 1] - lod[i]])
in_begin = offset[i] + self.context_start + j
in_end = offset[i + 1] + self.context_start + j
out_begin = offset[i]
out_end = offset[i + 1]
if in_begin < offset[i]:
pad_size = np.min(
[offset[i] - in_begin, offset[i + 1] - offset[i]])
if self.padding_trainable:
sub_w = pading_data[j:j + pad_size, :]
out[lod[i]:lod[i] + pad_size, j * self.input_size[1]:(
j + 1) * self.input_size[1]] = sub_w
out_begin = lod[i] + pad_size
in_begin = lod[i]
out[offset[i]:offset[i] + pad_size, j * self.input_size[
1]:(j + 1) * self.input_size[1]] = sub_w
out_begin = offset[i] + pad_size
in_begin = offset[i]
if in_end > lod[i + 1]:
if in_end > offset[i + 1]:
pad_size = np.min(
[in_end - lod[i + 1], lod[i + 1] - lod[i]])
[in_end - offset[i + 1], offset[i + 1] - offset[i]])
if self.padding_trainable:
sub_w = pading_data[begin_pad + self.context_start + j -
pad_size:begin_pad +
self.context_start + j, :]
out[lod[i + 1] - pad_size:lod[i + 1], j * self.
out[offset[i + 1] - pad_size:offset[i + 1], j * self.
input_size[1]:(j + 1) * self.input_size[1]] = sub_w
in_end = lod[i + 1]
out_end = lod[i + 1] - pad_size
in_end = offset[i + 1]
out_end = offset[i + 1] - pad_size
if in_end <= in_begin:
continue
......@@ -175,7 +178,11 @@ class TestSeqProject(OpTest):
self.context_stride = 1
self.input_size = [self.input_row, 23]
self.lod = [[0, 4, 5, 8, self.input_row]]
offset_lod = [[0, 4, 5, 8, self.input_row]]
self.lod = [[]]
# convert from offset-based lod to length-based lod
for i in range(len(offset_lod[0]) - 1):
self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
self.output_represention = 8 # output feature size
......@@ -188,7 +195,11 @@ class TestSeqProjectCase1(TestSeqProject):
self.context_stride = 1
self.input_size = [self.input_row, 23]
self.lod = [[0, 4, 5, 8, self.input_row]]
offset_lod = [[0, 4, 5, 8, self.input_row]]
self.lod = [[]]
# convert from offset-based lod to length-based lod
for i in range(len(offset_lod[0]) - 1):
self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
self.output_represention = 8 # output feature size
......@@ -203,8 +214,12 @@ class TestSeqProjectCase2(TestSeqProject):
self.input_size = [self.input_row, 23]
idx = range(self.input_size[0])
del idx[0]
self.lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
[self.input_size[0]]]
self.lod = [[]]
# convert from offset-based lod to length-based lod
for i in range(len(offset_lod[0]) - 1):
self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
self.output_represention = 8 # output feature size
......
......@@ -18,26 +18,34 @@ from op_test import OpTest
class TestSeqAvgPool(OpTest):
def convert_to_offset(self, lod):
offset = [[0] for i in lod]
for i, level in enumerate(lod):
for seq_len in level:
offset[i].append(offset[i][-1] + seq_len)
return offset
def set_data(self):
self.op_type = 'sequence_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [11, 23]).astype('float32')
lod = [[0, 4, 5, 8, 11]]
lod = [[4, 1, 3, 3]]
self.inputs = {'X': (x, lod)}
offset = self.convert_to_offset(lod)
out = np.zeros((4, 23)).astype('float32')
self.outputs = {'Out': out}
return x, lod, out
return x, offset, out
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "AVERAGE"}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
for i in range(len(offset[0]) - 1):
sub_x = x[offset[0][i]:offset[0][i + 1], :]
out[i] = sub_x.mean(axis=0)
def setUp(self):
x, lod, out = self.set_data()
self.compute(x, lod, out)
x, offset, out = self.set_data()
self.compute(x, offset, out)
def test_check_output(self):
self.check_output()
......@@ -50,10 +58,10 @@ class TestSeqAvgPool(OpTest):
class TestSeqSumPool(TestSeqAvgPool):
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "SUM"}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
for i in range(len(offset[0]) - 1):
sub_x = x[offset[0][i]:offset[0][i + 1], :]
out[i] = sub_x.sum(axis=0)
......@@ -61,46 +69,47 @@ class TestSeqMaxPool(TestSeqAvgPool):
def set_data(self):
self.op_type = 'sequence_pool'
x = np.random.uniform(0.1, 1, [13, 23]).astype('float32')
lod = [[0, 4, 5, 8, 13]]
for i in range(4):
l = lod[0][i + 1] - lod[0][i]
x[lod[0][i] + np.random.randint(l), :] += 2.0
lod = [[4, 1, 3, 5]]
offset = self.convert_to_offset(lod)
for i in range(len(offset[0]) - 1):
l = offset[0][i + 1] - offset[0][i]
x[offset[0][i] + np.random.randint(l), :] += 2.0
self.inputs = {'X': (x, lod)}
out = np.zeros((4, 23)).astype('float32')
self.outputs = {'Out': out}
return x, lod, out
return x, offset, out
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "MAX"}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
for i in range(len(offset[0]) - 1):
sub_x = x[offset[0][i]:offset[0][i + 1], :]
out[i] = np.amax(sub_x, axis=0)
class TestSeqSqrtPool(TestSeqAvgPool):
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "SQRT"}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
len = lod[0][i + 1] - lod[0][i]
out[i] = sub_x.sum(axis=0) / np.sqrt(len)
for i in range(len(offset[0]) - 1):
sub_x = x[offset[0][i]:offset[0][i + 1], :]
seq_len = offset[0][i + 1] - offset[0][i]
out[i] = sub_x.sum(axis=0) / np.sqrt(seq_len)
class TestSeqLastPool(TestSeqAvgPool):
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "LAST"}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
for i in range(len(offset[0]) - 1):
sub_x = x[offset[0][i]:offset[0][i + 1], :]
out[i] = sub_x[-1, :]
class TestSeqFirstPool(TestSeqAvgPool):
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "FIRST"}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
for i in range(len(offset[0]) - 1):
sub_x = x[offset[0][i]:offset[0][i + 1], :]
out[i] = sub_x[0, :]
......@@ -109,35 +118,39 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
self.op_type = 'sequence_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [13, 3, 17]).astype('float32')
lod = [[0, 4, 5, 8, 13]]
lod = [[4, 1, 3, 5]]
self.inputs = {'X': (x, lod)}
offset = self.convert_to_offset(lod)
out = np.zeros((4, 3, 17)).astype('float32')
self.outputs = {'Out': out}
return x, lod, out
return x, offset, out
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "AVERAGE"}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
for i in range(len(offset[0]) - 1):
sub_x = np.reshape(x[offset[0][i]:offset[0][i + 1], :],
(-1, 3 * 17))
out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))
class TestSeqSumPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "SUM"}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
for i in range(len(offset[0]) - 1):
sub_x = np.reshape(x[offset[0][i]:offset[0][i + 1], :],
(-1, 3 * 17))
out[i] = np.reshape(sub_x.sum(axis=0), (3, 17))
class TestSeqSqrtPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "SQRT"}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
len = lod[0][i + 1] - lod[0][i]
out[i] = np.reshape(sub_x.sum(axis=0) / np.sqrt(len), (3, 17))
for i in range(len(offset[0]) - 1):
sub_x = np.reshape(x[offset[0][i]:offset[0][i + 1], :],
(-1, 3 * 17))
seq_len = offset[0][i + 1] - offset[0][i]
out[i] = np.reshape(sub_x.sum(axis=0) / np.sqrt(seq_len), (3, 17))
def test_check_grad(self):
# Remove MaxIndex after check_grad is refined.
......@@ -150,36 +163,40 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D):
def set_data(self):
self.op_type = 'sequence_pool'
x = np.random.uniform(0.1, 1, [13, 3, 11]).astype('float32')
lod = [[0, 4, 5, 8, 13]]
lod = [[4, 1, 3, 5]]
self.inputs = {'X': (x, lod)}
for i in range(4):
l = lod[0][i + 1] - lod[0][i]
x[lod[0][i] + np.random.randint(l), :] += 1.0
offset = self.convert_to_offset(lod)
for i in range(len(offset[0]) - 1):
l = offset[0][i + 1] - offset[0][i]
x[offset[0][i] + np.random.randint(l), :] += 1.0
out = np.zeros((4, 3, 11)).astype('float32')
self.outputs = {'Out': out}
return x, lod, out
return x, offset, out
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "MAX"}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 11))
for i in range(len(offset[0]) - 1):
sub_x = np.reshape(x[offset[0][i]:offset[0][i + 1], :],
(-1, 3 * 11))
out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 11))
class TestSeqLastPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "LAST"}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
for i in range(len(offset[0]) - 1):
sub_x = np.reshape(x[offset[0][i]:offset[0][i + 1], :],
(-1, 3 * 17))
out[i] = np.reshape(sub_x[-1, :], (3, 17))
class TestSeqFirstPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
def compute(self, x, offset, out):
self.attrs = {'pooltype': "FIRST"}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
for i in range(len(offset[0]) - 1):
sub_x = np.reshape(x[offset[0][i]:offset[0][i + 1], :],
(-1, 3 * 17))
out[i] = np.reshape(sub_x[0, :], (3, 17))
......
......@@ -18,15 +18,17 @@ from op_test import OpTest
def sequence_erase(in_seq, lod0, tokens):
new_lod0 = [0]
new_lod0 = []
out_seq = []
for i in range(0, len(lod0) - 1):
offset = 0
for i in range(0, len(lod0)):
num_out = 0
for dat in in_seq[lod0[i]:lod0[i + 1]]:
for dat in in_seq[offset:(offset + lod0[i])]:
if dat not in tokens:
out_seq.append(dat)
num_out += 1
new_lod0.append(new_lod0[-1] + num_out)
offset += lod0[i]
new_lod0.append(num_out)
return np.array(out_seq).astype("int32"), new_lod0
......@@ -34,7 +36,7 @@ class TestSequenceEraseOpInt32(OpTest):
def setUp(self):
self.op_type = "sequence_erase"
in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
lod = [[0, 9, 13, 24, 30]]
lod = [[9, 4, 11, 6]]
tokens = [2, 3, 5]
out_seq, new_lod0 = sequence_erase(in_seq, lod[0], tokens)
self.attrs = {'tokens': tokens}
......@@ -49,7 +51,7 @@ class TestSequenceEraseOpInt64(OpTest):
def setUp(self):
self.op_type = "sequence_erase"
in_seq = np.random.randint(0, 10, (30, 1)).astype("int64")
lod = [[0, 9, 13, 24, 30]]
lod = [[9, 4, 11, 6]]
tokens = [2, 3, 5]
out_seq, new_lod0 = sequence_erase(in_seq, lod[0], tokens)
self.attrs = {'tokens': tokens}
......@@ -64,7 +66,7 @@ class TestSequenceEraseOpEmpty(OpTest):
def setUp(self):
self.op_type = "sequence_erase"
in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
lod = [[0, 9, 13, 24, 30]]
lod = [[9, 4, 11, 6]]
tokens = []
out_seq, new_lod0 = sequence_erase(in_seq, lod[0], tokens)
self.attrs = {'tokens': tokens}
......
......@@ -21,7 +21,7 @@ class TestSequenceExpand(OpTest):
def set_data(self):
x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
y_lod = [[0, 1, 4, 8]]
y_lod = [[1, 3, 4]]
self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
def compute(self):
......@@ -37,23 +37,27 @@ class TestSequenceExpand(OpTest):
out = np.zeros(shape=((0, ) + x_data.shape[1:]), dtype=x_data.dtype)
if x_lod is None:
x_idx = [i for i in xrange(x_data.shape[0] + 1)]
# x_idx = [i for i in xrange(x_data.shape[0] + 1)]
x_idx = [1] * x_data.shape[0]
else:
x_idx = x_lod[0]
out_lod = [[0]]
out_lod = [[]]
offset = 0
for i in xrange(len(y_lod[ref_level])):
repeat_num = y_lod[ref_level][i]
x_len = x_idx[i]
for i in xrange(1, len(y_lod[ref_level])):
repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1]
x_len = x_idx[i] - x_idx[i - 1]
if repeat_num > 0:
x_sub = x_data[x_idx[i - 1]:x_idx[i], :]
x_sub = x_data[offset:(offset + x_len), :]
stacked_x_sub = x_sub
for r in range(repeat_num - 1):
stacked_x_sub = np.vstack((stacked_x_sub, x_sub))
out = np.vstack((out, stacked_x_sub))
if x_lod is not None:
for j in xrange(repeat_num):
out_lod[0].append(out_lod[0][-1] + x_len)
out_lod[0].append(x_len)
offset += x_len
if x_lod is None:
self.outputs = {'Out': out}
......@@ -75,9 +79,9 @@ class TestSequenceExpand(OpTest):
class TestSequenceExpandCase1(TestSequenceExpand):
def set_data(self):
x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
x_lod = [[0, 2, 5]]
x_lod = [[2, 3]]
y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
y_lod = [[2, 3], [2, 2, 3, 3, 3]]
self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
self.attrs = {'ref_level': 0}
......@@ -85,9 +89,9 @@ class TestSequenceExpandCase1(TestSequenceExpand):
class TestSequenceExpandCase2(TestSequenceExpand):
def set_data(self):
x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
x_lod = [[0, 1]]
x_lod = [[1]]
y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
y_lod = [[0, 2], [0, 2]]
y_lod = [[2], [1, 1]]
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
self.attrs = {'ref_level': 0}
......@@ -95,9 +99,9 @@ class TestSequenceExpandCase2(TestSequenceExpand):
class TestSequenceExpandCase3(TestSequenceExpand):
def set_data(self):
x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
x_lod = [[0, 1, 2, 3, 4]]
y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
y_lod = [[0, 2, 4, 4, 6]]
x_lod = [[1, 1, 1, 1]]
y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
y_lod = [[2, 2, 2, 2]]
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
......@@ -105,9 +109,9 @@ class TestSequenceExpandCase4(TestSequenceExpand):
def set_data(self):
data = np.random.uniform(0.1, 1, [5 * 2, 1])
x_data = np.array(data).reshape([5, 2]).astype('float32')
x_lod = [[0, 2, 5]]
y_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
y_lod = [[0, 1, 3], [0, 1, 3]]
x_lod = [[2, 3]]
y_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
y_lod = [[2], [2, 3]]
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
......
......@@ -22,7 +22,7 @@ class TestSequenceReshape(OpTest):
def setUp(self):
self.op_type = 'sequence_reshape'
dimension = 12
x_lod = [[0, 4, 5, 8, 11]]
x_lod = [[4, 1, 3, 3]]
x = np.random.uniform(0.1, 1, [11, 24]).astype('float32')
self.inputs = {'X': (x, x_lod)}
......@@ -34,13 +34,13 @@ class TestSequenceReshape(OpTest):
def compute_output(self, x, x_lod, dimension):
x_width = x.shape[1]
out_lod = [[0]]
for i in xrange(len(x_lod[0]) - 1):
seq_len = x_lod[0][i + 1] - x_lod[0][i]
out_lod = [[]]
for i in xrange(len(x_lod[0])):
seq_len = x_lod[0][i]
offset = (seq_len * x_width) / dimension
assert int(offset) * dimension == seq_len * x_width
out_lod[0].append(out_lod[0][-1] + int(offset))
out = np.zeros(shape=(out_lod[0][-1], dimension)).astype('float32')
out_lod[0].append(int(offset))
out = np.zeros(shape=(sum(out_lod[0]), dimension)).astype('float32')
out.ravel()[:] = x.ravel()[:]
return out, out_lod
......@@ -55,7 +55,7 @@ class TestSequenceReshape_reduce(TestSequenceReshape):
def setUp(self):
self.op_type = 'sequence_reshape'
dimension = 24
x_lod = [[0, 4, 6, 8, 12]]
x_lod = [[4, 2, 2, 4]]
x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
self.inputs = {'X': (x, x_lod)}
......@@ -70,7 +70,7 @@ class TestSequenceReshape_same(TestSequenceReshape):
def setUp(self):
self.op_type = 'sequence_reshape'
dimension = 12
x_lod = [[0, 4, 6, 8, 12]]
x_lod = [[4, 2, 2, 4]]
x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
self.inputs = {'X': (x, x_lod)}
......
......@@ -29,20 +29,20 @@ class TestSequenceSliceOp(OpTest):
self.inputs = {'X': (x, lod), 'Offset': offset, 'Length': length}
outs = [] #np.zeros((100, 3, 2)).astype('float32')
out_lod = [[0]]
out_lod_offset = 0
out_lod = [[]]
lod_offset = 0
for i in range(len(offset)):
sub_x = x[lod[0][i] + offset[i, 0]:lod[0][i] + offset[i, 0] +
sub_x = x[lod_offset + offset[i, 0]:lod_offset + offset[i, 0] +
length[i, 0], :]
out_lod_offset = out_lod_offset + len(sub_x)
outs.append(sub_x)
out_lod[0].append(out_lod_offset)
out_lod[0].append(len(sub_x))
lod_offset += lod[0][i]
outs = np.concatenate(outs, axis=0)
self.outputs = {'Out': (outs, out_lod)}
def init_test_case(self):
self.x_dim = (100, 3, 2)
self.x_lod = [[0, 20, 40, 60, 80, 100]]
self.x_lod = [[20, 20, 20, 20, 20]]
self.offset = [[1], [2], [3], [4], [5]]
self.length = [[10], [8], [6], [4], [2]]
......
......@@ -26,15 +26,16 @@ class TestSequenceSoftmaxOp(OpTest):
self.init_op_type()
x = np.random.uniform(0.1, 1, (11, 1)).astype("float32")
lod = [[0, 4, 5, 8, 11]]
lod = [[4, 1, 3, 3]]
out = np.zeros((11, 1)).astype("float32")
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
sub_x = sub_x.reshape(1, lod[0][i + 1] - lod[0][i])
offset = 0
for i in range(len(lod[0])):
sub_x = x[offset:offset + lod[0][i], :]
sub_x = sub_x.reshape(1, lod[0][i])
sub_out = stable_softmax(sub_x)
out[lod[0][i]:lod[0][i + 1], :] = sub_out.reshape(
lod[0][i + 1] - lod[0][i], 1)
out[offset:offset + lod[0][i], :] = sub_out.reshape(lod[0][i], 1)
offset += lod[0][i]
self.inputs = {"X": (x, lod)}
self.outputs = {"Out": out}
......
......@@ -54,12 +54,12 @@ class TestShrinkRNNMemoryReferLoD(TestShrinkRNNMemoryBase):
def test_refer_lod(self):
cpu = core.CPUPlace()
x_tensor = core.LoDTensor()
x_tensor.set_lod([[0, 2, 5, 6]])
x_tensor.set_recursive_sequence_lengths([[2, 3, 1]])
tensor_np = np.random.random(size=(6, 100)).astype('float32')
x_tensor.set(tensor_np, cpu)
rank_table_tensor = core.LoDTensor()
rank_table_tensor.set_lod([[0, 1, 3, 6]])
rank_table_tensor.set_recursive_sequence_lengths([[1, 2, 3]])
rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'),
cpu)
......@@ -83,7 +83,7 @@ class TestShrinkRNNMemoryNoLoD(TestShrinkRNNMemoryBase):
x_tensor.set(tensor_np, cpu)
rank_table_tensor = core.LoDTensor()
rank_table_tensor.set_lod([[0, 1, 3, 6]])
rank_table_tensor.set_recursive_sequence_lengths([[1, 2, 3]])
rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'),
cpu)
......
......@@ -56,7 +56,7 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
def test_split_and_merge_lod_tensor_level_0(self):
tensor = core.LoDTensor()
tensor.set(np.arange(10).reshape(10, 1).astype('int32'), self.place())
tensor.set_lod([[0, 3, 9, 10]])
tensor.set_recursive_sequence_lengths([[3, 6, 1]])
mask_np = np.array([0, 1, 0]).astype('bool')
mask_np = np.expand_dims(mask_np, axis=1)
......@@ -68,15 +68,15 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
expect_true_tensor = np.expand_dims(expect_true_tensor, axis=1)
expect_true = core.LoDTensor()
expect_true.set(expect_true_tensor, self.place())
expect_true.set_lod([[0, 6]])
expect_true.set_recursive_sequence_lengths([[6]])
expect_false_tensor = np.array([0, 1, 2, 9]).astype('int32')
expect_false_tensor = np.expand_dims(expect_false_tensor, axis=1)
expect_false_lod = [[0, 3, 4]]
expect_false_lod = [[3, 1]]
expect_false = core.LoDTensor()
expect_false.set(expect_false_tensor, self.place())
expect_false.set_lod(expect_false_lod)
expect_false.set_recursive_sequence_lengths(expect_false_lod)
self.main(
tensor=tensor,
......@@ -126,7 +126,8 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
def check_tensor_same(self, actual, expect):
self.assertTrue(np.allclose(np.array(actual), np.array(expect)))
self.assertEqual(actual.lod(), expect.lod())
self.assertEqual(actual.recursive_sequence_lengths(),
expect.recursive_sequence_lengths())
class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase):
......@@ -151,7 +152,7 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase):
tensor = core.LoDTensor()
tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place)
tensor.set_lod([[0, 3, 9, 10]])
tensor.set_recursive_sequence_lengths([[3, 6, 1]])
mask_np = np.array([0, 1, 0]).astype('bool')
mask_np = np.expand_dims(mask_np, axis=1)
......
......@@ -22,22 +22,23 @@ def gen_match_and_neg_indices(num_prior, gt_lod, neg_lod):
if len(gt_lod) != len(neg_lod):
raise AssertionError("The input arguments are illegal.")
batch_size = len(gt_lod) - 1
batch_size = len(gt_lod)
match_indices = -1 * np.ones((batch_size, num_prior)).astype('int32')
neg_indices = np.zeros((neg_lod[-1], 1)).astype('int32')
neg_indices = np.zeros((sum(neg_lod), 1)).astype('int32')
offset = 0
for n in range(batch_size):
gt_num = gt_lod[n + 1] - gt_lod[n]
gt_num = gt_lod[n]
ids = random.sample([i for i in range(num_prior)], gt_num)
match_indices[n, ids] = [i for i in range(gt_num)]
ret_ids = set([i for i in range(num_prior)]) - set(ids)
s = neg_lod[n]
e = neg_lod[n + 1]
l = e - s
l = neg_lod[n]
neg_ids = random.sample(ret_ids, l)
neg_indices[s:e, :] = np.array(neg_ids).astype('int32').reshape(l, 1)
neg_indices[offset:offset + neg_lod[n], :] = np.array(neg_ids).astype(
'int32').reshape(l, 1)
offset += neg_lod[n]
return match_indices, neg_indices
......@@ -56,24 +57,28 @@ def target_assign(encoded_box, gt_label, match_indices, neg_indices, gt_lod,
# init weight for target label
trg_label_wt = np.zeros((batch_size, num_prior, 1)).astype('float32')
gt_offset = 0
neg_offset = 0
for i in range(batch_size):
cur_indices = match_indices[i]
col_ids = np.where(cur_indices > -1)
col_val = cur_indices[col_ids]
gt_start = gt_lod[i]
# target bbox
for v, c in zip(col_val + gt_start, col_ids[0].tolist()):
for v, c in zip(col_val + gt_offset, col_ids[0].tolist()):
trg_box[i][c][:] = encoded_box[v][c][:]
# weight for target bbox
trg_box_wt[i][col_ids] = 1.0
trg_label[i][col_ids] = gt_label[col_val + gt_start]
trg_label[i][col_ids] = gt_label[col_val + gt_offset]
trg_label_wt[i][col_ids] = 1.0
# set target label weight to 1.0 for the negative samples
if neg_indices is not None:
neg_ids = neg_indices[neg_lod[i]:neg_lod[i + 1]]
neg_ids = neg_indices[neg_offset:neg_offset + neg_lod[i]]
trg_label_wt[i][neg_ids] = 1.0
# update offset
gt_offset += gt_lod[i]
neg_offset += neg_lod[i]
return trg_box, trg_box_wt, trg_label, trg_label_wt
......@@ -83,11 +88,11 @@ class TestTargetAssginFloatType(OpTest):
self.op_type = "target_assign"
num_prior = 120
num_class = 21
gt_lod = [0, 5, 11, 23]
neg_lod = [0, 4, 7, 13]
gt_lod = [5, 6, 12]
neg_lod = [4, 3, 6]
mismatch_value = 0
batch_size = len(gt_lod) - 1
num_gt = gt_lod[-1]
batch_size = len(gt_lod)
num_gt = sum(gt_lod)
encoded_box = np.random.random((num_gt, num_prior, 4)).astype('float32')
gt_label = np.random.randint(
......@@ -121,11 +126,11 @@ class TestTargetAssginIntType(OpTest):
self.op_type = "target_assign"
num_prior = 120
num_class = 21
gt_lod = [0, 5, 11, 23]
neg_lod = [0, 4, 7, 13]
gt_lod = [5, 6, 12]
neg_lod = [4, 3, 6]
mismatch_value = 0
batch_size = len(gt_lod) - 1
num_gt = gt_lod[-1]
batch_size = len(gt_lod)
num_gt = sum(gt_lod)
encoded_box = np.random.random((num_gt, num_prior, 4)).astype('float32')
gt_label = np.random.randint(
......
......@@ -69,15 +69,14 @@ class TestTensor(unittest.TestCase):
array[0, 0, 0] = 3
array[3, 3, 5] = 10
lod_tensor.set(array, place)
lod_tensor.set_lod([[0, 2, 4]])
lod_tensor.set_recursive_sequence_lengths([[2, 2]])
lod_v = numpy.array(lod_tensor)
self.assertTrue(numpy.alltrue(array == lod_v))
lod = lod_tensor.lod()
self.assertEqual(0, lod[0][0])
lod = lod_tensor.recursive_sequence_lengths()
self.assertEqual(2, lod[0][0])
self.assertEqual(2, lod[0][1])
self.assertEqual(4, lod[0][2])
def test_float_lod_tensor(self):
place = core.CPUPlace()
......@@ -97,21 +96,21 @@ class TestTensor(unittest.TestCase):
lod_v = numpy.array(lod_tensor)
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
self.assertEqual(len(lod_tensor.lod()), 0)
self.assertEqual(len(lod_tensor.recursive_sequence_lengths()), 0)
lod_py = [[0, 2, 5], [0, 2, 4, 5]]
lod_tensor.set_lod(lod_py)
lod = lod_tensor.lod()
lod_py = [[2, 1], [1, 2, 2]]
lod_tensor.set_recursive_sequence_lengths(lod_py)
lod = lod_tensor.recursive_sequence_lengths()
self.assertListEqual(lod_py, lod)
def test_lod_tensor_init(self):
scope = core.Scope()
place = core.CPUPlace()
lod_py = [[0, 2, 5], [0, 2, 4, 5]]
lod_py = [[2, 1], [1, 2, 2]]
lod_tensor = core.LoDTensor()
lod_tensor.set_dims([5, 2, 3, 4])
lod_tensor.set_lod(lod_py)
lod_tensor.set_recursive_sequence_lengths(lod_py)
lod_tensor.alloc_float(place)
tensor_array = numpy.array(lod_tensor)
tensor_array[0, 0, 0, 0] = 1.0
......@@ -121,17 +120,17 @@ class TestTensor(unittest.TestCase):
lod_v = numpy.array(lod_tensor)
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
self.assertListEqual(lod_py, lod_tensor.lod())
self.assertListEqual(lod_py, lod_tensor.recursive_sequence_lengths())
def test_lod_tensor_gpu_init(self):
if not core.is_compiled_with_cuda():
return
place = core.CUDAPlace(0)
lod_py = [[0, 2, 5], [0, 2, 4, 5]]
lod_py = [[2, 1], [1, 2, 2]]
lod_tensor = core.LoDTensor()
lod_tensor.set_dims([5, 2, 3, 4])
lod_tensor.set_lod(lod_py)
lod_tensor.set_recursive_sequence_lengths(lod_py)
lod_tensor.alloc_float(place)
tensor_array = numpy.array(lod_tensor)
tensor_array[0, 0, 0, 0] = 1.0
......@@ -141,7 +140,7 @@ class TestTensor(unittest.TestCase):
lod_v = numpy.array(lod_tensor)
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
self.assertListEqual(lod_py, lod_tensor.lod())
self.assertListEqual(lod_py, lod_tensor.recursive_sequence_lengths())
def test_empty_tensor(self):
place = core.CPUPlace()
......
......@@ -34,8 +34,8 @@ class CTCForward(object):
self.level = 0
self.num_classes = softmax.shape[1]
self.batch_size = len(softmax_lod[self.level]) - 1
assert self.batch_size == len(labels_lod[self.level]) - 1
self.batch_size = len(softmax_lod[self.level])
assert self.batch_size == len(labels_lod[self.level])
self.loss = np.zeros([self.batch_size, 1], dtype="float32")
self.gradient = np.zeros(self.softmax.shape, dtype="float32")
......@@ -156,16 +156,20 @@ class CTCForward(object):
return -log_prob
def forward(self):
softmax_offset = 0
labels_offset = 0
for i in range(self.batch_size):
softmax_start_i = self.softmax_lod[self.level][i]
softmax_end_i = self.softmax_lod[self.level][i + 1]
labels_start_i = self.labels_lod[self.level][i]
labels_end_i = self.labels_lod[self.level][i + 1]
softmax_start_i = softmax_offset
softmax_end_i = softmax_offset + self.softmax_lod[self.level][i]
labels_start_i = labels_offset
labels_end_i = labels_offset + self.labels_lod[self.level][i]
softmax_a_sequence = self.softmax[softmax_start_i:softmax_end_i, :]
labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
labels_a_sequence)
softmax_offset += self.softmax_lod[self.level][i]
labels_offset += self.labels_lod[self.level][i]
return self.loss
......@@ -173,8 +177,8 @@ class TestWarpCTCOp(OpTest):
def config(self):
self.batch_size = 4
self.num_classes = 8
self.logits_lod = [[0, 4, 5, 8, 11]]
self.labels_lod = [[0, 3, 4, 8, 12]]
self.logits_lod = [[4, 1, 3, 3]]
self.labels_lod = [[3, 1, 4, 4]]
self.blank = self.num_classes - 1
self.norm_by_times = False
......@@ -184,11 +188,13 @@ class TestWarpCTCOp(OpTest):
logits = np.random.uniform(
0.1, 1.0,
[self.logits_lod[0][-1], self.num_classes]).astype("float32")
[sum(self.logits_lod[0]), self.num_classes]).astype("float32")
softmax = np.apply_along_axis(stable_softmax, 1, logits)
# labels should not be blank
labels = np.random.randint(
0, self.num_classes - 1, [self.labels_lod[0][-1], 1], dtype="int32")
0,
self.num_classes - 1, [sum(self.labels_lod[0]), 1],
dtype="int32")
ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
self.blank, self.norm_by_times)
......@@ -196,9 +202,8 @@ class TestWarpCTCOp(OpTest):
max_sequence_length = 0
for i in range(self.batch_size):
max_sequence_length = max(
max_sequence_length,
self.logits_lod[0][i + 1] - self.logits_lod[0][i])
max_sequence_length = max(max_sequence_length,
self.logits_lod[0][i])
self.gradient = np.zeros(
[max_sequence_length, self.batch_size, self.num_classes],
dtype="float32")
......@@ -222,8 +227,8 @@ class TestWarpCTCOpCase1(TestWarpCTCOp):
def config(self):
self.batch_size = 4
self.num_classes = CUDA_BLOCK_SIZE + 2
self.logits_lod = [[0, 4, 5, 8, 11]]
self.labels_lod = [[0, 3, 4, 8, 12]]
self.logits_lod = [[4, 1, 3, 3]]
self.labels_lod = [[3, 1, 4, 4]]
self.blank = 0
self.norm_by_times = False
......
......@@ -76,11 +76,11 @@ class TestWeightNormalization(unittest.TestCase):
lod_level_i = numpy.random.randint(
low=1,
high=5,
size=self.batch_size if i == 0 else lod_level_i[-1])
lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist()
size=self.batch_size
if i == 0 else sum(lod_level_i)).tolist()
data_lod.append(lod_level_i)
data_value = numpy.random.random(
size=[data_lod[-1][-1] if data_lod else self.batch_size
size=[sum(data_lod[-1]) if data_lod else self.batch_size
] + data_shape).astype('float32')
self.data[data_name] = (data_value, data_lod)
......@@ -90,7 +90,7 @@ class TestWeightNormalization(unittest.TestCase):
tensor = fluid.Tensor()
tensor.set(self.data[desc[0]][0], place)
if self.data[desc[0]][1]:
tensor.set_lod(self.data[desc[0]][1])
tensor.set_recursive_sequence_lengths(self.data[desc[0]][1])
self.inputs[desc[0]] = tensor
def weight_normalize(self):
......
......@@ -22,7 +22,7 @@ def as_lodtensor(np_array, lod, place):
tensor = core.LoDTensor()
tensor.set(np_value, place)
if lod is not None:
tensor.set_lod(lod)
tensor.set_recursive_sequence_lengths(lod)
return tensor
......@@ -73,7 +73,7 @@ def set_input(scope, op, inputs, place):
if isinstance(var, tuple) or isinstance(var, np.ndarray):
tensor = scope.find_var(var_name).get_tensor()
if isinstance(var, tuple):
tensor.set_lod(var[1])
tensor.set_recursive_sequence_lengths(var[1])
var = var[0]
tensor.set_dims(var.shape)
tensor.set(var, place)
......
......@@ -7,7 +7,7 @@ for file in $(git diff --cached --name-status | awk '$1 != "D" {print $2}'); do
if [[ $file =~ ^(paddle/api/.*|paddle/capi/.*|paddle/contrib/.*|paddle/cuda/.*|paddle/function/.*|paddle/gserver/.*|paddle/math/.*|paddle/optimizer/.*|paddle/parameter/.*|paddle/pserver/.*|paddle/trainer/.*|paddle/utils/.*) ]]; then
continue;
else
cpplint $file;
cpplint --filter=-readability/fn_size $file;
TOTAL_ERRORS=$(expr $TOTAL_ERRORS + $?);
fi
done
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册