未验证 提交 40e6c57b 编写于 作者: W Wei Shengyu 提交者: GitHub

fix doc of Pooling layers (#31977)

* fix doc of MaxPool1D

* fix doc

* fix doc format error

* dbg

* fix doc

* dbg doc format test=document_fix

* fix format test=document_fix

* test doc

* remove - from doc

* fix indent

* remove space before bracket

* dbg format

* fix indent test=document_fix

* remove new line

* fix descrip of Shape test=document_fix

* add description for default value test=document_fix

* fix bug test=document_fix
上级 83b953f5
......@@ -33,7 +33,7 @@ __all__ = [
class AvgPool1D(layers.Layer):
"""
r"""
This operation applies a 1D average pooling over an input signal composed
of several input planes, based on the input, output_size, return_mask parameters.
Input(X) and output(Out) are in NCL format, where N is batch
......@@ -41,36 +41,33 @@ class AvgPool1D(layers.Layer):
The output tensor shape will be [N, C, output_size].
The output value of the layer with input size (N, C, L),
output (N, C, L_{out}) and kernel_size k can be precisely described as
output (N, C, :math:`L_{out}`) and kernel_size ksize can be precisely described as
For average pool1d:
.. math::
Output(N_i, C_i, l) &= mean(Input[N_i, C_i, stride \times l:stride \times l+k])
Output(N_i, C_i, l) = \frac{Input[N_i, C_i, stride \times l:stride \times l+k]}{ksize}
Args:
kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain an integer.
stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
Parameters:
kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain an integer.
padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
it must contain an integer. Default None, then stride will be equal to the kernel_size.
padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
1. A string in ['valid', 'same'].
2. An int, which means the feature map is zero padded by size of `padding` on every sides.
3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
The default value is 0.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is `True`.
ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
If it is set to False, the floor function will be used. The default value is False.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is `True`.
ceil_mode(bool, optional): ${ceil_mode_comment}Whether to use the ceil function to calculate output height
and width. If it is set to False, the floor function will be used. The default value is False.
name(str, optional): For eed to detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no nset and None by default.
Returns:
None.
A callable object of AvgPool1D.
Raises:
ValueError: If `padding` is a string, but not "SAME" or "VALID".
......@@ -79,10 +76,11 @@ class AvgPool1D(layers.Layer):
ShapeError: If the input is not a 3-D tensor.
ShapeError: If the output's shape calculated is not greater than 0.
Shape:
- inpuut: 3-D tensor.
- output: 3-D tensor
- x(Tensor): The input tensor of avg pool1d operator, which is a 3-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of avg pool1d operator, which is a 3-D tensor.
The data type is same as input x.
Examples:
......@@ -133,48 +131,52 @@ class AvgPool2D(layers.Layer):
Example:
Input:
X shape: $(N, C, H_{in}, W_{in})$
X shape: :math:`(N, C, :math:`H_{in}`, :math:`W_{in}`)`
Attr:
kernel_size: ksize
Output:
Out shape: $(N, C, H_{out}, W_{out})$
$$
out(N_i, C_j, h, w) = \frac{1}{ksize[0] * ksize[1]} \sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
$$
Args:
kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
Out shape: :math:`(N, C, :math:`H_{out}`, :math:`W_{out}`)`
.. math::
Output(N_i, C_j, h, w) = \frac{\sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)}{ksize[0] * ksize[1]}
Parameters:
kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be a square of an int.
stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
it must contain two integers, (pool_stride_Height, pool_stride_Width).
Otherwise, the pool stride size will be a square of an int.
padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
Default None, then stride will be equal to the kernel_size.
padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
1. A string in ['valid', 'same'].
2. An int, which means the feature map is zero padded by size of `padding` on every sides.
3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
The default value is 0.
ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
exclusive (bool): Whether to exclude padding points in average pooling
ceil_mode(bool, optional): When True, will use `ceil` instead of `floor` to compute the output shape.
exclusive(bool, optional): Whether to exclude padding points in average pooling
mode, default is `true`.
divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
divisor_override(float, optional): If specified, it will be used as divisor, otherwise kernel_size will be
used. Default None.
data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`,
`"NDHW"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Shape:
- x: 4-D tensor.
- out: 2-D tensor
- x(Tensor): The input tensor of avg pool2d operator, which is a 4-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of avg pool2d operator, which is a 4-D tensor.
The data type is same as input x.
Returns: None.
Returns:
A callable object of AvgPool2D.
Raises:
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is "VALID", but `ceil_mode` is True.
......@@ -238,42 +240,45 @@ class AvgPool3D(layers.Layer):
in NCDHW format, where N is batch size, C is the number of channels,
H is the height of the feature, D is the depth of the feature, and W is the width of the feature.
Args:
kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
Parameters:
kernel_size(int|list|tuple): The pool kernel size. If pool kernel size
is a tuple or list, it must contain three integers,
(kernel_size_Depth, kernel_size_Height, kernel_size_Width).
Otherwise, the pool kernel size will be the cube of an int.
stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
it must contain three integers, [stride_Depth, stride_Height, stride_Width).
Otherwise, the pool stride size will be a cube of an int.
padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
Default None, then stride will be equal to the kernel_size.
padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
1. A string in ['valid', 'same'].
2. An int, which means the feature map is zero padded by size of `padding` on every sides.
3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
The default value is 0.
ceil_mode (bool): ${ceil_mode_comment}
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is True.
divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
ceil_mode(bool, optional): ${ceil_mode_comment}
exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is True.
divisor_override(int|float, optional): if specified, it will be used as divisor, otherwise kernel_size will
be used. Default None.
data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
`"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_depth, input_height, input_width]`.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: None.
Returns:
A callable object of AvgPool3D.
Raises:
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is "VALID", but `ceil_mode` is True.
ShapeError: If the output's shape calculated is not greater than 0.
Shape:
- x: 5-D tensor.
- out: 5-D tensor.
- x(Tensor): The input tensor of avg pool3d operator, which is a 5-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of avg pool3d operator, which is a 5-D tensor.
The data type is same as input x.
Examples:
.. code-block:: python
......@@ -292,7 +297,7 @@ class AvgPool3D(layers.Layer):
def __init__(self,
kernel_size,
stride,
stride=None,
padding=0,
ceil_mode=False,
exclusive=True,
......@@ -328,10 +333,11 @@ class AvgPool3D(layers.Layer):
class MaxPool1D(layers.Layer):
"""
Applies a 1D max pooling over an input signal composed of several input planes based
on the input, output_size, return_mask parameters.
Input(X) and output(Out) are in NCL format, where N is batch
size, C is the number of channels, L is the length of the feature.
This operation applies 1D max pooling over input signal
composed of several input planes based on the input,
and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
in NCL format, where N is batch size, C is the number of channels,
L is the length of the feature.
The output value of the layer with input size (N, C, L),
output (N, C, L_{out}) and kernel_size k can be precisely described as
......@@ -339,28 +345,27 @@ class MaxPool1D(layers.Layer):
.. math::
Output(N_i, C_i, l) &= max(Input[N_i, C_i, stride \times l:stride \times l+k])}
Output(N_i, C_i, l) = max(Input[N_i, C_i, stride \times l:stride \times l+k])
Args:
kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain an integer.
stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
Parameters:
kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain an integer.
padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
it must contain an integer. Default None, then stride will be equal to the kernel_size.
padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
1. A string in ['valid', 'same'].
2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
4. A list[int] or tuple(int) whose length is 2, It has the form [pad_before, pad_after].
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or(0,0).
The default value is 0.
return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
If it is set to False, the floor function will be used. Default False.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
return_mask(bool, optional): Whether return the max indices along with the outputs. default is `False`.
ceil_mode(bool, optional): Whether to use the ceil function to calculate output height and width.
False is the default. If it is set to False, the floor function will be used. Default False.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Returns:
None.
A callable object of MaxPool1D.
Raises:
ValueError: If `padding` is a string, but not "SAME" or "VALID".
......@@ -371,8 +376,10 @@ class MaxPool1D(layers.Layer):
Shape:
- x: 3-D tensor.
- out: 3-D tensor.
- x(Tensor): The input tensor of max pool1d operator, which is a 3-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of max pool1d operator, which is a 3-D tensor.
The data type is same as input x.
Examples:
......@@ -426,51 +433,54 @@ class MaxPool2D(layers.Layer):
H is the height of the feature, and W is the width of the feature.
Example:
Input:
X shape: $(N, C, H_{in}, W_{in})$
Attr:
- Input:
X shape: :math:`(N, C, H_{in}, W_{in})`
- Attr:
kernel_size: ksize
Output:
Out shape: $(N, C, H_{out}, W_{out})$
$$
out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1} \\
& \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
\text{stride[1]} \times w + n)
$$
Args:
kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
- Output:
Out shape: :math:`(N, C, H_{out}, W_{out})`
.. math::
Output(N_i, C_j, h, w) = \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1}
Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
Parameters:
kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be a square of an int.
stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
it must contain two integers, (pool_stride_Height, pool_stride_Width).
Otherwise, the pool stride size will be a square of an int.
padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
Default None, then stride will be equal to the kernel_size.
padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
1. A string in ['valid', 'same'].
2. An int, which means the feature map is zero padded by size of `padding` on every sides.
3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
4. A list[int] or tuple(int) whose length is \4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
The default value is 0.
ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
return_mask (bool): Whether to return the max indices along with the outputs.
data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
ceil_mode(bool, optional): when True, will use `ceil` instead of `floor` to compute the output shape
return_mask(bool, optional): Whether to return the max indices along with the outputs.
data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Returns: None
Returns:
A callable object of MaxPool2D.
Raises:
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is "VALID", but `ceil_mode` is True.
ShapeError: If the output's shape calculated is not greater than 0.
Shape:
- x: 4-D tensor.
- out: 4-D tensor.
- x(Tensor): The input tensor of max pool2d operator, which is a 4-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of max pool2d operator, which is a 4-D tensor.
The data type is same as input x.
Examples:
.. code-block:: python
......@@ -532,40 +542,43 @@ class MaxPool3D(layers.Layer):
in NCDHW format, where N is batch size, C is the number of channels,
H is the height of the feature, D is the depth of the feature, and W is the width of the feature.
Args:
kernel_size (int|list|tuple): The pool kernel size. If the kernel size
Parameters:
kernel_size(int|list|tuple): The pool kernel size. If the kernel size
is a tuple or list, it must contain three integers,
(kernel_size_Depth, kernel_size_Height, kernel_size_Width).
Otherwise, the pool kernel size will be the cube of an int.
stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
it must contain three integers, [stride_Depth, stride_Height, stride_Width).
Otherwise, the pool stride size will be a cube of an int.
padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
Default None, then stride will be equal to the kernel_size.
padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
1. A string in ['valid', 'same'].
2. An int, which means the feature map is zero padded by size of `padding` on every sides.
3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
4. A list[int] or tuple(int) whose length is \6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
The default value is 0.
ceil_mode (bool): ${ceil_mode_comment}
return_mask (bool): Whether to return the max indices along with the outputs.
data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
ceil_mode(bool, optional): ${ceil_mode_comment}
return_mask(bool, optional): Whether to return the max indices along with the outputs.
data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
`"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_depth, input_height, input_width]`.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Returns:None.
Returns:
A callable object of MaxPool3D.
Raises:
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is "VALID", but `ceil_mode` is True.
ShapeError: If the output's shape calculated is not greater than 0.
Shape:
- x: 5-D tensor.
- out: 5-D tensor.
- x(Tensor): The input tensor of max pool3d operator, which is a 5-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of max pool3d operator, which is a 5-D tensor.
The data type is same as input x.
Examples:
.. code-block:: python
......@@ -637,23 +650,24 @@ class AdaptiveAvgPool1D(layers.Layer):
lend &= ceil((i + 1) * L_{in} / L_{out})
Output(i) &= \\frac{sum(Input[lstart:lend])}{(lstart - lend)}
Output(i) &= \frac{ \sum Input[lstart:lend]}{lend - lstart}
Args:
output_size (int): The target output size. It must be an integer.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Parameters:
output_size(int): The target output size. It must be an integer.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Returns:
None.
A callable object of AdaptiveAvgPool1D.
Raises:
ValueError: 'output_size' should be an integer.
Shape:
- x: 3-D tensor.
- out: 3-D tensor.
- x(Tensor): 3-D tensor. The input tensor of adaptive avg pool1d operator, which is a 3-D tensor.
The data type can be float32, float64.
- output(Tensor): 3-D tensor. The output tensor of adaptive avg pool1d operator, which is a 3-D tensor.
The data type is same as input x.
Examples:
.. code-block:: python
......@@ -668,7 +682,7 @@ class AdaptiveAvgPool1D(layers.Layer):
# for i in range(m):
# lstart = floor(i * L / m)
# lend = ceil((i + 1) * L / m)
# output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
# output[:, :, i] = sum(input[:, :, lstart: lend])/(lend - lstart)
#
import paddle
import paddle.nn as nn
......@@ -710,23 +724,24 @@ class AdaptiveAvgPool2D(layers.Layer):
wend &= ceil((j + 1) * W_{in} / W_{out})
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
Parameters:
output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two element, (H, W). H and W can be either a int, or None which means
the size will be the same as that of the input.
data_format (str): The data format of the input and output data. An optional string
data_format(str, optional): The data format of the input and output data. An optional string
from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
the order of: [batch_size, input_channels, input_height, input_width].
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Shape:
x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
output (Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type is same as input x.
- x(Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor.
The data type is same as input x.
Returns:
A callable object of AdaptiveAvgPool2D.
......@@ -799,22 +814,24 @@ class AdaptiveAvgPool3D(layers.Layer):
wend &= ceil((k + 1) * W_{in} / W_{out})
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
{(dend - dstart) * (hend - hstart) * (wend - wstart)}
Parameters:
output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
the size will be the same as that of the input.
data_format (str): The data format of the input and output data. An optional string
data_format(str, optional): The data format of the input and output data. An optional string
from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
the order of: [batch_size, input_channels, input_depth, input_height, input_width].
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Shape:
x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
output (Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type is same as input x.
- x(Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
The data type can be float32, float64\.
- output(Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor.
The data type is same as input x.
Returns:
A callable object of AdaptiveAvgPool3D.
......@@ -887,23 +904,24 @@ class AdaptiveMaxPool1D(layers.Layer):
Output(i) &= max(Input[lstart:lend])
Args:
output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
Parameters:
output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain one int.
return_mask (bool): If true, the index of max pooling point will be returned along
return_mask(bool, optional): If true, the index of max pooling point will be returned along
with outputs. It cannot be set in average pooling type. Default False.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Returns:
None.
A callable object of AdaptiveMaxPool1D.
Raises:
ValueError: 'pool_size' should be a integer or list or tuple with length as 1.
Shape:
x (Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type can be float32, float64.
output (Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type is same as input x.
- x(Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor.
The data type is same as input x.
Examples:
.. code-block:: python
......@@ -954,7 +972,8 @@ class AdaptiveMaxPool1D(layers.Layer):
class AdaptiveMaxPool2D(layers.Layer):
"""
This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and
pooling is adaptive one focus on the output size.
For adaptive max pool2d:
......@@ -971,14 +990,18 @@ class AdaptiveMaxPool2D(layers.Layer):
Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
Parameters:
output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
return_mask (bool): If true, the index of max pooling point will be returned along with outputs. It cannot be set in average pooling type. Default False.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of
the input.
return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
It cannot be set in average pooling type. Default False.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Shape:
x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
output (Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type is same as input x.
- x(Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor.
The data type is same as input x.
Returns:
A callable object of AdaptiveMaxPool2D.
......@@ -1029,8 +1052,9 @@ class AdaptiveMaxPool2D(layers.Layer):
class AdaptiveMaxPool3D(layers.Layer):
"""
This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions
of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions of the output tensor are
determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus
on the output size.
For adaptive max pool3d:
......@@ -1051,14 +1075,19 @@ class AdaptiveMaxPool3D(layers.Layer):
Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
Parameters:
output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as
that of the input.
return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
Default False.
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Shape:
x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
output (Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type is same as input x.
- x(Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor.
The data type can be float32, float64.
- output(Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor.
The data type is same as input x.
Returns:
A callable object of AdaptiveMaxPool3D.
Examples:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册