未验证 提交 40bd7a7a 编写于 作者: W wangna11BD 提交者: GitHub

add parameter of input in model.summary (#34165)

* add input option in model.summary
上级 d3dae0ce
......@@ -2145,7 +2145,7 @@ class Model(object):
_input_size = input_size
else:
_input_size = self._inputs
return summary(self.network, _input_size, dtype)
return summary(self.network, _input_size, dtypes=dtype)
def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
out_specs = []
......
......@@ -25,7 +25,7 @@ from collections import OrderedDict
__all__ = []
def summary(net, input_size, dtypes=None):
def summary(net, input_size=None, dtypes=None, input=None):
"""Prints a string summary of the network.
Args:
......@@ -34,8 +34,10 @@ def summary(net, input_size, dtypes=None):
have one input, input_size can be tuple or InputSpec. if model
have multiple input, input_size must be a list which contain
every input's shape. Note that input_size only dim of
batch_size can be None or -1.
batch_size can be None or -1. Default: None. Note that
input_size and input cannot be None at the same time.
dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None.
input: the input tensor. if input is given, input_size and dtype will be ignored, Default: None.
Returns:
Dict: a summary of the network including total params and total trainable params.
......@@ -94,10 +96,62 @@ def summary(net, input_size, dtypes=None):
lenet_multi_input = LeNetMultiInput()
params_info = paddle.summary(lenet_multi_input, [(1, 1, 28, 28), (1, 400)],
['float32', 'float32'])
dtypes=['float32', 'float32'])
print(params_info)
# list input demo
class LeNetListInput(LeNet):
def forward(self, inputs):
x = self.features(inputs[0])
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x + inputs[1])
return x
lenet_list_input = LeNetListInput()
input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
params_info = paddle.summary(lenet_list_input, input=input_data)
print(params_info)
# dict input demo
class LeNetDictInput(LeNet):
def forward(self, inputs):
x = self.features(inputs['x1'])
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x + inputs['x2'])
return x
lenet_dict_input = LeNetDictInput()
input_data = {'x1': paddle.rand([1, 1, 28, 28]),
'x2': paddle.rand([1, 400])}
params_info = paddle.summary(lenet_dict_input, input=input_data)
print(params_info)
"""
if input_size is None and input is None:
raise ValueError("input_size and input cannot be None at the same time")
if input_size is None and input is not None:
if paddle.is_tensor(input):
input_size = tuple(input.shape)
elif isinstance(input, (list, tuple)):
input_size = []
for x in input:
input_size.append(tuple(x.shape))
elif isinstance(input, dict):
input_size = []
for key in input.keys():
input_size.append(tuple(input[key].shape))
else:
raise ValueError(
"Input is not tensor, list, tuple and dict, unable to determine input_size, please input input_size."
)
if isinstance(input_size, InputSpec):
_input_size = tuple(input_size.shape)
elif isinstance(input_size, list):
......@@ -163,7 +217,8 @@ def summary(net, input_size, dtypes=None):
return [_check_input(i) for i in input_size]
_input_size = _check_input(_input_size)
result, params_info = summary_string(net, _input_size, dtypes)
result, params_info = summary_string(net, _input_size, dtypes, input)
print(result)
if in_train_mode:
......@@ -173,7 +228,7 @@ def summary(net, input_size, dtypes=None):
@paddle.no_grad()
def summary_string(model, input_size, dtypes=None):
def summary_string(model, input_size=None, dtypes=None, input=None):
def _all_is_numper(items):
for item in items:
if not isinstance(item, numbers.Number):
......@@ -280,15 +335,16 @@ def summary_string(model, input_size, dtypes=None):
build_input(i, dtype) for i, dtype in zip(input_size, dtypes)
]
x = build_input(input_size, dtypes)
# create properties
summary = OrderedDict()
hooks = []
# register hook
model.apply(register_hook)
if input is not None:
x = input
model(x)
else:
x = build_input(input_size, dtypes)
# make a forward pass
model(*x)
......
......@@ -68,6 +68,27 @@ class LeNetDygraph(paddle.nn.Layer):
return x
class LeNetListInput(LeNetDygraph):
def forward(self, inputs):
x = inputs[0]
x = self.features(x)
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x + inputs[1])
return x
class LeNetDictInput(LeNetDygraph):
def forward(self, inputs):
x = self.features(inputs['x1'])
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x + inputs['x2'])
return x
class MnistDataset(MNIST):
def __init__(self, mode, return_label=True, sample_num=None):
super(MnistDataset, self).__init__(mode=mode)
......@@ -615,6 +636,22 @@ class TestModelFunction(unittest.TestCase):
gt_params = _get_param_from_state_dict(rnn.state_dict())
np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)
def test_summary_input(self):
rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
input_data = paddle.rand([4, 23, 16])
paddle.summary(rnn, input=input_data)
lenet_List_input = LeNetListInput()
input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
paddle.summary(lenet_List_input, input=input_data)
lenet_dict_input = LeNetDictInput()
input_data = {
'x1': paddle.rand([1, 1, 28, 28]),
'x2': paddle.rand([1, 400])
}
paddle.summary(lenet_dict_input, input=input_data)
def test_summary_dtype(self):
input_shape = (3, 1)
net = paddle.nn.Embedding(10, 3, sparse=True)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册