diff --git a/python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_mul_mkldnn_op.py b/python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_mul_mkldnn_op.py index 34837d8a638490a0d66414fa453703250216f4db..a9f748b5e497cc325842874ae9f5a6639feefff3 100644 --- a/python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_mul_mkldnn_op.py +++ b/python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_mul_mkldnn_op.py @@ -19,6 +19,137 @@ from paddle.fluid.tests.unittests.op_test import OpTest import paddle.fluid.core as core from paddle.fluid.op import Operator from paddle.fluid.tests.unittests.test_elementwise_mul_op import * +from paddle.fluid.tests.unittests.test_conv2d_op import conv2d_forward_naive +from paddle.fluid.tests.unittests.mkldnn.mkldnn_op_test import __assert_close +import paddle.fluid as fluid + + +# For UT coverage, integrate conv2d + elementwise-mul so that nchw16C could be automatically chosen when mkldnn-kernel is enabled +class TestElementwiseMulMKLDNNOp_Integrated_With_Convs(ElementwiseMulOp): + def setUp(self): + self.dtype = np.float32 + self.init_dtype() + self.init_kernel_type() + self.init_axis() + self._cpu_only = True + self.pad = [0, 0] + self.stride = [1, 1] + self.groups = 1 + self.input_size = [1, 3, 5, 5] # NCHW + self.filter_size = [16, 3, 3, 3] + self.filter_size2 = [1, 16, 2, 2] + self.dilations = [1, 1] + self.use_cudnn = False + self.data_format = "NCHW" + self.input = np.random.random(self.input_size).astype(self.dtype) + self.filter = np.random.random(self.filter_size).astype(self.dtype) + self.filter2 = np.random.random(self.filter_size2).astype(self.dtype) + self.elt_mul_y_size = [1, 16] + self.elt_mul_y = np.random.random(self.elt_mul_y_size).astype( + self.dtype) + conv2d_param = { + 'stride': self.stride, + 'pad': self.pad, + 'dilation': self.dilations + } + conv_out, _, _, _, _ = conv2d_forward_naive( + self.input, self.filter, self.groups, conv2d_param) #[1, 16, 2, 2] + self.conv_output = conv_out + self.elt_mul_output = self.conv_output * self.elt_mul_y.reshape( + 1, 16, 1, 1) # the result shape is [1, 16, 2, 2] + conv_output2, _, _, _, _ = conv2d_forward_naive( + self.elt_mul_output, self.filter2, self.groups, conv2d_param) + self.conv_output2 = conv_output2 + self.fetch_list = ["conv_output2"] + + def init_kernel_type(self): + self.use_mkldnn = True + + def init_axis(self): + self.axis = 0 + + def test_check_output(self): + ground_truth = { + "input": self.input, + "filter": self.filter, + "filter2": self.filter2, + "conv_output": self.conv_output, + "elt_mul_y": self.elt_mul_y, + "elt_mul_output": self.elt_mul_output, + "conv_output2": self.conv_output2, + } + program = fluid.Program() + with fluid.program_guard(program): + block = program.global_block() + for name in ground_truth: + block.create_var( + name=name, dtype="float32", shape=ground_truth[name].shape) + conv2d_op = block.append_op( + type="conv2d", + inputs={ + "Input": block.var('input'), + 'Filter': block.var('filter') + }, + outputs={"Output": block.var('conv_output')}, + attrs={ + 'strides': self.stride, + 'paddings': self.pad, + 'groups': self.groups, + 'dilations': self.dilations, + 'use_cudnn': self.use_cudnn, + 'use_mkldnn': self.use_mkldnn + }) + elementwise_mul_op = block.append_op( + type="elementwise_mul", + inputs={ + 'X': block.var('conv_output'), + 'Y': block.var('elt_mul_y'), + }, + outputs={"Out": block.var('elt_mul_output')}, + attrs={ + 'use_cudnn': self.use_cudnn, + 'use_mkldnn': self.use_mkldnn, + 'axis': self.axis + }) + conv2d_op2 = block.append_op( + type="conv2d", + inputs={ + "Input": block.var('elt_mul_output'), + 'Filter': block.var('filter2') + }, + outputs={"Output": block.var('conv_output2')}, + attrs={ + 'strides': self.stride, + 'paddings': self.pad, + 'groups': self.groups, + 'dilations': self.dilations, + 'use_cudnn': self.use_cudnn, + 'use_mkldnn': self.use_mkldnn, + 'data_format': self.data_format + }) + place = core.CPUPlace() + exe = fluid.Executor(place) + out = exe.run( + program, + feed={ + name: ground_truth[name] + for name in ["input", "filter", "filter2", "elt_mul_y"] + }, + fetch_list=self.fetch_list) + + for id, name in enumerate(self.fetch_list): + self.assertTrue( + np.allclose( + ground_truth[name], out[id], atol=1e-4), name) + + def test_check_grad_normal(self): + pass + + def test_check_grad_ingore_x(self): + pass + + def test_check_grad_ingore_y(self): + pass # TODO(LeoZhao-Intel): re-enable this case