From 3db9c8c982ba2d9e9b24a4e765a63ffca4c2ccc2 Mon Sep 17 00:00:00 2001 From: Kaipeng Deng Date: Fri, 24 May 2019 11:31:02 +0800 Subject: [PATCH] refine shape and split test. test=develop (#17545) --- .../unittests/test_activation_nn_grad.py | 127 +++++++ .../unittests/test_elementwise_nn_grad.py | 247 ++++++++++++++ .../fluid/tests/unittests/test_nn_grad.py | 316 ------------------ 3 files changed, 374 insertions(+), 316 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/test_activation_nn_grad.py create mode 100644 python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py diff --git a/python/paddle/fluid/tests/unittests/test_activation_nn_grad.py b/python/paddle/fluid/tests/unittests/test_activation_nn_grad.py new file mode 100644 index 0000000000..733643287c --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_activation_nn_grad.py @@ -0,0 +1,127 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np + +import paddle.fluid as fluid +import paddle.fluid.layers as layers +import paddle.fluid.core as core +import gradient_checker + +from decorator_helper import prog_scope + + +class TestReluDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + shape = [2, 3, 7, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + x.persistable = True + y = layers.relu(x) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + x_arr[np.abs(x_arr) < 0.005] = 0.02 + + gradient_checker.double_grad_check( + [x], y, x_init=x_arr, place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestLeakyReluDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + shape = [2, 3, 7, 9] + eps = 0.005 + alpha = 0.2 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + x.persistable = True + + y = layers.leaky_relu(x, alpha=alpha) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + x_arr[np.abs(x_arr) < 0.005] = 0.02 + + gradient_checker.double_grad_check( + [x], y, x_init=x_arr, place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places = [fluid.CUDAPlace(0)] + for p in places: + self.func(p) + + +class TestSqrtDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + shape = [2, 3, 7, 9] + eps = 0.0001 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + x.persistable = True + + y = layers.sqrt(x) + x_arr = np.random.uniform(0.1, 1, shape).astype(dtype) + + gradient_checker.double_grad_check( + [x], y, x_init=x_arr, place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places = [fluid.CUDAPlace(0)] + for p in places: + self.func(p) + + +class TestSquareDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + x.persistable = True + y = layers.square(x) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + + gradient_checker.double_grad_check( + [x], y, x_init=x_arr, place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py b/python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py new file mode 100644 index 0000000000..52d44d69fa --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py @@ -0,0 +1,247 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np + +import paddle.fluid as fluid +import paddle.fluid.layers as layers +import paddle.fluid.core as core +import gradient_checker + +from decorator_helper import prog_scope + + +class TestElementwiseMulDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + y = layers.data('y', shape, False, dtype) + x.persistable = True + y.persistable = True + out = layers.elementwise_mul(x, y) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, shape).astype(dtype) + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + y = layers.data('y', shape[:-1], False, dtype) + x.persistable = True + y.persistable = True + out = layers.elementwise_mul(x, y, axis=0) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestElementwiseAddDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + y = layers.data('y', shape, False, dtype) + x.persistable = True + y.persistable = True + out = layers.elementwise_add(x, y) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, shape).astype(dtype) + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + y = layers.data('y', shape[:-1], False, dtype) + x.persistable = True + y.persistable = True + out = layers.elementwise_add(x, y, axis=0) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestElementwiseSubDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + y = layers.data('y', shape, False, dtype) + x.persistable = True + y.persistable = True + out = layers.elementwise_sub(x, y) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, shape).astype(dtype) + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + y = layers.data('y', shape[:-1], False, dtype) + x.persistable = True + y.persistable = True + out = layers.elementwise_sub(x, y, axis=0) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestElementwiseDivDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.0001 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + y = layers.data('y', shape, False, dtype) + x.persistable = True + y.persistable = True + out = layers.elementwise_div(x, y, axis=0) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr[np.abs(y_arr) < 0.005] = 0.02 + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable shoule be clearly specified, not inlcude -1. + shape = [2, 3, 7, 9] + eps = 0.0001 + dtype = np.float64 + + x = layers.data('x', shape, False, dtype) + y = layers.data('y', shape[1:-1], False, dtype) + x.persistable = True + y.persistable = True + out = layers.elementwise_div(x, y, axis=1) + x_arr = np.random.uniform(-1, 1, shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype) + y_arr[np.abs(y_arr) < 0.005] = 0.02 + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_nn_grad.py b/python/paddle/fluid/tests/unittests/test_nn_grad.py index 558a21c1f0..ae1e85c483 100644 --- a/python/paddle/fluid/tests/unittests/test_nn_grad.py +++ b/python/paddle/fluid/tests/unittests/test_nn_grad.py @@ -43,80 +43,6 @@ class TestMulGradCheck(unittest.TestCase): self.func(p) -class TestReluDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - shape = [2, 8] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - x.persistable = True - y = layers.relu(x) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - x_arr[np.abs(x_arr) < 0.005] = 0.02 - - gradient_checker.double_grad_check( - [x], y, x_init=x_arr, place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - -class TestLeakyReluDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - shape = [3, 7] - eps = 0.005 - alpha = 0.2 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - x.persistable = True - - y = layers.leaky_relu(x, alpha=alpha) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - x_arr[np.abs(x_arr) < 0.005] = 0.02 - - gradient_checker.double_grad_check( - [x], y, x_init=x_arr, place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places = [fluid.CUDAPlace(0)] - for p in places: - self.func(p) - - -class TestSqrtDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - shape = [3, 7] - eps = 0.0001 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - x.persistable = True - - y = layers.sqrt(x) - x_arr = np.random.uniform(0.1, 1, shape).astype(dtype) - - gradient_checker.double_grad_check( - [x], y, x_init=x_arr, place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places = [fluid.CUDAPlace(0)] - for p in places: - self.func(p) - - class TestConvDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): @@ -141,57 +67,6 @@ class TestConvDoubleGradCheck(unittest.TestCase): self.func(p) -class TestSquareDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [17, 23] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - x.persistable = True - y = layers.square(x) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - - gradient_checker.double_grad_check( - [x], y, x_init=x_arr, place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - -class TestElementwiseMulDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [2, 3, 5, 7] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - y = layers.data('y', shape, False, dtype) - x.persistable = True - y.persistable = True - out = layers.elementwise_mul(x, y) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, shape).astype(dtype) - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): @@ -215,141 +90,6 @@ class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase): self.func(p) -class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [2, 3, 5, 7] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - y = layers.data('y', shape[:-1], False, dtype) - x.persistable = True - y.persistable = True - out = layers.elementwise_mul(x, y, axis=0) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - -class TestElementwiseAddDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [2, 3, 5, 7] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - y = layers.data('y', shape, False, dtype) - x.persistable = True - y.persistable = True - out = layers.elementwise_add(x, y) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, shape).astype(dtype) - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - -class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [2, 3, 5, 7] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - y = layers.data('y', shape[:-1], False, dtype) - x.persistable = True - y.persistable = True - out = layers.elementwise_add(x, y, axis=0) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - -class TestElementwiseSubDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [2, 3, 5, 7] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - y = layers.data('y', shape, False, dtype) - x.persistable = True - y.persistable = True - out = layers.elementwise_sub(x, y) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, shape).astype(dtype) - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - -class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [2, 3, 5, 7] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - y = layers.data('y', shape[:-1], False, dtype) - x.persistable = True - y.persistable = True - out = layers.elementwise_sub(x, y, axis=0) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - class TestMulDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): @@ -378,61 +118,5 @@ class TestMulDoubleGradCheck(unittest.TestCase): self.func(p) -class TestElementwiseDivDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [2, 3, 7, 9] - eps = 0.0001 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - y = layers.data('y', shape, False, dtype) - x.persistable = True - y.persistable = True - out = layers.elementwise_div(x, y, axis=0) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr[np.abs(y_arr) < 0.005] = 0.02 - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - -class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable shoule be clearly specified, not inlcude -1. - shape = [2, 3, 7, 9] - eps = 0.0001 - dtype = np.float64 - - x = layers.data('x', shape, False, dtype) - y = layers.data('y', shape[1:-1], False, dtype) - x.persistable = True - y.persistable = True - out = layers.elementwise_div(x, y, axis=1) - x_arr = np.random.uniform(-1, 1, shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype) - y_arr[np.abs(y_arr) < 0.005] = 0.02 - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - if __name__ == "__main__": unittest.main() -- GitLab