From 3cd10a7c4fd0f8063aac326e5542163d3fb3cae2 Mon Sep 17 00:00:00 2001 From: minqiyang Date: Thu, 20 Dec 2018 00:14:03 +0800 Subject: [PATCH] Add Conv2D forward test=develop --- paddle/fluid/imperative/layer.cc | 3 + paddle/fluid/imperative/layer.h | 3 +- paddle/fluid/imperative/tracer.h | 43 ++---- paddle/fluid/pybind/imperative.cc | 5 +- paddle/fluid/pybind/pybind.cc | 6 + python/paddle/fluid/framework.py | 15 +- python/paddle/fluid/imperative/__init__.py | 4 + python/paddle/fluid/imperative/base.py | 5 +- python/paddle/fluid/imperative/layers.py | 13 +- python/paddle/fluid/initializer.py | 24 ++-- python/paddle/fluid/layer_helper.py | 2 +- python/paddle/fluid/layers/nn.py | 57 +------- .../fluid/tests/unittests/test_imperative.py | 123 ----------------- .../tests/unittests/test_imperative_mnist.py | 129 ++++++++++++++++++ 14 files changed, 198 insertions(+), 234 deletions(-) delete mode 100644 python/paddle/fluid/tests/unittests/test_imperative.py create mode 100644 python/paddle/fluid/tests/unittests/test_imperative_mnist.py diff --git a/paddle/fluid/imperative/layer.cc b/paddle/fluid/imperative/layer.cc index 342cb68ab2..35640ca6dc 100644 --- a/paddle/fluid/imperative/layer.cc +++ b/paddle/fluid/imperative/layer.cc @@ -144,6 +144,9 @@ void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) { std::vector OpBase::ApplyGrad(framework::Scope* scope) { VLOG(3) << "op grad " << grad_op_desc_->Type(); + if (!grad_to_var_) { + return {}; + } for (const std::string& grad_invar : grad_op_desc_->InputArgumentNames()) { if (grad_to_var_->find(grad_invar) == grad_to_var_->end()) { diff --git a/paddle/fluid/imperative/layer.h b/paddle/fluid/imperative/layer.h index 85a71ca83d..faa64ff9ea 100644 --- a/paddle/fluid/imperative/layer.h +++ b/paddle/fluid/imperative/layer.h @@ -60,7 +60,8 @@ class OpBase { pre_ops_(new std::vector()), pre_ops_out_idx_(new std::vector()), op_desc_(nullptr), - grad_op_desc_(nullptr) {} + grad_op_desc_(nullptr), + grad_to_var_(nullptr) {} virtual ~OpBase() { delete input_vars_; diff --git a/paddle/fluid/imperative/tracer.h b/paddle/fluid/imperative/tracer.h index 97772dc110..f6dac762fd 100644 --- a/paddle/fluid/imperative/tracer.h +++ b/paddle/fluid/imperative/tracer.h @@ -43,20 +43,14 @@ void CreateGradOp(const framework::OpDesc& op_desc, class Tracer { public: - explicit Tracer(framework::BlockDesc* root_block, - framework::BlockDesc* startup_block) - : root_block_(root_block), startup_block_(startup_block) { - root_scope_ = new framework::Scope(); - scopes_[root_block_] = root_scope_; - scopes_[startup_block_] = root_scope_; - } + explicit Tracer(framework::BlockDesc* root_block) + : root_scope_(new framework::Scope()) {} - virtual ~Tracer() { delete root_scope_; } + virtual ~Tracer() {} void Trace(OpBase* op, const std::vector& inputs, - const std::vector& outputs, - framework::BlockDesc* block) { - framework::Scope* scope = GetScope(block); + const std::vector& outputs, framework::BlockDesc* block, + const bool stop_gradient) { framework::OpDesc* op_desc = op->op_desc_; VLOG(3) << "tracer tracing " << op_desc->Type(); op_desc->InferShape(*block); @@ -67,7 +61,7 @@ class Tracer { *op->input_vars_ = inputs; for (VarBase* input : inputs) { const std::string vname = input->var_desc_->Name(); - framework::Variable* var = scope->Var(vname); + framework::Variable* var = root_scope_->Var(vname); input->var_ = var; if (!var->IsInitialized()) { framework::VarDesc* var_desc = block->FindVar(vname); @@ -90,7 +84,7 @@ class Tracer { *op->output_vars_ = outputs; for (size_t i = 0; i < outputs.size(); ++i) { const std::string vname = outputs[i]->var_desc_->Name(); - framework::Variable* var = scope->Var(vname); + framework::Variable* var = root_scope_->Var(vname); if (!var->IsInitialized()) { framework::VarDesc* var_desc = block->FindVar(vname); if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) { @@ -105,11 +99,8 @@ class Tracer { } VLOG(3) << "tracer running " << op_desc->Type(); - op_base->Run(*scope, platform::CPUPlace()); - if (block == startup_block_) { - op->grad_op_desc_ = nullptr; - op->grad_to_var_ = nullptr; - } else { + op_base->Run(*root_scope_, platform::CPUPlace()); + if (!stop_gradient) { framework::OpDesc* grad_op_desc; auto grad_to_var = new std::unordered_map(); CreateGradOp(*op_desc, {}, {block}, &grad_op_desc, grad_to_var); @@ -119,22 +110,10 @@ class Tracer { op->block_ = block; } - framework::Scope* GetScope(framework::BlockDesc* block) { - if (scopes_.find(block) != scopes_.end()) { - return scopes_.at(block); - } - framework::BlockDesc* parent_block = block->ParentBlock(); - PADDLE_ENFORCE(scopes_.find(parent_block) != scopes_.end()); - framework::Scope* scope = &scopes_[parent_block]->NewScope(); - scopes_[block] = scope; - return scope; - } + framework::Scope* GetScope() { return root_scope_.get(); } private: - std::map scopes_; - framework::BlockDesc* root_block_; - framework::BlockDesc* startup_block_; - framework::Scope* root_scope_; + std::unique_ptr root_scope_; }; } // namespace imperative diff --git a/paddle/fluid/pybind/imperative.cc b/paddle/fluid/pybind/imperative.cc index be63fb8778..34e9c897d9 100644 --- a/paddle/fluid/pybind/imperative.cc +++ b/paddle/fluid/pybind/imperative.cc @@ -24,9 +24,8 @@ namespace pybind { void BindTracer(pybind11::module *m) { pybind11::class_(*m, "Tracer", "") .def("__init__", - [](imperative::Tracer &self, framework::BlockDesc *root_block, - framework::BlockDesc *startup_block) { - new (&self) imperative::Tracer(root_block, startup_block); + [](imperative::Tracer &self, framework::BlockDesc *root_block) { + new (&self) imperative::Tracer(root_block); }) .def("trace", &imperative::Tracer::Trace) .def("get_scope", &imperative::Tracer::GetScope, diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index 737ae2dd9c..db6c88e01c 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -117,6 +117,12 @@ PYBIND11_MODULE(core, m) { self.RunBackward(scope); }) .def("_grad", &imperative::VarBase::Grad) + .def_property("value", + [](const imperative::VarBase &self) { return self.var_; }, + [](imperative::VarBase &self, framework::Variable *var) { + self.var_ = var; + }, + py::return_value_policy::reference) .def_property( "desc", [](const imperative::VarBase &self) { return self.var_desc_; }, diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 10d441cf3e..bcf5bc3498 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -361,7 +361,7 @@ class Variable(object): self._ivar.desc = self.desc def _numpy(self): - scope = _imperative_tracer().get_scope(self.block.desc) + scope = _imperative_tracer().get_scope() tensor = core.get_variable_tensor(scope, self.desc.name()) return np.array(tensor) @@ -573,7 +573,8 @@ class Operator(object): type=None, inputs=None, outputs=None, - attrs=None): + attrs=None, + stop_gradient=False): self.block = block self.desc = desc # note: not add self.attrs here: @@ -1264,9 +1265,12 @@ class Block(object): """ op_desc = self.desc.append_op() op = Operator(block=self, desc=op_desc, *args, **kwargs) + print("append_op", kwargs.get("type"), kwargs.get("stop_gradient", + False)) if _in_imperative_mode(): _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs], - [v._ivar for v in op.outputs], self.desc) + [v._ivar for v in op.outputs], self.desc, + kwargs.get("stop_gradient", False)) self.ops.append(op) return op @@ -1316,9 +1320,12 @@ class Block(object): def _prepend_op(self, *args, **kwargs): op_desc = self.desc._prepend_op() op = Operator(self, op_desc, *args, **kwargs) + print("prepend_op", kwargs.get("type"), kwargs.get("stop_gradient", + False)) if _in_imperative_mode(): _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs], - [v._ivar for v in op.outputs], self.desc) + [v._ivar for v in op.outputs], self.desc, + kwargs.get("stop_gradient", False)) self.ops.insert(0, op) return op diff --git a/python/paddle/fluid/imperative/__init__.py b/python/paddle/fluid/imperative/__init__.py index 922308b6b1..54dc794ea6 100644 --- a/python/paddle/fluid/imperative/__init__.py +++ b/python/paddle/fluid/imperative/__init__.py @@ -20,6 +20,10 @@ from .base import * from . import layers from .layers import * +from . import nn +from .nn import * + __all__ = [] __all__ += layers.__all__ __all__ += base.__all__ +__all__ += nn.__all__ diff --git a/python/paddle/fluid/imperative/base.py b/python/paddle/fluid/imperative/base.py index aa48ef71aa..a33ad4b72c 100644 --- a/python/paddle/fluid/imperative/base.py +++ b/python/paddle/fluid/imperative/base.py @@ -28,8 +28,7 @@ def enabled(): def guard(): train = framework.Program() startup = framework.Program() - tracer = core.Tracer(train.current_block().desc, - startup.current_block().desc) + tracer = core.Tracer(train.current_block().desc) with framework.program_guard(train, startup): with framework.unique_name.guard(): with framework._imperative_guard(tracer): @@ -46,7 +45,7 @@ def to_variable(value, block=None): name=None, shape=value.shape, dtype=value.dtype) - scope = framework._imperative_tracer().get_scope(block.desc) + scope = framework._imperative_tracer().get_scope() var = scope.var(py_var.name) tensor = var.get_tensor() tensor.set(value, core.CPUPlace()) diff --git a/python/paddle/fluid/imperative/layers.py b/python/paddle/fluid/imperative/layers.py index 044717c319..305e083644 100644 --- a/python/paddle/fluid/imperative/layers.py +++ b/python/paddle/fluid/imperative/layers.py @@ -24,8 +24,10 @@ __all__ = ['PyLayer'] class PyLayer(core.Layer): - def __init__(self): - self._built = False + def __init__(self, *args, **kwargs): + from ..layer_helper import LayerHelper + self._helper = LayerHelper(type(self).__name__, **kwargs) + self._dtype = kwargs.get("dtype", core.VarDesc.VarType.FP32) def __call__(self, inputs): if not isinstance(inputs, list) and not isinstance(inputs, tuple): @@ -35,15 +37,10 @@ class PyLayer(core.Layer): for x in inputs: py_var = base.to_variable(x) var_inputs.append(py_var) - if not self._built: - self._build_once(inputs) - self._built = True outputs = self.forward(var_inputs) - return outputs - def _build_once(self, inputs): - pass + return outputs def forward(self, inputs): return [] diff --git a/python/paddle/fluid/initializer.py b/python/paddle/fluid/initializer.py index b37ebbe517..7acaed2250 100644 --- a/python/paddle/fluid/initializer.py +++ b/python/paddle/fluid/initializer.py @@ -161,7 +161,8 @@ class ConstantInitializer(Initializer): "dtype": int(var.dtype), "value": float(self._value), 'force_cpu': self._force_cpu or force_init_on_cpu() - }) + }, + stop_gradient=True) var.op = op return op @@ -216,7 +217,8 @@ class UniformInitializer(Initializer): "min": self._low, "max": self._high, "seed": self._seed - }) + }, + stop_gradient=True) var.op = op return op @@ -271,7 +273,8 @@ class NormalInitializer(Initializer): "std": self._std_dev, "seed": self._seed, "use_mkldnn": False - }) + }, + stop_gradient=True) var.op = op return op @@ -325,7 +328,8 @@ class TruncatedNormalInitializer(Initializer): "mean": self._mean, "std": self._std_dev, "seed": self._seed - }) + }, + stop_gradient=True) var.op = op return op @@ -415,7 +419,8 @@ class XavierInitializer(Initializer): "min": -limit, "max": limit, "seed": self._seed - }) + }, + stop_gradient=True) else: std = np.sqrt(2.0 / float(fan_in + fan_out)) @@ -428,7 +433,8 @@ class XavierInitializer(Initializer): "mean": 0.0, "std": std, "seed": self._seed - }) + }, + stop_gradient=True) var.op = op return op @@ -513,7 +519,8 @@ class MSRAInitializer(Initializer): "min": -limit, "max": limit, "seed": self._seed - }) + }, + stop_gradient=True) else: std = np.sqrt(2.0 / float(fan_in)) @@ -526,7 +533,8 @@ class MSRAInitializer(Initializer): "mean": 0.0, "std": std, "seed": self._seed - }) + }, + stop_gradient=True) var.op = op return op diff --git a/python/paddle/fluid/layer_helper.py b/python/paddle/fluid/layer_helper.py index 74b4a977db..eba5417723 100644 --- a/python/paddle/fluid/layer_helper.py +++ b/python/paddle/fluid/layer_helper.py @@ -22,8 +22,8 @@ import numpy as np from .framework import Variable, Parameter, default_main_program, default_startup_program, dtype_is_floating from . import unique_name +from paddle.fluid.imperative.base import to_variable from paddle.fluid.initializer import Constant, Xavier -from paddle.fluid.imperative import base from .param_attr import ParamAttr, WeightNormParamAttr from . import core from six.moves import zip diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index d8bc919784..793509252d 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -29,7 +29,6 @@ from . import utils from .. import unique_name from functools import reduce from .. import core -from ..imperative import layers __all__ = [ 'fc', @@ -2537,12 +2536,12 @@ def adaptive_pool2d(input, Examples: .. code-block:: python - # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], + # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], # output shape is [N, C, m, n], adaptive pool divide H and W dimentions - # of input data into m * n grids averagely and performs poolings in each + # of input data into m * n grids averagely and performs poolings in each # grid to get output. # adaptive average pool performs calculations as follow: - # + # # for i in range(m): # for j in range(n): # hstart = floor(i * H / m) @@ -2636,10 +2635,10 @@ def adaptive_pool3d(input, # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n], # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions - # of input data into l * m * n grids averagely and performs poolings in each + # of input data into l * m * n grids averagely and performs poolings in each # grid to get output. # adaptive average pool performs calculations as follow: - # + # # for i in range(l): # for j in range(m): # for k in range(n): @@ -2649,7 +2648,7 @@ def adaptive_pool3d(input, # hend = ceil((j + 1) * H / m) # wstart = floor(k * W / n) # wend = ceil((k + 1) * W / n) - # output[:, :, i, j, k] = + # output[:, :, i, j, k] = # avg(input[:, :, dstart:dend, hstart: hend, wstart: wend]) # data = fluid.layers.data( @@ -9427,47 +9426,3 @@ def huber_loss(input, label, delta): 'Residual': residual}, attrs={'delta': delta}) return out - - -class FC(layers.PyLayer): - def __init__(self, - size, - param_attr=None, - num_flatten_dims=1, - dtype=core.VarDesc.VarType.FP32): - super(FC, self).__init__() - self._size = size - self._num_flatten_dims = num_flatten_dims - self._dtype = dtype - self._helper = LayerHelper('FC', param_attr=param_attr) - - def _build_once(self, inputs): - input_shape = inputs[0].shape - param_shape = [ - reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) - ] + [self._size] - self._w = self._helper.create_parameter( - attr=self._helper.param_attr, - shape=param_shape, - dtype=self._dtype, - is_bias=False) - - def forward(self, inputs): - tmp = self._helper.create_variable_for_type_inference(self._dtype) - self._helper.append_op( - type="mul", - inputs={"X": inputs[0], - "Y": self._w}, - outputs={"Out": tmp}, - attrs={ - "x_num_col_dims": self._num_flatten_dims, - "y_num_col_dims": 1 - }) - - out = self._helper.create_variable_for_type_inference(self._dtype) - self._helper.append_op( - type="sum", - inputs={"X": [tmp]}, - outputs={"Out": out}, - attrs={"use_mkldnn": False}) - return out diff --git a/python/paddle/fluid/tests/unittests/test_imperative.py b/python/paddle/fluid/tests/unittests/test_imperative.py deleted file mode 100644 index 0fe69d1bd4..0000000000 --- a/python/paddle/fluid/tests/unittests/test_imperative.py +++ /dev/null @@ -1,123 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import contextlib -import unittest -import numpy as np - -import paddle.fluid as fluid -from paddle.fluid import core -from paddle.fluid.layers.nn import FC - - -@contextlib.contextmanager -def new_program_scope(): - prog = fluid.Program() - startup_prog = fluid.Program() - scope = fluid.core.Scope() - with fluid.scope_guard(scope): - with fluid.program_guard(prog, startup_prog): - yield - - -class MyLayer(fluid.imperative.PyLayer): - def __init__(self): - super(MyLayer, self).__init__() - - def forward(self, inputs): - x = fluid.layers.relu(inputs[0]) - self._x_for_debug = x - return [fluid.layers.elementwise_mul(x, x)] - - -class MLP(fluid.imperative.PyLayer): - def __init__(self): - super(MLP, self).__init__() - self._fc1 = FC(3, - fluid.ParamAttr( - initializer=fluid.initializer.Constant(value=0.1))) - self._fc2 = FC(4, - fluid.ParamAttr( - initializer=fluid.initializer.Constant(value=0.1))) - - def forward(self, inputs): - x = self._fc1(inputs[0]) - x = self._fc2(x) - x = fluid.layers.reduce_sum(x) - return x - - -class TestImperative(unittest.TestCase): - def test_layer(self): - with fluid.imperative.guard(): - cl = core.Layer() - cl.forward([]) - l = fluid.imperative.PyLayer() - l.forward([]) - - def test_layer_in_out(self): - np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) - with fluid.imperative.guard(): - l = MyLayer() - x = l(np_inp)[0] - self.assertIsNotNone(x) - dy_out = x._numpy() - x._backward() - dy_grad = l._x_for_debug._gradient() - - with new_program_scope(): - inp = fluid.layers.data( - name="inp", shape=[3], append_batch_size=False) - l = MyLayer() - x = l(inp)[0] - param_grads = fluid.backward.append_backward( - x, parameter_list=[l._x_for_debug.name])[0] - exe = fluid.Executor(fluid.CPUPlace()) - - static_out, static_grad = exe.run( - feed={inp.name: np_inp}, - fetch_list=[x.name, param_grads[1].name]) - - self.assertTrue(np.allclose(dy_out, static_out)) - self.assertTrue(np.allclose(dy_grad, static_grad)) - - def test_mlp(self): - np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) - with fluid.imperative.guard(): - mlp = MLP() - out = mlp(np_inp) - dy_out = out._numpy() - out._backward() - dy_grad = mlp._fc1._w._gradient() - - with new_program_scope(): - inp = fluid.layers.data( - name="inp", shape=[2, 2], append_batch_size=False) - mlp = MLP() - out = mlp(inp) - param_grads = fluid.backward.append_backward( - out, parameter_list=[mlp._fc1._w.name])[0] - exe = fluid.Executor(fluid.CPUPlace()) - exe.run(fluid.default_startup_program()) - - static_out, static_grad = exe.run( - feed={inp.name: np_inp}, - fetch_list=[out.name, param_grads[1].name]) - - self.assertTrue(np.allclose(dy_out, static_out)) - self.assertTrue(np.allclose(dy_grad, static_grad)) - - -if __name__ == '__main__': - unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_imperative_mnist.py b/python/paddle/fluid/tests/unittests/test_imperative_mnist.py new file mode 100644 index 0000000000..999d5d1450 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_imperative_mnist.py @@ -0,0 +1,129 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import contextlib +import unittest +import numpy as np + +import paddle.fluid as fluid +from paddle.fluid import core +from paddle.fluid.imperative.nn import Conv2D + + +@contextlib.contextmanager +def new_program_scope(): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + yield + + +class MNIST(fluid.imperative.PyLayer): + def __init__(self): + super(MNIST, self).__init__() + + groups = 1 + dilation = [1, 1] + pad = [0, 0] + stride = [1, 1] + input_size = [2, 3, 5, 5] # NCHW + assert np.mod(input_size[1], groups) == 0 + f_c = input_size[1] // groups + filter_size = [6, f_c, 3, 3] + + self._conv2d = Conv2D( + num_channels=3, + num_filters=20, + filter_size=3, + stride=stride, + padding=pad, + dilation=dilation, + groups=groups, + use_cudnn=False) + + def forward(self, inputs): + x = self._conv2d(inputs) + return x + + +class TestImperativeMnist(unittest.TestCase): + # def test_layer(self): + # with fluid.imperative.guard(): + # cl = core.Layer() + # cl.forward([]) + # l = fluid.imperative.PyLayer() + # l.forward([]) + + # def test_layer_in_out(self): + # np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) + # with fluid.imperative.guard(): + # l = MyLayer() + # x = l(np_inp)[0] + # self.assertIsNotNone(x) + # dy_out = x._numpy() + # x._backward() + # dy_grad = l._x_for_debug._gradient() + + # with new_program_scope(): + # inp = fluid.layers.data( + # name="inp", shape=[3], append_batch_size=False) + # l = MyLayer() + # x = l(inp)[0] + # param_grads = fluid.backward.append_backward( + # x, parameter_list=[l._x_for_debug.name])[0] + # exe = fluid.Executor(fluid.CPUPlace()) + + # static_out, static_grad = exe.run( + # feed={inp.name: np_inp}, + # fetch_list=[x.name, param_grads[1].name]) + + # self.assertTrue(np.allclose(dy_out, static_out)) + # self.assertTrue(np.allclose(dy_grad, static_grad)) + + def test_mnist_cpu_float32(self): + with fluid.imperative.guard(): + mnist = MNIST() + + data = np.random.rand(2, 3, 5, 5).astype('float32') + mnist(data) + # np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) + # with fluid.imperative.guard(): + # mlp = MLP() + # out = mlp(np_inp) + # dy_out = out._numpy() + # out._backward() + # dy_grad = mlp._fc1._w._gradient() + + # with new_program_scope(): + # inp = fluid.layers.data( + # name="inp", shape=[2, 2], append_batch_size=False) + # mlp = MLP() + # out = mlp(inp) + # param_grads = fluid.backward.append_backward( + # out, parameter_list=[mlp._fc1._w.name])[0] + # exe = fluid.Executor(fluid.CPUPlace()) + # exe.run(fluid.default_startup_program()) + + # static_out, static_grad = exe.run( + # feed={inp.name: np_inp}, + # fetch_list=[out.name, param_grads[1].name]) + + # self.assertTrue(np.allclose(dy_out, static_out)) + # self.assertTrue(np.allclose(dy_grad, static_grad)) + + +if __name__ == '__main__': + unittest.main() -- GitLab