diff --git a/paddle/fluid/operators/elementwise/elementwise_floordiv_op.cc b/paddle/fluid/operators/elementwise/elementwise_floordiv_op.cc index 67b9b665c6c85db39a35538f1fa0b7d8dc1c6d3d..b876438a1941f8626b713000575d6a3058624aae 100644 --- a/paddle/fluid/operators/elementwise/elementwise_floordiv_op.cc +++ b/paddle/fluid/operators/elementwise/elementwise_floordiv_op.cc @@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include "paddle/fluid/operators/elementwise/elementwise_floordiv_op.h" + #include #include "paddle/fluid/operators/elementwise/elementwise_op.h" @@ -61,6 +63,12 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(elementwise_floordiv, ops::ElementwiseOp, ops::ElementwiseFloorDivOpMaker); +REGISTER_OP_CPU_KERNEL( + elementwise_floordiv, + ops::ElementwiseFloorDivKernel, + ops::ElementwiseFloorDivKernel); + REGISTER_OP_VERSION(elementwise_floordiv) .AddCheckpoint( R"ROC(Register elementwise_floordiv for adding the attribute of Scale_y)ROC", diff --git a/paddle/fluid/operators/elementwise/elementwise_floordiv_op.cu b/paddle/fluid/operators/elementwise/elementwise_floordiv_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..9b146fe7279deafb89a8d9526ddfd20f92da20a9 --- /dev/null +++ b/paddle/fluid/operators/elementwise/elementwise_floordiv_op.cu @@ -0,0 +1,46 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/elementwise/elementwise_floordiv_op.h" + +namespace paddle { +namespace operators { + +template +class ElementwiseFloorDivKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + std::vector ins; + std::vector outs; + const auto& cuda_ctx = + ctx.template device_context(); + + int axis = PackTensorsIntoVector(ctx, &ins, &outs); + paddle::operators::LaunchElementwiseCudaKernel( + cuda_ctx, ins, &outs, axis, FloorDivFunctor()); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +namespace plat = paddle::platform; + +REGISTER_OP_CUDA_KERNEL( + elementwise_floordiv, + ops::ElementwiseFloorDivKernel, + ops::ElementwiseFloorDivKernel); diff --git a/paddle/fluid/operators/elementwise/elementwise_floordiv_op.h b/paddle/fluid/operators/elementwise/elementwise_floordiv_op.h new file mode 100644 index 0000000000000000000000000000000000000000..fc8f18161990db34ff555d2f64c5d157ef5900b6 --- /dev/null +++ b/paddle/fluid/operators/elementwise/elementwise_floordiv_op.h @@ -0,0 +1,54 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/fluid/operators/elementwise/elementwise_op.h" + +namespace paddle { +namespace operators { + +template +void elementwise_floor_div(const framework::ExecutionContext &ctx, + const framework::Tensor *x, + const framework::Tensor *y, framework::Tensor *z) { + int axis = ctx.Attr("axis"); + auto x_dims = x->dims(); + auto y_dims = y->dims(); + if (x_dims.size() >= y_dims.size()) { + ElementwiseComputeEx, DeviceContext, T>( + ctx, x, y, axis, FloorDivFunctor(), z); + } else { + ElementwiseComputeEx, DeviceContext, T>( + ctx, x, y, axis, InverseFloorDivFunctor(), z); + } +} + +template +class ElementwiseFloorDivKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + auto *x = ctx.Input("X"); + auto *y = ctx.Input("Y"); + auto *z = ctx.Output("Out"); + + z->mutable_data(ctx.GetPlace()); + + // dtype of x and y is int64 or int32 + elementwise_floor_div(ctx, x, y, z); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/elementwise/elementwise_functor.h b/paddle/fluid/operators/elementwise/elementwise_functor.h index 844b0a195031f517bac647c885bc2cf279ab66f1..5dfb7eece9ec77b3f10196654e976e335af890e9 100644 --- a/paddle/fluid/operators/elementwise/elementwise_functor.h +++ b/paddle/fluid/operators/elementwise/elementwise_functor.h @@ -49,6 +49,23 @@ using DivFunctor = phi::funcs::DivideFunctor; template using InverseDivFunctor = phi::funcs::InverseDivideFunctor; +// Floor Divide +template +struct FloorDivFunctor { + inline HOSTDEVICE T operator()(const T a, const T b) const { + PADDLE_ENFORCE(b != 0, DIV_ERROR_INFO); + return static_cast(std::trunc(a / b)); + } +}; + +template +struct InverseFloorDivFunctor { + inline HOSTDEVICE T operator()(const T a, const T b) const { + PADDLE_ENFORCE(a != 0, DIV_ERROR_INFO); + return static_cast(std::trunc(b / a)); + } +}; + #undef DIV_ERROR_INFO // Maximum diff --git a/paddle/fluid/operators/elementwise/elementwise_pow_op.cc b/paddle/fluid/operators/elementwise/elementwise_pow_op.cc index c0dbb0df8c12f940014082accc017e01ac9c2bb5..eddbfd3b15ea46e55566a9dd030a437d8f25583b 100644 --- a/paddle/fluid/operators/elementwise/elementwise_pow_op.cc +++ b/paddle/fluid/operators/elementwise/elementwise_pow_op.cc @@ -9,6 +9,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include "paddle/fluid/operators/elementwise/elementwise_pow_op.h" + #include #include "paddle/fluid/operators/elementwise/elementwise_op.h" @@ -68,6 +70,19 @@ REGISTER_OPERATOR(elementwise_pow, ops::ElementwiseOp, ops::ElementwisePowOpGradMaker); REGISTER_OPERATOR(elementwise_pow_grad, ops::ElementwiseOpGrad); +REGISTER_OP_CPU_KERNEL( + elementwise_pow, + ops::ElementwisePowKernel, + ops::ElementwisePowKernel, + ops::ElementwisePowKernel, + ops::ElementwisePowKernel); +REGISTER_OP_CPU_KERNEL( + elementwise_pow_grad, + ops::ElementwisePowGradKernel, + ops::ElementwisePowGradKernel, + ops::ElementwisePowGradKernel, + ops::ElementwisePowGradKernel); + REGISTER_OP_VERSION(elementwise_pow) .AddCheckpoint( R"ROC(Register elementwise_pow for adding the attribute of Scale_y)ROC", diff --git a/paddle/fluid/operators/elementwise/elementwise_pow_op.cu b/paddle/fluid/operators/elementwise/elementwise_pow_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..1286064dacfda49d4e6e68cd1c18f60e15b14ea1 --- /dev/null +++ b/paddle/fluid/operators/elementwise/elementwise_pow_op.cu @@ -0,0 +1,54 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/elementwise/elementwise_pow_op.h" + +namespace ops = paddle::operators; + +namespace paddle { +namespace operators { + +template +class ElementwisePowKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + std::vector ins; + std::vector outs; + const auto& cuda_ctx = + ctx.template device_context(); + + int axis = PackTensorsIntoVector(ctx, &ins, &outs); + paddle::operators::LaunchElementwiseCudaKernel(cuda_ctx, ins, &outs, + axis, PowFunctor()); + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OP_CUDA_KERNEL( + elementwise_pow, + ops::ElementwisePowKernel, + ops::ElementwisePowKernel, + ops::ElementwisePowKernel, + ops::ElementwisePowKernel); +REGISTER_OP_CUDA_KERNEL( + elementwise_pow_grad, + ops::ElementwisePowGradKernel, + ops::ElementwisePowGradKernel, + ops::ElementwisePowGradKernel, + ops::ElementwisePowGradKernel); diff --git a/paddle/fluid/operators/elementwise/elementwise_pow_op.h b/paddle/fluid/operators/elementwise/elementwise_pow_op.h new file mode 100644 index 0000000000000000000000000000000000000000..1dfe7ed2325f4429cd825e624b27c3f5ae092655 --- /dev/null +++ b/paddle/fluid/operators/elementwise/elementwise_pow_op.h @@ -0,0 +1,107 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include + +#include "paddle/fluid/operators/elementwise/elementwise_op.h" + +namespace paddle { +namespace operators { + +template +struct PowFunctor { + inline HOSTDEVICE T operator()(const T a, const T b) const { +// TODO(wujionghao): A potential speed improvement is supporting different +// types in C++. +#if defined(__CUDA_ARCH__) || defined(__HIPCC__) + // On CUDAPlace, std::pow(3, 1) calls pow(float, float), and + // it will return a float number like 2.99... , which floor to 2 + // when cast to int by default and it is wrong. + // Use llrint to cast it to the nearest integer, which is 3. + if (std::is_integral::value) { + return std::llrint( + std::pow(static_cast(a), static_cast(b))); + } +#endif + return std::pow(a, b); + } +}; + +template +class ElementwisePowKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::LoDTensor; + auto* x = ctx.Input("X"); + PADDLE_ENFORCE_EQ(x != nullptr, true, + platform::errors::NotFound( + "Cannot get input Variable X, Variable name = %s", + ctx.InputName("X"))); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + int axis = ctx.Attr("axis"); + ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, + PowFunctor(), z); + } +}; + +template +struct PowGradDX { + HOSTDEVICE T operator()(T x, T y, T out, T dout) const { +#if defined(__CUDA_ARCH__) || defined(__HIPCC__) + if (std::is_integral::value) { + return dout * y * + std::pow(static_cast(x), static_cast(y - 1)); + } +#endif + return dout * y * std::pow(x, y - 1); + } +}; + +template +struct PowGradDY { + HOSTDEVICE T operator()(T x, T y, T out, T dout) const { +#if defined(__CUDA_ARCH__) || defined(__HIPCC__) + if (std::is_integral::value) { + return dout * std::log(static_cast(x)) * + std::pow(static_cast(x), static_cast(y)); + } +#endif + return dout * std::log(x) * std::pow(x, y); + } +}; + +template +class ElementwisePowGradKernel : public ElemwiseGradKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElemwiseGradKernel::Compute(ctx); + using Tensor = framework::Tensor; + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + auto* out = dout; + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + int axis = ctx.Attr("axis"); + ElemwiseGradCompute, PowGradDY>( + ctx, *x, *y, *out, *dout, axis, dx, dy, PowGradDX(), PowGradDY()); + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/elementwise/elementwise_pow_op_npu.cc b/paddle/fluid/operators/elementwise/elementwise_pow_op_npu.cc index c8fbd456123c831d98264d162603e21ccc3f9ee0..a2d22767471299796592f1bac69ef497fa8bb671 100644 --- a/paddle/fluid/operators/elementwise/elementwise_pow_op_npu.cc +++ b/paddle/fluid/operators/elementwise/elementwise_pow_op_npu.cc @@ -16,6 +16,7 @@ limitations under the License. */ #include #include "paddle/fluid/operators/elementwise/elementwise_npu.h" +#include "paddle/fluid/operators/elementwise/elementwise_pow_op.h" #include "paddle/fluid/platform/device/npu/npu_op_runner.h" namespace paddle { diff --git a/paddle/phi/kernels/cpu/elementwise_grad_kernel.cc b/paddle/phi/kernels/cpu/elementwise_grad_kernel.cc index 1548272f8622c4817718311b4db57b0f00583738..b617064987507339743ab145ef94bdf15bdbdca2 100644 --- a/paddle/phi/kernels/cpu/elementwise_grad_kernel.cc +++ b/paddle/phi/kernels/cpu/elementwise_grad_kernel.cc @@ -323,11 +323,3 @@ PD_REGISTER_KERNEL(minimum_grad, int, int64_t, phi::dtype::bfloat16) {} -PD_REGISTER_KERNEL(elementwise_pow_grad, - CPU, - ALL_LAYOUT, - phi::ElementwisePowGradKernel, - float, - double, - int, - int64_t) {} diff --git a/paddle/phi/kernels/cpu/elementwise_kernel.cc b/paddle/phi/kernels/cpu/elementwise_kernel.cc index 4ca41de7bb64a9f444e4b57713ccb46adbf96e4e..1de40cb9466b295e5656ae231cb754990e004195 100644 --- a/paddle/phi/kernels/cpu/elementwise_kernel.cc +++ b/paddle/phi/kernels/cpu/elementwise_kernel.cc @@ -113,36 +113,6 @@ void ModuloRawKernel(const Context& dev_ctx, } } -template -void FloorDivideRawKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - int axis, - DenseTensor* out) { - // allocate memory for out - dev_ctx.template Alloc(out); - auto x_dims = x.dims(); - auto y_dims = y.dims(); - if (x_dims.size() >= y_dims.size()) { - funcs::ElementwiseCompute, T>( - dev_ctx, x, y, axis, funcs::FloorDivideFunctor(), out); - } else { - funcs::ElementwiseCompute, T>( - dev_ctx, x, y, axis, funcs::InverseFloorDivideFunctor(), out); - } -} - -template -void ElementwisePowRawKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - int axis, - DenseTensor* out) { - // allocate memory for out - dev_ctx.template Alloc(out); - funcs::ElementwiseCompute, T>( - dev_ctx, x, y, axis, funcs::ElementwisePowFunctor(), out); -} // Create the definition of Add DEFINE_CPU_ELEMENTWISE_OP(Add) @@ -237,17 +207,3 @@ PD_REGISTER_KERNEL(modulo_raw, double, int, int64_t) {} -PD_REGISTER_KERNEL(floor_divide_raw, - CPU, - ALL_LAYOUT, - phi::FloorDivideRawKernel, - int, - int64_t) {} -PD_REGISTER_KERNEL(elementwise_pow_raw, - CPU, - ALL_LAYOUT, - phi::ElementwisePowRawKernel, - float, - double, - int, - int64_t) {} diff --git a/paddle/phi/kernels/elementwise_grad_kernel.h b/paddle/phi/kernels/elementwise_grad_kernel.h index 979bb61c2e3cab464e3ed6b9895e8e4914ef8583..95832013caff5d366f264123262d3c05fb36b35f 100644 --- a/paddle/phi/kernels/elementwise_grad_kernel.h +++ b/paddle/phi/kernels/elementwise_grad_kernel.h @@ -159,13 +159,4 @@ void MinimumGradKernel(const Context& dev_ctx, int axis, DenseTensor* dx, DenseTensor* dy); - -template -void ElementwisePowGradKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - const DenseTensor& dout, - int axis, - DenseTensor* dx, - DenseTensor* dy); } // namespace phi diff --git a/paddle/phi/kernels/elementwise_kernel.cc b/paddle/phi/kernels/elementwise_kernel.cc index 4194631ea266b70365ba5e0576451ff1d9d80ff2..019d4fed5b28eaed72a370bfb51c1a75807964fd 100644 --- a/paddle/phi/kernels/elementwise_kernel.cc +++ b/paddle/phi/kernels/elementwise_kernel.cc @@ -81,25 +81,6 @@ void ModuloKernel(const Context& dev_ctx, int axis = -1; ModuloRawKernel(dev_ctx, x, y, axis, out); } - -template -void FloorDivideKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - DenseTensor* out) { - int axis = -1; - FloorDivideRawKernel(dev_ctx, x, y, axis, out); -} - -template -void ElementwisePowKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - DenseTensor* out) { - int axis = -1; - ElementwisePowRawKernel(dev_ctx, x, y, axis, out); -} - } // namespace phi using complex64 = ::phi::dtype::complex; @@ -170,16 +151,6 @@ PD_REGISTER_KERNEL(minimum, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL( modulo, CPU, ALL_LAYOUT, phi::ModuloKernel, float, double, int, int64_t) {} -PD_REGISTER_KERNEL( - floor_divide, CPU, ALL_LAYOUT, phi::FloorDivideKernel, int, int64_t) {} -PD_REGISTER_KERNEL(elementwise_pow, - CPU, - ALL_LAYOUT, - phi::ElementwisePowKernel, - float, - double, - int, - int64_t) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) @@ -255,14 +226,4 @@ PD_REGISTER_KERNEL(minimum, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL( modulo, GPU, ALL_LAYOUT, phi::ModuloKernel, float, double, int, int64_t) {} -PD_REGISTER_KERNEL( - floor_divide, GPU, ALL_LAYOUT, phi::FloorDivideKernel, int, int64_t) {} -PD_REGISTER_KERNEL(elementwise_pow, - GPU, - ALL_LAYOUT, - phi::ElementwisePowKernel, - float, - double, - int, - int64_t) {} #endif diff --git a/paddle/phi/kernels/elementwise_kernel.h b/paddle/phi/kernels/elementwise_kernel.h index 09b6b02e372571095de200b856a2a0103ef05182..f9c9c7f7139f3ad2298ba0ebcae026746ab450dc 100644 --- a/paddle/phi/kernels/elementwise_kernel.h +++ b/paddle/phi/kernels/elementwise_kernel.h @@ -124,32 +124,6 @@ void ModuloKernel(const Context& dev_ctx, const DenseTensor& y, DenseTensor* out); -template -void FloorDivideRawKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - int axis, - DenseTensor* out); - -template -void FloorDivideKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - DenseTensor* out); - -template -void ElementwisePowRawKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - int axis, - DenseTensor* out); - -template -void ElementwisePowKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - DenseTensor* out); - template DenseTensor Add(const Context& dev_ctx, const DenseTensor& x, @@ -226,27 +200,4 @@ DenseTensor Modulo(const Context& dev_ctx, ModuloKernel(dev_ctx, x, y, &dense_out); return dense_out; } - -template -DenseTensor FloorDivide(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y) { - DenseTensor dense_out; - MetaTensor meta_out(&dense_out); - ElementwiseInferMeta(x, y, &meta_out); - FloorDivideKernel(dev_ctx, x, y, &dense_out); - return dense_out; -} - -template -DenseTensor ElementwisePow(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y) { - DenseTensor dense_out; - MetaTensor meta_out(&dense_out); - ElementwiseInferMeta(x, y, &meta_out); - ElementwisePowKernel(dev_ctx, x, y, &dense_out); - return dense_out; -} - } // namespace phi diff --git a/paddle/phi/kernels/funcs/elementwise_functor.h b/paddle/phi/kernels/funcs/elementwise_functor.h index 0ea5ff0e82e7659de57732745c4a51e007233375..1e39cf55035129cc0df92e689cb44a32aeba5562 100644 --- a/paddle/phi/kernels/funcs/elementwise_functor.h +++ b/paddle/phi/kernels/funcs/elementwise_functor.h @@ -538,40 +538,5 @@ struct InverseModuloFunctor< return res; } }; - -template -struct FloorDivideFunctor { - inline HOSTDEVICE T operator()(const T a, const T b) const { - PADDLE_ENFORCE(b != 0, DIV_ERROR_INFO); - return static_cast(std::trunc(a / b)); - } -}; - -template -struct InverseFloorDivideFunctor { - inline HOSTDEVICE T operator()(const T a, const T b) const { - PADDLE_ENFORCE(a != 0, DIV_ERROR_INFO); - return static_cast(std::trunc(b / a)); - } -}; - -template -struct ElementwisePowFunctor { - inline HOSTDEVICE T operator()(const T a, const T b) const { -// TODO(wujionghao): A potential speed improvement is supporting different -// types in C++. -#if defined(__CUDA_ARCH__) || defined(__HIPCC__) - // On CUDAPlace, std::pow(3, 1) calls pow(float, float), and - // it will return a float number like 2.99... , which floor to 2 - // when cast to int by default and it is wrong. - // Use llrint to cast it to the nearest integer, which is 3. - if (std::is_integral::value) { - return std::llrint( - std::pow(static_cast(a), static_cast(b))); - } -#endif - return std::pow(a, b); - } -}; } // namespace funcs } // namespace phi diff --git a/paddle/phi/kernels/gpu/elementwise_grad_kernel.cu b/paddle/phi/kernels/gpu/elementwise_grad_kernel.cu index 3750e4b2bd61e1310077510ca6c19dc100d7e935..52819fd3dee8c5a0314f4e95e563e3f3db32a136 100644 --- a/paddle/phi/kernels/gpu/elementwise_grad_kernel.cu +++ b/paddle/phi/kernels/gpu/elementwise_grad_kernel.cu @@ -382,11 +382,3 @@ PD_REGISTER_KERNEL(minimum_grad, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} -PD_REGISTER_KERNEL(elementwise_pow_grad, - GPU, - ALL_LAYOUT, - phi::ElementwisePowGradKernel, - float, - double, - int, - int64_t) {} diff --git a/paddle/phi/kernels/gpu/elementwise_kernel.cu b/paddle/phi/kernels/gpu/elementwise_kernel.cu index 73964d31a34eebaa257095839900f82c127d28ce..bd6995cb1353c71ad9a0cbda857c25f0beeccf7e 100644 --- a/paddle/phi/kernels/gpu/elementwise_kernel.cu +++ b/paddle/phi/kernels/gpu/elementwise_kernel.cu @@ -55,10 +55,6 @@ DEFINE_CUDA_ELEMENTWISE_OP(Maximum) DEFINE_CUDA_ELEMENTWISE_OP(Minimum) // Create the definition of Modulo DEFINE_CUDA_ELEMENTWISE_OP(Modulo) -// Create the definition of FloorDivide -DEFINE_CUDA_ELEMENTWISE_OP(FloorDivide) -// Create the definition of Pow -DEFINE_CUDA_ELEMENTWISE_OP(ElementwisePow) } // namespace phi @@ -152,17 +148,3 @@ PD_REGISTER_KERNEL(modulo_raw, double, int, int64_t) {} -PD_REGISTER_KERNEL(floor_divide_raw, - GPU, - ALL_LAYOUT, - phi::FloorDivideRawKernel, - int, - int64_t) {} -PD_REGISTER_KERNEL(elementwise_pow_raw, - GPU, - ALL_LAYOUT, - phi::ElementwisePowRawKernel, - float, - double, - int, - int64_t) {} diff --git a/paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h b/paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h index aba4a5f5fbd43c5baaa770cbee9d3f3f45c13783..07e5bf9ae040e10e1f339b0100ba7f8daccd438f 100644 --- a/paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h +++ b/paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h @@ -666,44 +666,4 @@ struct MinGradDy { return dout * static_cast(x >= y); } }; - -template -struct PowGradDX { - HOSTDEVICE T operator()(T x, T y, T out, T dout) const { -#if defined(__CUDA_ARCH__) || defined(__HIPCC__) - if (std::is_integral::value) { - return dout * y * - std::pow(static_cast(x), static_cast(y - 1)); - } -#endif - return dout * y * std::pow(x, y - 1); - } -}; - -template -struct PowGradDY { - HOSTDEVICE T operator()(T x, T y, T out, T dout) const { -#if defined(__CUDA_ARCH__) || defined(__HIPCC__) - if (std::is_integral::value) { - return dout * std::log(static_cast(x)) * - std::pow(static_cast(x), static_cast(y)); - } -#endif - return dout * std::log(x) * std::pow(x, y); - } -}; - -template -void ElementwisePowGradKernel(const Context& dev_ctx, - const DenseTensor& x, - const DenseTensor& y, - const DenseTensor& dout, - int axis, - DenseTensor* dx, - DenseTensor* dy) { - funcs::ElementwiseGradPreProcess(dout, dx); - phi::funcs::ElemwiseGradCompute, PowGradDY>( - dev_ctx, x, y, dout, dout, axis, dx, dy, PowGradDX(), PowGradDY()); -} - } // namespace phi diff --git a/paddle/phi/ops/compat/elementwise_sig.cc b/paddle/phi/ops/compat/elementwise_sig.cc index cf6f9d4dfb2f11660361ac6bbdef72d4c308c348..7f00af6f9af86f35709c2d120a7a47917d8d8431 100644 --- a/paddle/phi/ops/compat/elementwise_sig.cc +++ b/paddle/phi/ops/compat/elementwise_sig.cc @@ -82,24 +82,6 @@ KernelSignature ElementwiseModOpArgumentMapping( return KernelSignature("modulo_raw", {"X", "Y"}, {"axis"}, {"Out"}); } -KernelSignature ElementwiseFloorDivOpArgumentMapping( - const ArgumentMappingContext& ctx) { - int axis = paddle::any_cast(ctx.Attr("axis")); - if (axis == -1) { - return KernelSignature("floor_divide", {"X", "Y"}, {}, {"Out"}); - } - return KernelSignature("floor_divide_raw", {"X", "Y"}, {"axis"}, {"Out"}); -} - -KernelSignature ElementwisePowOpArgumentMapping( - const ArgumentMappingContext& ctx) { - int axis = paddle::any_cast(ctx.Attr("axis")); - if (axis == -1) { - return KernelSignature("elementwise_pow", {"X", "Y"}, {}, {"Out"}); - } - return KernelSignature("elementwise_pow_raw", {"X", "Y"}, {"axis"}, {"Out"}); -} - KernelSignature ElementwiseAddGradOpArgumentMapping( const ArgumentMappingContext& ctx) { return KernelSignature("add_grad", @@ -218,13 +200,6 @@ KernelSignature ElementwiseMinGradOpArgumentMapping( {"axis"}, {GradVarName("X"), GradVarName("Y")}); } -KernelSignature ElementwisePowGradOpArgumentMapping( - const ArgumentMappingContext& ctx) { - return KernelSignature("elementwise_pow_grad", - {"X", "Y", GradVarName("Out")}, - {"axis"}, - {GradVarName("X"), GradVarName("Y")}); -} } // namespace phi PD_REGISTER_BASE_KERNEL_NAME(elementwise_add, add); @@ -234,7 +209,6 @@ PD_REGISTER_BASE_KERNEL_NAME(elementwise_div, divide); PD_REGISTER_BASE_KERNEL_NAME(elementwise_max, maximum); PD_REGISTER_BASE_KERNEL_NAME(elementwise_min, minimum); PD_REGISTER_BASE_KERNEL_NAME(elementwise_mod, modulo); -PD_REGISTER_BASE_KERNEL_NAME(elementwise_floordiv, floor_divide); PD_REGISTER_BASE_KERNEL_NAME(elementwise_add_grad, add_grad); PD_REGISTER_BASE_KERNEL_NAME(elementwise_add_grad_grad, add_double_grad); PD_REGISTER_BASE_KERNEL_NAME(elementwise_add_triple_grad, add_triple_grad); @@ -266,10 +240,6 @@ PD_REGISTER_ARG_MAPPING_FN(elementwise_min, phi::ElementwiseMinOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(elementwise_mod, phi::ElementwiseModOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(elementwise_floordiv, - phi::ElementwiseFloorDivOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(elementwise_pow, - phi::ElementwisePowOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(elementwise_add_grad, phi::ElementwiseAddGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(elementwise_add_grad_grad, @@ -302,5 +272,3 @@ PD_REGISTER_ARG_MAPPING_FN(elementwise_max_grad, phi::ElementwiseMaxGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(elementwise_min_grad, phi::ElementwiseMinGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(elementwise_pow_grad, - phi::ElementwisePowGradOpArgumentMapping);