From 3a0f93b3f9e3ffd650239e592289d9e8538ae0d5 Mon Sep 17 00:00:00 2001 From: danleifeng <52735331+danleifeng@users.noreply.github.com> Date: Thu, 10 Oct 2019 10:23:31 +0800 Subject: [PATCH] fix error message for elementwise_add/mul (#20283) --- .../operators/elementwise/elementwise_op.h | 32 ++++++++++++++----- .../elementwise/elementwise_op_function.h | 16 ++++++++-- python/paddle/fluid/layers/nn.py | 29 +++++++++++++++++ .../unittests/test_elementwise_add_op.py | 19 +++++++++++ .../unittests/test_elementwise_mul_op.py | 19 +++++++++++ 5 files changed, 104 insertions(+), 11 deletions(-) diff --git a/paddle/fluid/operators/elementwise/elementwise_op.h b/paddle/fluid/operators/elementwise/elementwise_op.h index 74392ab364..8da447adaa 100644 --- a/paddle/fluid/operators/elementwise/elementwise_op.h +++ b/paddle/fluid/operators/elementwise/elementwise_op.h @@ -52,14 +52,25 @@ class ElementwiseOp : public framework::OperatorWithKernel { framework::proto::VarType::LOD_TENSOR) { auto x_dim = ctx->GetInputDim("X"); auto y_dim = ctx->GetInputDim("Y"); - PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(), - "Rank of first input must >= rank of second input."); + PADDLE_ENFORCE_GE( + x_dim.size(), y_dim.size(), + "ShapeError: the dimension of input X must greater than or equal to " + "the one of input Y. But received: the shape of input X = [%s], the " + "dimension of input X = %d, the shape of input Y = [%s], the " + "dimension of input Y = %d", + x_dim, x_dim.size(), y_dim, y_dim.size()); } else if (ctx->GetInputsVarType("X").front() == framework::proto::VarType::SELECTED_ROWS) { - PADDLE_ENFORCE((ctx->GetInputDim("Y").size() == 1u) && - (ctx->GetInputDim("Y")[0] == 1), - "For elementwise_op, if X is Sparse, " - "Y must be scalar."); + PADDLE_ENFORCE_EQ( + ctx->GetInputDim("Y").size(), 1u, + "ShapeError: For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS" + "), Y must be scalar. But reveived the dimension of Y = %s", + ctx->GetInputDim("Y").size()); + PADDLE_ENFORCE_EQ( + ctx->GetInputDim("Y")[0], 1, + "ShapeError: For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS" + "), Y must be scalar. But reveived the first dimension of Y = %s", + ctx->GetInputDim("Y")[0]); } else { PADDLE_THROW("X's type[%s] is not supported by elementwise_op.", ctx->GetInputsVarType("X").front()); @@ -203,8 +214,13 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel { auto x_dims = ctx->GetInputDim(out_grad_name); auto y_dims = ctx->GetInputDim("Y"); - PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), - "Rank of first input must >= rank of second input."); + PADDLE_ENFORCE_GE( + x_dims.size(), y_dims.size(), + "ShapeError: the dimension of Out@GRAD must greater than or equal to " + "the one of input Y. But received: the shape of Out@GRAD = [%s], the " + "dimension of Out@GRAD = %d, the shape of input Y = [%s], the " + "dimension of of input Y = %d", + x_dims, x_dims.size(), y_dims, y_dims.size()); auto x_grad_name = framework::GradVarName("X"); auto y_grad_name = framework::GradVarName("Y"); diff --git a/paddle/fluid/operators/elementwise/elementwise_op_function.h b/paddle/fluid/operators/elementwise/elementwise_op_function.h index 59a9c3086d..049a6fb0d1 100644 --- a/paddle/fluid/operators/elementwise/elementwise_op_function.h +++ b/paddle/fluid/operators/elementwise/elementwise_op_function.h @@ -71,7 +71,12 @@ inline void get_mid_dims(const framework::DDim &x_dims, // only support single y_dims[i] = 1 now. PADDLE_ENFORCE_EQ(*mid_flag, 0, "Broadcast support y_dims with single 1."); - PADDLE_ENFORCE_EQ(y_dims[i], 1, "Broadcast dimension mismatch."); + PADDLE_ENFORCE_EQ(y_dims[i], 1, + "ShapeError: broadcast dimension mismatch. Operands " + "could not be broadcast together with the shape of " + "X = [%s] and the shape of Y = [%s]. Received [%d] " + "in X is not equal to [%d] in Y", + x_dims, y_dims, x_dims[i + axis], y_dims[i]); // m*n*k m*1*k for (int j = 0; j < i; ++j) { (*pre) *= y_dims[j]; @@ -823,8 +828,13 @@ void ElementwiseComputeEx(const framework::ExecutionContext &ctx, x, y, z, ctx.template device_context(), func); auto x_dims = x->dims(); auto y_dims_untrimed = y->dims(); - PADDLE_ENFORCE_GE(x_dims.size(), y_dims_untrimed.size(), - "Rank of first input must >= rank of second input."); + PADDLE_ENFORCE_GE( + x_dims.size(), y_dims_untrimed.size(), + "ShapeError: the dimension of input X must greater than or equal to " + "the one of input Y. But received: the shape of input X = [%s], the " + "dimension of input X = %d, the shape of input Y = [%s], the dimension " + "of of input Y = %d", + x_dims, x_dims.size(), y_dims_untrimed, y_dims_untrimed.size()); if (x_dims == y_dims_untrimed) { functor.Run(); return; diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 761f6ec2ac..7afd248d18 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -12553,6 +12553,35 @@ def _elementwise_op(helper): assert x is not None, 'x cannot be None in {}'.format(op_type) assert y is not None, 'y cannot be None in {}'.format(op_type) + if not isinstance(x, Variable): + raise TypeError( + "The type of 'x' in %s must be Variable, but received %s" % + (op_type, type(x))) + if not isinstance(y, Variable): + raise TypeError( + "The type of 'y' in %s must be Variable, but received %s" % + (op_type, type(y))) + if convert_dtype(x.dtype) in ['float16']: + warnings.warn( + "The data type of 'x' in batch_norm only support float16 on GPU now." + ) + if convert_dtype(y.dtype) in ['float16']: + warnings.warn( + "The data type of 'y' in batch_norm only support float16 on GPU now." + ) + if convert_dtype(x.dtype) not in [ + 'float16', 'float32', 'float64', 'int32', 'int64' + ]: + raise TypeError( + "The data type of 'x' in batch_norm must be float16 or float32 or float64 or int32 or int64, but received %s." + % (convert_dtype(x.dtype))) + if convert_dtype(y.dtype) not in [ + 'float16', 'float32', 'float64', 'int32', 'int64' + ]: + raise TypeError( + "The data type of 'y' in batch_norm must be float16 or float32 or float64 or int32 or int64, but received %s." + % (convert_dtype(y.dtype))) + axis = helper.kwargs.get('axis', -1) use_mkldnn = helper.kwargs.get('use_mkldnn', False) name = helper.kwargs.get('name', None) diff --git a/python/paddle/fluid/tests/unittests/test_elementwise_add_op.py b/python/paddle/fluid/tests/unittests/test_elementwise_add_op.py index 5783048f5f..e54827feee 100644 --- a/python/paddle/fluid/tests/unittests/test_elementwise_add_op.py +++ b/python/paddle/fluid/tests/unittests/test_elementwise_add_op.py @@ -17,6 +17,8 @@ import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest +import paddle.fluid as fluid +from paddle.fluid import compiler, Program, program_guard class TestElementwiseAddOp(OpTest): @@ -306,5 +308,22 @@ class TestFP16ElementwiseAddOp_channelwise_add(TestFP16ElementwiseAddOp): self.axis = -1 +class TestElementwiseAddOpError(OpTest): + def test_errors(self): + with program_guard(Program(), Program()): + # the input of elementwise_add must be Variable. + x1 = fluid.create_lod_tensor( + np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) + y1 = fluid.create_lod_tensor( + np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) + self.assertRaises(TypeError, fluid.layers.elementwise_add, x1, y1) + + # the input dtype of elementwise_add must be float16 or float32 or float64 or int32 or int64 + # float16 only can be set on GPU place + x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8") + y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8") + self.assertRaises(TypeError, fluid.layers.elementwise_add, x2, y2) + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py b/python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py index 2415aeb0cb..7ee24d465d 100644 --- a/python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py +++ b/python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py @@ -18,6 +18,8 @@ import numpy as np from op_test import OpTest import paddle.fluid.core as core from paddle.fluid.op import Operator +import paddle.fluid as fluid +from paddle.fluid import compiler, Program, program_guard class ElementwiseMulOp(OpTest): @@ -160,5 +162,22 @@ class TestElementwiseMulOpFp16(ElementwiseMulOp): self.dtype = np.float16 +class TestElementwiseMulOpError(OpTest): + def test_errors(self): + with program_guard(Program(), Program()): + # the input of elementwise_mul must be Variable. + x1 = fluid.create_lod_tensor( + np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) + y1 = fluid.create_lod_tensor( + np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) + self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1) + + # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64 + # float16 only can be set on GPU place + x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8") + y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8") + self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2) + + if __name__ == '__main__': unittest.main() -- GitLab