提交 393d8354 编写于 作者: L liaogang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into concat

......@@ -54,7 +54,9 @@ before_install:
fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then paddle/scripts/travis/before_install.osx.sh; fi
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
- pip install numpy wheel protobuf sphinx recommonmark sphinx_rtd_theme virtualenv pre-commit requests==2.9.2 LinkChecker
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx_rtd_theme virtualenv pre-commit requests==2.9.2 LinkChecker
script:
- paddle/scripts/travis/main.sh
notifications:
......
......@@ -16,7 +16,8 @@
set(CBLAS_FOUND OFF)
## Find MKL First.
set(MKL_ROOT $ENV{MKLROOT} CACHE PATH "Folder contains MKL")
set(INTEL_ROOT "/opt/intel" CACHE PATH "Folder contains intel libs")
set(MKL_ROOT ${INTEL_ROOT}/mkl CACHE PATH "Folder contains MKL")
find_path(MKL_INCLUDE_DIR mkl.h PATHS
${MKL_ROOT}/include)
......
# PaddlePaddle Design Doc
## Ingredients
As our design principle is starting from the essence: how could we
allow users to express and solve their problems at neural networks.
Some essential concepts that our API have to provide include:
1. A *topology* is an expression of *layers*.
1. A layer could be any kind of computation, including *cost*.
1. Some layers have parameters, some don't. Most costs don't have
parameters.
1. In some topologies, layers share parameters. For
example,
[the network for training a ranking model](https://github.com/PaddlePaddle/Paddle/issues/1311#issuecomment-279121850).
1. At programming time, users specify topologies and possible sharing
of parameters. PaddlePaddle can figure out and create parameters
required (and possibly shared) by one or more topologies.
## Starting from Examples
As a summarization
of
[our disucssion](https://github.com/PaddlePaddle/Paddle/issues/1315),
let us present two examples here:
### Example 1. Sharing Parameters between Layers
We use
the
[3-branch ranking](https://github.com/PaddlePaddle/Paddle/issues/1311#issuecomment-279121850) model
in this example. For your convenience, I copy-a-paste the model's
topology as follows:
```
A -> f -\
Q -> f --> cost
B -> f -/
```
The following program trains the topology including the cost, and then
use the sub-network in the trained topology in inference:
```python
def f(in):
e = paddle.layer.embedding(in, parameter_name="embedding")
o = paddle.layer.softmax(e, parameter_name="semantic")
return o
# Create 3 topologies (subnets), they share parameters because all
# correspoinding layers have the same parameter names.
fA = f(paddle.layer.data(input_name="A"))
fB = f(paddle.layer.data(input_name="B"))
fQ = f(paddle.layer.data(input_name="Q"))
topology = paddle.layer.less_than(
paddle.layer.cross_entropy(fA, fQ),
paddle.layer.corss_entropy(fB, fQ))
# Derive parameters required in topology and create them in model.
parameters = paddle.parameters.create(topology)
# Estimate parameters used in topology from data.
paddle.train(topology, parameters, reader=read_ranking_model_data)
# Inference using fA (or fB or fC, as they share their parameters).
[testA, testB, testQ] = read_ranking_model_data()
print "The sematic-vector of testA: ", paddle.infer(fA, parameters, testA)
```
### Example 2. Sharing Parameters between "Models"
We use [GAN](https://github.com/PaddlePaddle/book/tree/develop/gan) in
this example. In the following example program, `d0` and `d1`
correspond to the two networks in the following figure:
<img src="https://github.com/wangyang59/book/raw/00036f4b0da5225041a6824587c1a01cf20159b1/gan/image/gan_ig.png" width=400 />
```python
def G(in):
# over-simplified example as G has only one layers:
return paddle.layer.fc(in, parameter_name="G")
def D(in);
# again, over-simplified:
return paddle.layer.fc(in, parameter_name="D")
# Construct the first topology, which contains both D and G.
# By learning this topology, we update parameters of G.
d0 = paddle.layer.should_be_false(D(G(paddle.layer.data())))
# Construct a second topology d1, which contains only D. By
# training this topology, we update parameters of D. Note
# that d1 share parameters with d0.
d1 = paddle.layer.should_be_true(D(paddle.layer.data()))
# Create parameters from a list of multiple topologies (models) for
# the chance to share parameters between these topologies.
parameters = paddle.parameters.create([d0, d1])
# Iterative training of GAN.
for ...:
train(d0, parameters, reader=read_from_rng, immutable_parameters={"D"})
train(d1, parameters, reader=read_from_realistic_images)
# Use d1 for inference:
print "D thinks a batch of images are realistic ", infer(d1, parameters, read_mnist_images)
```
### Summarization
Above two programs reveal some important design concerns:
1. Users describe a topology as an expression of layers. Every layer
has a *parameter name*. If the users don't specify it explicitly, it's automatically generated as a unique name. By
specifying the parameter name, users can specify the sharing of
parameters between layers and even between topologies.
1. `paddle.parameters.create` figures out parameters required by one
or more topologies from parameter names of layers. It creates these
parameters and returns a `ParameterSet` object, which is in essence
a map from *parameter names* to *parameters*.
1. At training and inference time, `paddle.train` and `paddle.infer`
requires both a topology and the parameter set that holds the parameters of that topology. There are some reasons:
1. This prevents users from forgetting to call
`paddle.parameters.create`.
1. `paddle.train` needs to know which parameter set to update.
1. Users could load another (pre-trained) parameter set and use it
with a topology in `train.infer`.
1. By specifying the `immutable_parameters` parameter of
`paddle.train`, we can forbid the update of these parameters.
## Reader
Not all programming frameworks allow users to define I/O functions.
An example is Google MapReduce, which can only read from text,
SSTable, and RecordIO files. Hadoop MapReduce allows users to define
readers and writers by deriving from base classes `Reader` and
`Writer`. The former is less flexible but also less error-prone. We
decide to provide the flexibility to users to define their readers.
There are some open questions here:
1. **Should a reader return a Python dictionary?**
1. **How to map multiple outputs from a reader to multiple data layers?**
1. **How to easily compose some existing readers to read more data and
feed a topology with more data layers?**
## Training
The recommended way to training a model is to call `paddle.train`,
which simply calls `paddle.trainer.Default`, a global variable of
type `paddle.trainer.SGD`. Equivalently, we can do
```python
opt = paddle.trainer.SGD(..., paddle.updater.Adam(...))
opt.train(topology, parameters, reader=read, ...)
```
### Updater
Please be aware that a trainer can accept an updater as its data
member, where an updater is a class derived from
`paddle.trainer.Updater`. This is to make it easier to customize
trainers, as discussed
[here](https://github.com/PaddlePaddle/Paddle/issues/1319).
### Event Handler
`paddle.train` and `paddle.trainer.XXX.train` take an optional
parameter `event_handler`, which should be either `None` or a function
that handle some events:
1. BeginTraining
1. EndTraining
1. BeginIteration
1. EndIteration
1. BeginPass
1. EndPass
where EndPass is sent if and only if the reader yields
`end_pass=True`.
An example as follows:
```python
def event_handler(event):
if ininstance(event, paddle.event.EndIteration):
print paddle.test(...)
paddle.train(topology, parameters, reader, event_handler)
```
If we are writing a PaddlePaddle program in and for iPython/Jypyter,
we can use metaplotlib in the event handler to plot a curve of
cost/error versus iterations, as shown
[here](https://blog.dominodatalab.com/interactive-dashboards-in-jupyter/).
### Distributed Training
If users want to do distributed training on a cluster, s/he should
call `paddle.dist_train` and provides access tokens to the cluster as
a parameter.
For example, if the user has a TLS certificate that allows him to
access a Kubernetes cluster, s/he should be able to call
```python
paddle.dist_train(model,
trainer=paddle.trainer.SGD(...,
paddle.updater.Adam(...)),
reader=read,
k8s_user="yi",
k8s_token="kube_cluster_tls.pem",
k8s_job="hello",
num_parameter_servers=15)
```
The pseudo code if `paddle.dist_train` is as follows:
```python
def dist_train(topology, parameters, trainer, reader, ...):
if os.getenv("KUBERNETES_SERVICE_HOST") == None:
image_name = k8s_user + '/' + k8s_job
docker_build(image_name)
docker_push()
kube_ctrl_start_job(image_name, k8s_user, k8s_token)
else:
rank = kube_list_containers_in_job_and_return_current_containers_rank()
if rank == 0:
master()
elif rank < 15:
parameter_server()
else:
trainer.train(model, reader=read)
```
Please be aware that if a process is running on the Kubernetes
cluster, it will have some environment variables pre-defined.
If `dist_train` doesn't see these environment variables, it knows
that it's running on users' personal computer, and it should work as a
*launcher*. Otherwise, it knows that it's running on the cluster and
need to figure out its role as either the master, or a trainer, or a
parameter server.
......@@ -188,48 +188,6 @@ extern void hl_param_relu_backward_diff(real* grad_o,
int width,
int height,
int partial_sum);
/**
* @brief cos sim forward
*
* @param[out] output output data
* @param[in] input1 input1 data(matrix)
* @param[in] input2 input2 data(matrix or vector)
* @param[in] width matrix width
* @param[in] input1_height input1_height
* @param[in] input2_height input2_height
* @param[in] scale scale factor
*/
extern void hl_cossim(real* output,
real* input1,
real* input2,
int width,
int input1_height,
int input2_height,
real scale);
/**
* @brief cos sim derivate
*
* @param[in] grad output grad
* @param[in] output output data
* @param[in] prevOutX input1 data
* @param[in] prevOutY input2 data
* @param[out] prevGradX input1 grad
* @param[out] prevGradY input2 grad
* @param[in] width matrix width
* @param[in] input1_height input1 height
* @param[in] input2_height input2 height
* @param[in] scale scale factor
*/
extern void hl_cossim_derivative(real* grad,
real* output,
real* prevOutX,
real* prevOutY,
real* prevGradX,
real* prevGradY,
int width,
int input1_height,
int input2_height,
real scale);
/**
* @brief Matrix addition: A_d[i][j] += scale * B_d[j/channel].
......
......@@ -74,25 +74,6 @@ inline void hl_param_relu_backward_diff(real* grad_o,
int height,
int partial_sum) {}
inline void hl_cossim(real* output,
real* input1,
real* input2,
int width,
int input1_height,
int input2_height,
real scale) {}
inline void hl_cossim_derivative(real* grad,
real* output,
real* prevOutX,
real* prevOutY,
real* prevGradX,
real* prevGradY,
int width,
int input1_height,
int input2_height,
real scale) {}
inline void hl_matrix_add_shared_bias(real* A_d,
real* B_d,
const int channel,
......
......@@ -584,177 +584,6 @@ void hl_param_relu_backward_diff(real* grad_o,
CHECK_SYNC("hl_param_relu_backward_diff failed");
}
template<int blockSize>
__global__ void KeCosSim(real* output,
real* input1,
real* input2,
int width,
int input1_height,
int input2_height,
real scale) {
const int ty = blockIdx.y;
int tid = threadIdx.x;
__shared__ real xx[blockSize];
__shared__ real yy[blockSize];
__shared__ real xy[blockSize];
xx[tid] = 0.0;
yy[tid] = 0.0;
xy[tid] = 0.0;
__syncthreads();
input1 += ty * width;
if (input2_height > 1) {
input2 += ty * width;
}
for (int index = tid; index < width; index += blockSize) {
real x = input1[index];
real y = input2[index];
xx[tid] += x * x;
yy[tid] += y * y;
xy[tid] += x * y;
}
__syncthreads();
for (int s = blockSize / 2; s > 0; s >>= 1) {
if (tid < s) {
xx[tid] += xx[tid + s];
yy[tid] += yy[tid + s];
xy[tid] += xy[tid + s];
}
__syncthreads();
}
if (tid == 0) {
output[ty] = scale * xy[0] / (sqrt(xx[0]) * sqrt(yy[0]));
}
}
void hl_cossim(real* output,
real* input1,
real* input2,
int width,
int input1_height,
int input2_height,
real scale) {
CHECK_NOTNULL(output);
CHECK_NOTNULL(input1);
CHECK_NOTNULL(input2);
const int blockSize = 256;
dim3 threads(blockSize, 1);
dim3 grid(1, input1_height);
KeCosSim<blockSize><<<grid, threads, 0, STREAM_DEFAULT>>>
(output, input1, input2, width, input1_height, input2_height, scale);
CHECK_SYNC("hl_cossim failed");
}
template<int blockSize>
__global__ void KeCosSimDerivative(real* grad,
real* output,
real* prevOutX,
real* prevOutY,
real* prevGradX,
real* prevGradY,
int width,
int input1_height,
int input2_height,
real scale) {
const int ty = blockIdx.y;
int tid = threadIdx.x;
__shared__ real xx[blockSize];
__shared__ real yy[blockSize];
__shared__ real xy[blockSize];
xx[tid] = 0.0;
yy[tid] = 0.0;
xy[tid] = 0.0;
__syncthreads();
prevOutX += ty * width;
prevGradX += ty * width;
if (input2_height > 1) {
prevOutY += ty * width;
prevGradY += ty * width;
}
for (int index = tid; index < width; index += blockSize) {
real x = prevOutX[index];
real y = prevOutY[index];
xx[tid] += x * x;
yy[tid] += y * y;
xy[tid] += x * y;
}
__syncthreads();
for (int s = blockSize / 2; s > 0; s >>= 1) {
if (tid < s) {
xx[tid] += xx[tid + s];
yy[tid] += yy[tid + s];
xy[tid] += xy[tid + s];
}
__syncthreads();
}
if (xy[0] == 0) {
real reciprocal = 1.0 / (sqrt(xx[0]) * sqrt(yy[0]));
for (int index = tid; index < width; index += blockSize) {
prevGradX[index] +=
scale * grad[ty] * prevOutY[index] * reciprocal;
if (input2_height > 1) {
prevGradY[index] +=
scale * grad[ty] * prevOutX[index] * reciprocal;
} else {
paddle::paddleAtomicAdd(prevGradY + index,
scale * grad[ty] * prevOutX[index] * reciprocal);
}
}
} else {
real reciprocalXY = 1.0 / xy[0];
real reciprocalSquareSumX = 1.0 / xx[0];
real reciprocalSquareSumY = 1.0 / yy[0];
for (int index = tid; index < width; index += blockSize) {
prevGradX[index] += output[ty] * grad[ty] *
(prevOutY[index] * reciprocalXY -
prevOutX[index] * reciprocalSquareSumX);
if (input2_height > 1) {
prevGradY[index] += output[ty] * grad[ty] *
(prevOutX[index] * reciprocalXY -
prevOutY[index] * reciprocalSquareSumY);
} else {
paddle::paddleAtomicAdd(prevGradY + index, output[ty] * grad[ty] *
(prevOutX[index] * reciprocalXY -
prevOutY[index] * reciprocalSquareSumY));
}
}
}
}
void hl_cossim_derivative(real* grad,
real* output,
real* prevOutX,
real* prevOutY,
real* prevGradX,
real* prevGradY,
int width,
int input1_height,
int input2_height,
real scale) {
CHECK_NOTNULL(grad);
CHECK_NOTNULL(output);
CHECK_NOTNULL(prevOutX);
CHECK_NOTNULL(prevOutY);
CHECK_NOTNULL(prevGradX);
CHECK_NOTNULL(prevGradY);
const int blockSize = 256;
dim3 threads(blockSize, 1);
dim3 grid(1, input1_height);
KeCosSimDerivative<blockSize><<<grid, threads, 0, STREAM_DEFAULT>>>
(grad, output, prevOutX, prevOutY, prevGradX, prevGradY, width,
input1_height, input2_height, scale);
CHECK_SYNC("hl_cossim_derivate failed");
}
__global__ void KeMatrixAddSharedBias(real* A,
real* B,
const int channel,
......
......@@ -190,7 +190,7 @@ public:
: BufferArg(VALUE_TYPE_INT32, shape, argType) {
bufferType_ = TENSOR_SEQUENCE_ID;
CHECK_EQ(shape_.ndims(), 1UL);
CHECK_GT(shape_[0], 1UL);
CHECK_GE(shape_[0], 1UL);
numSeqs_ = shape_[0] - 1;
}
......@@ -226,7 +226,8 @@ public:
SequenceArg(ValueType valueType,
const TensorShape& shape,
ArgType argType = UNSPECIFIED)
: BufferArg(valueType, shape, argType), startPositions_(TensorShape()) {
: BufferArg(valueType, shape, argType),
startPositions_(TensorShape({shape[0]})) {
bufferType_ = TENSOR_SEQUENCE_DATA;
}
......
......@@ -27,6 +27,7 @@ if(WITH_TESTING)
add_simple_unittest(ContextProjectionOpTest)
add_simple_unittest(PadOpTest)
add_simple_unittest(MulOpTest)
add_simple_unittest(CosSimOpTest)
endif()
endif()
......
......@@ -108,26 +108,23 @@ public:
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK(1 == inputs.size() || 2 == inputs.size());
CHECK_EQ((size_t)1, outputs.size());
CHECK(1UL == inputs.size() || 2UL == inputs.size());
CHECK_EQ(1UL, outputs.size());
CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
<< "SequenceArg required here";
const auto val_seqs = dynamic_cast<const SequenceArg&>(inputs[0]);
auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);
CHECK(out_seq.data() && val_seqs.data() && val_seqs.getSequenceId().data());
CHECK_EQ(out_seq.shape().ndims(), (size_t)2);
CHECK_EQ(val_seqs.shape().ndims(), (size_t)2);
CHECK_EQ(val_seqs.getSequenceId().shape().ndims(), (size_t)1);
if (2 == inputs.size()) {
CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
}
CHECK_EQ(out_seq.shape().ndims(), 2UL);
CHECK_EQ(val_seqs.shape().ndims(), 2UL);
/// dim of output = dim of input * context_length
CHECK_EQ(out_seq.shape()[1], val_seqs.shape()[1] * context_length_);
/// input and output has the same batch_size
CHECK_EQ(val_seqs.shape()[0], out_seq.shape()[0]);
/// dim of input == dim of weight
if (2 == inputs.size()) {
if (2UL == inputs.size()) {
CHECK_EQ(inputs[1].shape().ndims(), 2UL);
/// dim of input == dim of weight
CHECK_EQ(val_seqs.shape()[1], inputs[1].shape()[1]);
}
......@@ -135,10 +132,11 @@ public:
auto out_mat = out_seq.matrix<Device>();
const auto in_mat = val_seqs.matrix<Device>();
const auto w_mat =
(2 == inputs.size())
(2UL == inputs.size() && inputs[1].data())
? inputs[1].matrix<Device>()
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0);
const auto seq_vec = val_seqs.getSequenceId().vector<int, Device>();
ContextProjectionForward<Device>(out_mat,
in_mat,
w_mat,
......@@ -235,36 +233,40 @@ public:
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ((size_t)1, inputs.size());
CHECK_EQ((size_t)2, outputs.size());
CHECK_EQ(1UL, inputs.size());
CHECK(1UL == outputs.size() || 2UL == outputs.size());
CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
<< "SequenceArg required here";
const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);
CHECK(in_seq.data() && in_seq.getSequenceId().data());
CHECK_EQ(in_seq.shape().ndims(), (size_t)2);
CHECK_EQ(in_seq.getSequenceId().shape().ndims(), (size_t)1);
CHECK_EQ(out_seq.shape().ndims(), (size_t)2);
CHECK_EQ(out_seq.getSequenceId().shape().ndims(), (size_t)1);
CHECK_EQ(outputs[1].shape().ndims(), (size_t)2);
CHECK_EQ(in_seq.shape().ndims(), 2UL);
CHECK_EQ(out_seq.shape().ndims(), 2UL);
CHECK_EQ(out_seq.getSequenceId().shape().ndims(), 1UL);
/// dim of input grad == dim of weight
CHECK_EQ(out_seq.shape()[1], outputs[1].shape()[1]);
/// input and output grad has the same batch_size
CHECK_EQ(out_seq.shape()[0], in_seq.shape()[0]);
/// dim of output grad = dim of input grad * context_length
CHECK_EQ(in_seq.shape()[1], out_seq.shape()[1] * context_length_);
CHECK_EQ(out_seq.getArgType(), ADD_TO);
CHECK_EQ(outputs[1].getArgType(), ADD_TO);
if (2UL == outputs.size()) {
CHECK_EQ(outputs[1].shape().ndims(), 2UL);
/// dim of input grad == dim of weight
CHECK_EQ(out_seq.shape()[1], outputs[1].shape()[1]);
CHECK_EQ(outputs[1].getArgType(), ADD_TO);
}
const auto seq_vec = in_seq.getSequenceId().vector<int, Device>();
const auto out_grad_mat = in_seq.matrix<Device>();
auto in_grad_mat =
!out_seq.data() ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
: out_seq.matrix<Device>();
auto w_grad_mat = !outputs[1].data()
? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
: outputs[1].matrix<Device>();
auto w_grad_mat =
(2UL == outputs.size() && outputs[1].data())
? outputs[1].matrix<Device>()
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0);
ContextProjectionBackward<Device>(out_grad_mat,
in_grad_mat,
w_grad_mat,
......@@ -304,17 +306,17 @@ public:
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(1, static_cast<int>(inputs.size()));
CHECK_EQ(1, static_cast<int>(outputs.size()));
CHECK_EQ(1UL, inputs.size());
CHECK_EQ(1UL, outputs.size());
CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
<< "SequenceArg required here";
const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
const auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);
CHECK(in_seq.data() && out_seq.data() && in_seq.getSequenceId().data());
CHECK_EQ(static_cast<int>(out_seq.shape().ndims()), 2);
CHECK_EQ(static_cast<int>(in_seq.shape().ndims()), 2);
CHECK_EQ(static_cast<int>(in_seq.getSequenceId().shape().ndims()), 1);
CHECK_EQ(out_seq.shape().ndims(), 2UL);
CHECK_EQ(in_seq.shape().ndims(), 2UL);
CHECK_EQ(in_seq.getSequenceId().shape().ndims(), 1UL);
/// output layer grad dim == input layer grad dim * context_length_
CHECK_EQ(in_seq.shape().ndims(), out_seq.shape().ndims() * context_length_);
/// input and output has the same batch_size
......@@ -355,14 +357,14 @@ public:
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(1, static_cast<int>(inputs.size()));
CHECK_EQ(1, static_cast<int>(outputs.size()));
CHECK_EQ(1UL, inputs.size());
CHECK_EQ(1UL, outputs.size());
CHECK(inputs[0].isSequenceArg()) << "SequenceArg required here";
const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
CHECK(in_seq.data() && in_seq.getSequenceId().data() && outputs[0].data());
CHECK_EQ(static_cast<int>(outputs[0].shape().ndims()), 2);
CHECK_EQ(static_cast<int>(in_seq.shape().ndims()), 2);
CHECK_EQ(static_cast<int>(in_seq.getSequenceId().shape().ndims()), 1);
CHECK_EQ(outputs[0].shape().ndims(), 2UL);
CHECK_EQ(in_seq.shape().ndims(), 2UL);
CHECK_EQ(in_seq.getSequenceId().shape().ndims(), 1UL);
CHECK_EQ(in_seq.shape()[0], outputs[0].shape()[0]);
/// output layer grad dim == weight dim * context_length_
CHECK_EQ(in_seq.shape()[1], outputs[0].shape()[1] * context_length_);
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Function.h"
namespace paddle {
......
......@@ -28,55 +28,26 @@ void testMatrixProjectionForward(int context_start,
std::max(0, (int)(context_start + context_length - 1));
if (pad == 0) is_padding = false;
FunctionCompare compare("ContextProjectionForward",
FuncConfig()
.set("context_length", context_length)
.set("context_start", context_start)
.set("begin_pad", std::max(0, -context_start)));
CpuMatrix cpu_in(batch_size, input_dim);
cpu_in.randomizeUniform();
GpuMatrix gpu_in(batch_size, input_dim);
gpu_in.copyFrom(cpu_in);
auto cpu_weight =
is_padding ? std::make_shared<CpuMatrix>(pad, input_dim) : nullptr;
auto gpu_weight =
is_padding ? std::make_shared<GpuMatrix>(pad, input_dim) : nullptr;
if (is_padding) {
cpu_weight->randomizeUniform();
gpu_weight->copyFrom(*cpu_weight);
FunctionCompare test("ContextProjectionForward",
FuncConfig()
.set("context_length", context_length)
.set("context_start", context_start)
.set("begin_pad", std::max(0, -context_start)));
// prepare input arguments
test.addSequence(SequenceIdArg(TensorShape{batch_size}));
test.addInputs(
SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batch_size, input_dim}));
if (is_padding) { // weight
test.addInputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{pad, input_dim}));
}
IVectorPtr cpu_seq;
generateSequenceStartPositions(batch_size, cpu_seq);
IVectorPtr gpu_seq = IVector::create(cpu_seq->getSize(), true);
gpu_seq->copyFrom(*cpu_seq);
CpuMatrix cpu_out(batch_size, input_dim * context_length);
GpuMatrix gpu_out(batch_size, input_dim * context_length);
cpu_out.randomizeUniform();
gpu_out.copyFrom(cpu_out);
BufferArgs cpu_inputs;
BufferArgs cpu_outputs;
cpu_inputs.addArg(cpu_in, *cpu_seq);
if (cpu_weight) {
cpu_inputs.addArg(*cpu_weight, *cpu_seq);
}
cpu_outputs.addArg(cpu_out, *cpu_seq, ADD_TO);
compare.getCpuFunction()->calc(cpu_inputs, cpu_outputs);
test.addOutputs(
SequenceArg(VALUE_TYPE_FLOAT,
TensorShape{batch_size, input_dim * context_length}),
ADD_TO);
BufferArgs gpu_inputs;
BufferArgs gpu_outputs;
gpu_inputs.addArg(gpu_in, *gpu_seq);
if (gpu_weight) {
gpu_inputs.addArg(*gpu_weight, *gpu_seq);
}
gpu_outputs.addArg(gpu_out, *gpu_seq, ADD_TO);
compare.getGpuFunction()->calc(gpu_inputs, gpu_outputs);
autotest::TensorCheckEqual(cpu_out, gpu_out);
// run Function
test.run();
}
void testMatrixProjectionBackward(int context_start,
......@@ -88,63 +59,31 @@ void testMatrixProjectionBackward(int context_start,
std::max(0, (int)(context_start + context_length - 1));
if (pad == 0) is_padding = false;
FunctionCompare compare("ContextProjectionBackward",
FuncConfig()
.set("context_length", context_length)
.set("context_start", context_start)
.set("begin_pad", std::max(0, -context_start))
.set("is_padding", is_padding)
.set("total_pad", pad));
CpuMatrix cpu_in_grad(batch_size, input_dim);
cpu_in_grad.randomizeUniform();
GpuMatrix gpu_in_grad(batch_size, input_dim);
gpu_in_grad.copyFrom(cpu_in_grad);
CpuMatrix cpu_out_grad(batch_size, input_dim * context_length);
cpu_out_grad.randomizeUniform();
GpuMatrix gpu_out_grad(batch_size, input_dim * context_length);
gpu_out_grad.copyFrom(cpu_out_grad);
IVectorPtr cpu_seq;
generateSequenceStartPositions(batch_size, cpu_seq);
IVectorPtr gpu_seq = IVector::create(cpu_seq->getSize(), true);
gpu_seq->copyFrom(*cpu_seq);
auto cpu_w_grad =
is_padding ? std::make_shared<CpuMatrix>(pad, input_dim) : nullptr;
auto gpu_w_grad =
is_padding ? std::make_shared<GpuMatrix>(pad, input_dim) : nullptr;
if (is_padding) {
cpu_w_grad->randomizeUniform();
gpu_w_grad->copyFrom(*cpu_w_grad);
FunctionCompare test("ContextProjectionBackward",
FuncConfig()
.set("context_length", context_length)
.set("context_start", context_start)
.set("begin_pad", std::max(0, -context_start))
.set("is_padding", is_padding)
.set("total_pad", pad));
// prepare input arguments
test.addSequence(SequenceIdArg(TensorShape{batch_size}));
test.addInputs(SequenceArg(
VALUE_TYPE_FLOAT, TensorShape{batch_size, input_dim * context_length}));
test.addOutputs(
SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batch_size, input_dim}),
ADD_TO);
if (is_padding) { // weight
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{pad, input_dim}),
ADD_TO);
}
BufferArgs cpu_inputs;
BufferArgs cpu_outputs;
cpu_inputs.addArg(cpu_out_grad, *cpu_seq);
cpu_outputs.addArg(cpu_in_grad, *cpu_seq, ADD_TO);
cpu_outputs.addArg(
cpu_w_grad ? *cpu_w_grad : CpuMatrix(nullptr, 0, input_dim), ADD_TO);
compare.getCpuFunction()->calc(cpu_inputs, cpu_outputs);
BufferArgs gpu_inputs;
BufferArgs gpu_outputs;
gpu_inputs.addArg(gpu_out_grad, *gpu_seq);
gpu_outputs.addArg(gpu_in_grad, *gpu_seq, ADD_TO);
gpu_outputs.addArg(
gpu_w_grad ? *gpu_w_grad : GpuMatrix(nullptr, 0, input_dim), ADD_TO);
compare.getGpuFunction()->calc(gpu_inputs, gpu_outputs);
autotest::TensorCheckErr(cpu_in_grad, gpu_in_grad);
if (is_padding) {
autotest::TensorCheckErr(*cpu_w_grad, *gpu_w_grad);
}
// run Function
test.run();
}
TEST(ContextProjection, projection) {
TEST(ContextProjection, Projection) {
for (auto context_start : {-5, -3, -1, 0, 3}) {
for (auto context_length : {1, 2, 5, 7}) {
for (auto trainable_padding : {false, true}) {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "CosSimOp.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
namespace paddle {
/**
* Cosine Similarity for CpuMatrix
*
* \param out_mat, output value, size: nSamples * 1.
* \param in1_mat, input value 1, size: nSamples * dim.
* \param in2_mat, input value 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
* \param scale, default 1.0
*
*/
template <>
void CosSimForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
const CpuMatrix& in1_mat,
const CpuMatrix& in2_mat,
real scale) {
CHECK(out_mat.getData() && in1_mat.getData() && in2_mat.getData());
size_t num_samples = out_mat.getHeight();
size_t dim = in1_mat.getWidth();
/// column vector [nSamples, 1]
real* out = out_mat.getData();
const real* x = in1_mat.getData();
const real* y = in2_mat.getData();
/// in2 might only have one row or full rows
CHECK(in2_mat.getHeight() == 1LU || in2_mat.getHeight() == num_samples);
size_t inc = (in2_mat.getHeight() == 1LU) ? 0 : dim;
for (size_t i = 0; i < num_samples; ++i, x += dim, y += inc) {
real square_sum_x = 0;
real square_sum_y = 0;
real xy = 0;
for (size_t j = 0; j < dim; ++j) {
square_sum_x += x[j] * x[j];
square_sum_y += y[j] * y[j];
xy += x[j] * y[j];
}
CHECK(square_sum_x > 0 && square_sum_y > 0);
out[i] = scale * xy / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
}
}
/**
* Cosine Similarity
* for each row i,
* out[i] = scale * cos(input1[i], input2[i])
* = scale * <input1[i], input2[i]>/sqrt(|input1[i]|^2 * |input2[i]|^2)
* when input2 only has one row, then for each row i,
* out[i] = cos(input1[i], input2[0])
*
* \param inputs[0] input matrix 1, size: nSamples * dim.
* \param inputs[1] input matrix 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
* \param outputs[0] output matrix, size : nSamples * 1.
*/
template <DeviceType Device>
class CosSimForwardFunc : public FunctionBase {
void init(const FuncConfig& config) override {
scale_ = config.get<real>("scale");
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(inputs.size(), 2UL);
CHECK_EQ(outputs.size(), 1UL);
CHECK_EQ(inputs[0].shape().ndims(), 2UL);
CHECK_EQ(inputs[1].shape().ndims(), 2UL);
CHECK_EQ(outputs[0].shape().ndims(), 2UL);
CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);
CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
CHECK_EQ(outputs[0].shape()[1], 1UL);
CHECK(outputs[0].data() && inputs[0].data() && inputs[1].data());
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
auto out_mat = outputs[0].matrix<Device>();
const auto in1_mat = inputs[0].matrix<Device>();
const auto in2_mat = inputs[1].matrix<Device>();
CosSimForward<Device>(out_mat, in1_mat, in2_mat, scale_);
}
private:
real scale_;
};
/**
* Cosine Similarity Derivative for CpuMatrix
*
* \param in1_grad forward input grad 1, size: nSamples * dim.
* \param in2_grad forward input grad 2,
* size: n2 * dim (n2 == 1 or n2 == nSamples).
*
* \param out_grad backward loss output grad, size : nSamples * 1.
* \param out_val forward output value, size: nSamples * 1.
* \param in1_val forward input value 1, size: nSamples * dim.
* \param in2_val forward input value 2,
* size: n2 * dim (n2 == 1 or n2 == nSamples).
* \param scale, default 1.0
*/
template <>
void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad,
const CpuMatrix& out_val,
const CpuMatrix& in1_val,
const CpuMatrix& in2_val,
CpuMatrix& in1_grad,
CpuMatrix& in2_grad,
real scale) {
CHECK(out_grad.getData() && out_val.getData() && in1_val.getData() &&
in2_val.getData() && in1_grad.getData() && in2_grad.getData());
CHECK_EQ(out_val.useGpu_, false) << "Matrix type are GPU, CPU required";
const real* grad = out_grad.getData();
const real* out = out_val.getData();
const real* prev_out_x = in1_val.getData();
const real* prev_out_y = in2_val.getData();
real* prev_grad_x = in1_grad.getData();
real* prev_grad_y = in2_grad.getData();
size_t num_samples = out_grad.getHeight();
size_t dim = in1_val.getWidth();
CHECK_EQ(in2_val.getHeight(), in2_grad.getHeight());
CHECK(in2_val.getHeight() == 1LU || in2_val.getHeight() == num_samples);
size_t inc = (in2_val.getHeight() == 1LU) ? 0 : dim;
for (size_t i = 0; i < num_samples; ++i,
prev_out_x += dim,
prev_out_y += inc,
prev_grad_x += dim,
prev_grad_y += inc) {
real square_sum_x = 0;
real square_sum_y = 0;
real xy = 0;
for (size_t j = 0; j < dim; ++j) {
square_sum_x += prev_out_x[j] * prev_out_x[j];
square_sum_y += prev_out_y[j] * prev_out_y[j];
xy += prev_out_x[j] * prev_out_y[j];
}
CHECK(square_sum_x > 0 && square_sum_y > 0);
if (xy == 0) {
real reciprocal =
1.0f / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
for (size_t j = 0; j < dim; ++j) {
prev_grad_x[j] += scale * grad[i] * prev_out_y[j] * reciprocal;
prev_grad_y[j] += scale * grad[i] * prev_out_x[j] * reciprocal;
}
} else {
real reciprocal_xy = 1.0f / xy;
real reciprocal_square_sum_x = 1.0f / square_sum_x;
real reciprocal_square_sum_y = 1.0f / square_sum_y;
for (size_t j = 0; j < dim; ++j) {
prev_grad_x[j] +=
out[i] * grad[i] * (prev_out_y[j] * reciprocal_xy -
prev_out_x[j] * reciprocal_square_sum_x);
prev_grad_y[j] +=
out[i] * grad[i] * (prev_out_x[j] * reciprocal_xy -
prev_out_y[j] * reciprocal_square_sum_y);
}
}
}
}
/**
* Cosine Similarity backward Derivative
*
* \param outputs[0] forward input grad 1, size: nSamples * dim.
* \param outputs[1] forward input grad 2,
* size: n2 * dim (n2 == 1 or n2 == nSamples).
*
* \param inputs[0] backward loss output grad, size : nSamples * 1.
* \param inputs[1] forward output value, size: nSamples * 1.
* \param inputs[2] forward input value 1, size: nSamples * dim.
* \param inputs[3] forward input value 2,
* size: n2 * dim (n2 == 1 or n2 == nSamples).
*/
template <DeviceType Device>
class CosSimBackwardFunc : public FunctionBase {
void init(const FuncConfig& config) override {
scale_ = config.get<real>("scale");
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(inputs.size(), 4UL);
CHECK_EQ(outputs.size(), 2UL);
/// dim of out_grad and out_val == 1, column vector
CHECK_EQ(inputs[0].shape()[1], 1UL);
CHECK_EQ(inputs[1].shape()[1], 1UL);
/// nSamples of out_grad == out_val == in_val1 == in_grad1
CHECK_EQ(inputs[1].shape()[0], inputs[0].shape()[0]);
CHECK_EQ(inputs[0].shape()[0], inputs[0].shape()[0]);
CHECK_EQ(outputs[0].shape()[0], inputs[0].shape()[0]);
/// dim of in1_val1 == in_val2 == in_grad1 == in_grad2
CHECK_EQ(inputs[3].shape()[1], inputs[2].shape()[1]);
CHECK_EQ(outputs[0].shape()[1], inputs[2].shape()[1]);
CHECK_EQ(outputs[1].shape()[1], inputs[2].shape()[1]);
CHECK(inputs[0].data() && inputs[1].data() && inputs[2].data() &&
inputs[3].data() && outputs[0].data() && outputs[1].data());
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
CHECK_EQ(outputs[1].getArgType(), ADD_TO);
const auto out_grad = inputs[0].matrix<Device>();
const auto out_val = inputs[1].matrix<Device>();
const auto in1_val = inputs[2].matrix<Device>();
const auto in2_val = inputs[3].matrix<Device>();
auto in1_grad = outputs[0].matrix<Device>();
auto in2_grad = outputs[1].matrix<Device>();
CosSimBackward<Device>(
out_grad, out_val, in1_val, in2_val, in1_grad, in2_grad, scale_);
}
private:
real scale_;
};
REGISTER_TYPED_FUNC(CosSimForward, CPU, CosSimForwardFunc);
REGISTER_TYPED_FUNC(CosSimBackward, CPU, CosSimBackwardFunc);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(CosSimForward, GPU, CosSimForwardFunc);
REGISTER_TYPED_FUNC(CosSimBackward, GPU, CosSimBackwardFunc);
#endif
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Function.h"
namespace paddle {
/**
* \brief Cosine Similarity Forward.
* for each row i,
* out[i] = scale * cos(in1[i], in2[i])
* = scale * \sum_j (in1[i][j] * in2[i][j]) /
* sqrt(sum_j (in1[i][j]^2) * sum_j (in2[i][j])^2)
*
* \param[out] output output value.
* \param[in] intput1 input value.
* \param[in] intput2 input value.
* \param[in] scale default 1.0.
*
*/
template <DeviceType Device>
void CosSimForward(typename Tensor<real, Device>::Matrix& output,
const typename Tensor<real, Device>::Matrix& input1,
const typename Tensor<real, Device>::Matrix& input2,
real scale);
/**
* \brief Cosine Similarity BackWard for Derivative.
*
* \param[in] output grad backward loss output grad.
* \param[in] output val forward-output value.
* \param[in] input val1 forward input value 1.
* \param[in] input val2 forward input value 2.
* \param[in/out] input grad forward input grad 1.
* \param[in/out] input grad forward input grad 2.
* \param[in] scale default 1.0.
*
*/
template <DeviceType Device>
void CosSimBackward(const typename Tensor<real, Device>::Matrix& out_grad,
const typename Tensor<real, Device>::Matrix& out_value,
const typename Tensor<real, Device>::Matrix& in1_value,
const typename Tensor<real, Device>::Matrix& in2_value,
typename Tensor<real, Device>::Matrix& in1_grad,
typename Tensor<real, Device>::Matrix& in2_grad,
real scale);
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_base.h"
#include "hl_device_functions.cuh"
#include "CosSimOp.h"
namespace paddle {
template<int block_size>
__global__ void KeCosSim(real* output,
const real* input1,
const real* input2,
int width,
int input1_height,
int input2_height,
real scale) {
const int ty = blockIdx.y;
int tid = threadIdx.x;
__shared__ real xx[block_size];
__shared__ real yy[block_size];
__shared__ real xy[block_size];
xx[tid] = 0.0;
yy[tid] = 0.0;
xy[tid] = 0.0;
__syncthreads();
input1 += ty * width;
if (input2_height > 1) {
input2 += ty * width;
}
for (int index = tid; index < width; index += block_size) {
real x = input1[index];
real y = input2[index];
xx[tid] += x * x;
yy[tid] += y * y;
xy[tid] += x * y;
}
__syncthreads();
for (int s = block_size / 2; s > 0; s >>= 1) {
if (tid < s) {
xx[tid] += xx[tid + s];
yy[tid] += yy[tid + s];
xy[tid] += xy[tid + s];
}
__syncthreads();
}
if (tid == 0) {
output[ty] = scale * xy[0] / (sqrt(xx[0]) * sqrt(yy[0]));
}
}
void hlCossim(real* output,
const real* input1,
const real* input2,
size_t width,
size_t input1_height,
size_t input2_height,
real scale) {
CHECK_NOTNULL(output);
CHECK_NOTNULL(input1);
CHECK_NOTNULL(input2);
const int block_size = 256;
dim3 threads(block_size, 1);
dim3 grid(1, input1_height);
KeCosSim<block_size><<<grid, threads, 0, STREAM_DEFAULT>>>
(output, input1, input2, width, input1_height, input2_height, scale);
CHECK_SYNC("hlCossim failed");
}
template <>
void CosSimForward<DEVICE_TYPE_GPU>(GpuMatrix& out_mat,
const GpuMatrix& in1_mat,
const GpuMatrix& in2_mat,
real scale) {
CHECK(out_mat.getData() && in1_mat.getData() && in2_mat.getData());
CHECK(in1_mat.useGpu_ == true && in2_mat.useGpu_ == true)
<< "Matrix type are not GPU";
size_t num_samples = out_mat.getHeight();
size_t dim = in1_mat.getWidth();
real* out = out_mat.getData();
const real* x = in1_mat.getData();
const real* y = in2_mat.getData();
hlCossim(out, x, y, dim, in1_mat.getHeight(), in2_mat.getHeight(), scale);
}
template<int block_size>
__global__ void KeCosSimDerivative(const real* grad,
const real* output,
const real* prev_out_x,
const real* prev_out_y,
real* prev_grad_x,
real* prev_grad_y,
size_t width,
size_t input1_height,
size_t input2_height,
real scale) {
const int ty = blockIdx.y;
int tid = threadIdx.x;
__shared__ real xx[block_size];
__shared__ real yy[block_size];
__shared__ real xy[block_size];
xx[tid] = 0.0;
yy[tid] = 0.0;
xy[tid] = 0.0;
__syncthreads();
prev_out_x += ty * width;
prev_grad_x += ty * width;
if (input2_height > 1) {
prev_out_y += ty * width;
prev_grad_y += ty * width;
}
for (int index = tid; index < width; index += block_size) {
real x = prev_out_x[index];
real y = prev_out_y[index];
xx[tid] += x * x;
yy[tid] += y * y;
xy[tid] += x * y;
}
__syncthreads();
for (int s = block_size / 2; s > 0; s >>= 1) {
if (tid < s) {
xx[tid] += xx[tid + s];
yy[tid] += yy[tid + s];
xy[tid] += xy[tid + s];
}
__syncthreads();
}
if (xy[0] == 0) {
real reciprocal = 1.0 / (sqrt(xx[0]) * sqrt(yy[0]));
for (int index = tid; index < width; index += block_size) {
prev_grad_x[index] +=
scale * grad[ty] * prev_out_y[index] * reciprocal;
if (input2_height > 1) {
prev_grad_y[index] +=
scale * grad[ty] * prev_out_x[index] * reciprocal;
} else {
paddle::paddleAtomicAdd(prev_grad_y + index,
scale * grad[ty] * prev_out_x[index] * reciprocal);
}
}
} else {
real reciprocalXY = 1.0 / xy[0];
real reciprocalSquareSumX = 1.0 / xx[0];
real reciprocalSquareSumY = 1.0 / yy[0];
for (int index = tid; index < width; index += block_size) {
prev_grad_x[index] += output[ty] * grad[ty] *
(prev_out_y[index] * reciprocalXY -
prev_out_x[index] * reciprocalSquareSumX);
if (input2_height > 1) {
prev_grad_y[index] += output[ty] * grad[ty] *
(prev_out_x[index] * reciprocalXY -
prev_out_y[index] * reciprocalSquareSumY);
} else {
paddle::paddleAtomicAdd(prev_grad_y + index, output[ty] * grad[ty] *
(prev_out_x[index] * reciprocalXY -
prev_out_y[index] * reciprocalSquareSumY));
}
}
}
}
void hlCossimDerivative(const real* grad,
const real* output,
const real* prev_out_x,
const real* prev_out_y,
real* prev_grad_x,
real* prev_grad_y,
size_t width,
size_t input1_height,
size_t input2_height,
real scale) {
CHECK_NOTNULL(grad);
CHECK_NOTNULL(output);
CHECK_NOTNULL(prev_out_x);
CHECK_NOTNULL(prev_out_y);
CHECK_NOTNULL(prev_grad_x);
CHECK_NOTNULL(prev_grad_y);
const int block_size = 256;
dim3 threads(block_size, 1);
dim3 grid(1, input1_height);
KeCosSimDerivative<block_size><<<grid, threads, 0, STREAM_DEFAULT>>>
(grad, output, prev_out_x, prev_out_y, prev_grad_x, prev_grad_y, width,
input1_height, input2_height, scale);
CHECK_SYNC("hlCossimDerivate failed");
}
template <>
void CosSimBackward<DEVICE_TYPE_GPU>(const GpuMatrix& out_grad,
const GpuMatrix& out_val,
const GpuMatrix& in1_val,
const GpuMatrix& in2_val,
GpuMatrix& in1_grad,
GpuMatrix& in2_grad,
real scale) {
CHECK(out_grad.getData() && out_val.getData() && in1_val.getData() &&
in2_val.getData() && in1_grad.getData() && in2_grad.getData());
CHECK(out_grad.useGpu_ && out_val.useGpu_ && in1_val.useGpu_
&& in2_val.useGpu_ && in1_grad.useGpu_ && in2_grad.useGpu_)
<< "Matrix types are not equally GPU";
size_t dim = in1_val.getWidth();
const real* grad = out_grad.getData();
const real* out = out_val.getData();
const real* prev_out_x = in1_val.getData();
const real* prev_out_y = in2_val.getData();
real* prev_grad_x = in1_grad.getData();
real* prev_grad_y = in2_grad.getData();
hlCossimDerivative(grad,
out,
prev_out_x,
prev_out_y,
prev_grad_x,
prev_grad_y,
dim,
in1_val.getHeight(),
in2_val.getHeight(),
scale);
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "FunctionTest.h"
#include "paddle/math/Matrix.h"
using namespace paddle; // NOLINT
void testCosSimForward(size_t height_x,
size_t height_y,
size_t width,
real scale) {
FunctionCompare test("CosSimForward", FuncConfig().set("scale", scale));
// prepare input arguments
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, width}));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_y, width}));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, 1}),
ASSIGN_TO);
// run Function
test.run();
}
void testCosSimBackward(size_t height_x,
size_t height_y,
size_t width,
real scale) {
FunctionCompare test("CosSimBackward", FuncConfig().set("scale", scale));
// prepare input arguments
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, 1}));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, 1}));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, width}));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_y, width}));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, width}),
ADD_TO);
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_y, width}),
ADD_TO);
// run Function
test.run();
}
TEST(Matrix, cosSim) {
for (auto height_x : {10, 100, 1000}) {
for (auto height_y : {1, height_x}) {
for (auto width : {10, 100, 1000}) {
for (auto scale : {1.0, 2.0}) {
testCosSimForward(height_x, height_y, width, scale);
testCosSimBackward(height_x, height_y, width, scale);
}
}
}
}
}
......@@ -69,6 +69,54 @@ public:
gpuMemory_.back()->getBuf(), input.valueType(), input.shape()));
}
// assume one copy of sequence is shared by different SequenceArgs
void addSequence(const SequenceIdArg& input) {
CHECK_EQ(input.shape().ndims(), 1UL);
size_t batchSize = input.shape()[0];
size_t numSeqs = batchSize / 10 + 1;
size_t sizeId = (numSeqs + 1) * sizeOfValuType(VALUE_TYPE_INT32);
cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(sizeId));
gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(sizeId));
cpuSeq_ = std::make_shared<SequenceIdArg>(cpuMemory_.back()->getBuf(),
TensorShape{numSeqs + 1});
gpuSeq_ = std::make_shared<SequenceIdArg>(gpuMemory_.back()->getBuf(),
TensorShape{numSeqs + 1});
/// init sequence Id
initArg(*cpuSeq_, batchSize);
// todo(tianbing), delete it
CHECK_EQ(cpuSeq_->shape().getElements(), cpuSeq_->numSeqs() + 1);
CpuIVector cpuSeq(cpuSeq_->shape().getElements(), (int*)cpuSeq_->data());
GpuIVector gpuSeq(gpuSeq_->shape().getElements(), (int*)gpuSeq_->data());
gpuSeq.copyFrom(cpuSeq);
}
void addInputs(const SequenceArg& input) {
CHECK_EQ(input.shape().ndims(), 2UL);
size_t batchSize = input.shape()[0];
if (!cpuSeq_ || !gpuSeq_) { // sequence not exist
addSequence(SequenceIdArg(TensorShape{batchSize}));
}
size_t size =
input.shape().getElements() * sizeOfValuType(input.valueType());
cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));
/// SequenceArg
cpuInputs_.emplace_back(
std::make_shared<SequenceArg>(cpuMemory_.back()->getBuf(),
input.valueType(),
input.shape(),
*cpuSeq_));
gpuInputs_.emplace_back(
std::make_shared<SequenceArg>(gpuMemory_.back()->getBuf(),
input.valueType(),
input.shape(),
*gpuSeq_));
}
// output need only contains shape, do not contains data.
void addOutputs(const BufferArg& output, ArgType argType = ASSIGN_TO) {
size_t size =
......@@ -116,24 +164,31 @@ public:
std::make_shared<SparseMatrixArg>(*gpuSparse_, argType));
}
void addInputs(const SequenceArg& input) {
size_t batchSize = input.shape()[0];
size_t numSeqs = batchSize / 10 + 1;
size_t sizeId = (numSeqs + 1) * sizeOfValuType(VALUE_TYPE_INT32);
cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(sizeId));
gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(sizeId));
TensorShape seqsId({numSeqs + 1});
// void* cpuBuffer = cpuMemory_.back()->getBuf();
// void* gpuBuffer = gpuMemory_.back()->getBuf();
void addOutputs(const SequenceArg& output, ArgType argType = ASSIGN_TO) {
CHECK_EQ(output.shape().ndims(), 2UL);
size_t batchSize = output.shape()[0];
if (!cpuSeq_ || !gpuSeq_) { // sequence not exist
addSequence(SequenceIdArg(TensorShape{batchSize}));
}
size_t size =
input.shape().getElements() * sizeOfValuType(input.valueType());
output.shape().getElements() * sizeOfValuType(output.valueType());
cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));
// TODO: need be implemented.
/// SequenceArg
cpuOutputs_.emplace_back(
std::make_shared<SequenceArg>(cpuMemory_.back()->getBuf(),
output.valueType(),
output.shape(),
*cpuSeq_,
argType));
gpuOutputs_.emplace_back(
std::make_shared<SequenceArg>(gpuMemory_.back()->getBuf(),
output.valueType(),
output.shape(),
*gpuSeq_,
argType));
}
void addInputs(const SparseMatrixArg& input) {
......@@ -193,14 +248,44 @@ public:
std::shared_ptr<FunctionBase> getGpuFunction() const { return gpuFunc_; }
protected:
// only init cpu argument, gpu argument copy from cpu argument.
void initArg(BufferArg& arg) {
CpuVector vector(arg.shape().getElements(), (real*)arg.data());
vector.uniform(0.001, 1);
}
void initArg(SequenceArg& arg) {
/// init only matrix
CpuVector vector(arg.shape().getElements(), (real*)arg.data());
vector.uniform(0.001, 1);
}
void initArg(SequenceIdArg& arg, size_t batchSize) {
size_t numSeqs = arg.numSeqs();
int* buf = reinterpret_cast<int*>(arg.data());
int pos = 0;
size_t maxLen = 2 * batchSize / numSeqs;
for (int i = 0; i < (int)numSeqs; ++i) {
int len = 1 + uniformRandom(std::min<int64_t>(
maxLen, batchSize - pos - numSeqs + i));
buf[i] = pos;
pos += len;
VLOG(1) << " len=" << len;
}
buf[numSeqs] = batchSize;
}
void initInputs() {
for (size_t i = 0; i < cpuInputs_.size(); i++) {
if (cpuInputs_[i]->isSparseArg()) {
continue; /// sparse matrix already init
}
initArg(*cpuInputs_[i]);
if (cpuInputs_[i]->isSequenceArg()) {
initArg(dynamic_cast<SequenceArg&>(*cpuInputs_[i]));
} else {
initArg(*cpuInputs_[i]);
}
// TODO: Need a BufferCopy used to copy from one BufferArg to another.
CpuVector cpuVector(cpuInputs_[i]->shape().getElements(),
(real*)cpuInputs_[i]->data());
......@@ -217,7 +302,11 @@ protected:
continue; /// sparse matrix already init
}
initArg(*cpuOutputs_[i]);
if (cpuOutputs_[i]->isSequenceArg()) {
initArg(dynamic_cast<SequenceArg&>(*cpuOutputs_[i]));
} else {
initArg(*cpuOutputs_[i]);
}
// TODO: Need a BufferCopy used to copy from one BufferArg to another.
CpuVector cpuVector(cpuOutputs_[i]->shape().getElements(),
......@@ -241,28 +330,6 @@ protected:
}
}
// only init cpu argument, gpu argument copy from cpu argument.
void initArg(BufferArg& arg) {
CpuVector vector(arg.shape().getElements(), (real*)arg.data());
vector.uniform(0.001, 1);
}
void initArg(SequenceIdArg& arg, size_t batchSize) {
size_t numSeqs = arg.numSeqs();
int* buf = reinterpret_cast<int*>(arg.data());
int pos = 0;
size_t maxLen = 2 * batchSize / numSeqs;
for (int i = 0; i < (int)numSeqs; ++i) {
int len = uniformRandom(
std::min<int64_t>(maxLen, batchSize - pos - numSeqs + i)) +
1;
buf[i] = pos;
pos += len;
VLOG(1) << " len=" << len;
}
buf[numSeqs] = batchSize;
}
protected:
std::shared_ptr<FunctionBase> cpuFunc_;
std::shared_ptr<FunctionBase> gpuFunc_;
......@@ -274,6 +341,8 @@ protected:
std::vector<BufferArgPtr> gpuOutputs_;
std::shared_ptr<CpuSparseMatrix> cpuSparse_;
std::shared_ptr<GpuSparseMatrix> gpuSparse_;
std::shared_ptr<SequenceIdArg> cpuSeq_;
std::shared_ptr<SequenceIdArg> gpuSeq_;
};
} // namespace paddle
......@@ -60,7 +60,7 @@ TEST(MulOp, DDDMatrixMul) {
if (transa && transb) {
continue;
}
VLOG(3) << setiosflags(std::ios::left) << std::setfill(' ')
VLOG(3) << std::setiosflags(std::ios::left) << std::setfill(' ')
<< " transa=" << transa << " transb=" << transb
<< " dimM=" << std::setw(5) << dimM
<< " dimN=" << std::setw(5) << dimN
......@@ -104,7 +104,7 @@ TEST(MuLOp, DSparseDMul) {
for (const auto dimK : {3, 10}) {
for (const auto nnz : {3, 10}) {
for (const auto FORMAT : {SPARSE_CSR}) {
VLOG(3) << setiosflags(std::ios::left) << std::setfill(' ')
VLOG(3) << std::setiosflags(std::ios::left) << std::setfill(' ')
<< " dimM=" << std::setw(5) << dimM
<< " dimN=" << std::setw(5) << dimN
<< " dimK=" << std::setw(5) << dimK
......@@ -150,7 +150,7 @@ TEST(MulOp, DDSparseMul) {
for (const auto dimK : {3, 10}) {
for (const auto nnz : {3, 10}) {
for (const auto FORMAT : {SPARSE_CSR, SPARSE_CSC}) {
VLOG(3) << setiosflags(std::ios::left) << std::setfill(' ')
VLOG(3) << std::setiosflags(std::ios::left) << std::setfill(' ')
<< " dimM=" << std::setw(5) << dimM
<< " dimN=" << std::setw(5) << dimN
<< " dimK=" << std::setw(5) << dimK
......@@ -197,7 +197,7 @@ TEST(MulOp, SparseDDMul) {
for (const auto dimK : {3, 10}) {
for (const auto nnz : {3, 10}) {
for (const auto FORMAT : {SPARSE_CSC, SPARSE_CSR}) {
VLOG(3) << setiosflags(std::ios::left) << std::setfill(' ')
VLOG(3) << std::setiosflags(std::ios::left) << std::setfill(' ')
<< " dimM=" << std::setw(5) << dimM
<< " dimN=" << std::setw(5) << dimN
<< " dimK=" << std::setw(5) << dimK
......
......@@ -647,7 +647,7 @@ public:
DataBatch& gpuBatch = *batch;
std::vector<Argument>& gpuArguments = gpuBatch.getStreams();
gpuArguments.resize(cpuArguments.size());
gpuBatch.setSize(size);
gpuBatch.setSize(bsize);
for (size_t i = 0; i < headers_.size(); ++i) {
gpuArguments[i].resizeAndCopyFrom(
cpuArguments[i], useGpu_, HPPL_STREAM_1);
......
......@@ -155,7 +155,8 @@ protected:
public:
explicit BootBiasLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
if (!Layer::init(layerMap, parameterMap)) return false;
if (biasParameter_) {
......@@ -174,7 +175,7 @@ public:
}
}
virtual void forward(PassType passType) {
void forward(PassType passType) override {
if (biases_) {
MatrixPtr outV = getOutputValue();
outV->addBias(*(biases_->getW()), 1);
......@@ -182,7 +183,7 @@ public:
}
}
virtual void backward(const UpdateCallback& callback) {
void backward(const UpdateCallback& callback) override {
if (biases_) {
backwardActivation();
biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
......
......@@ -44,19 +44,20 @@ public:
/**
* Intialization of AddtoLayer.
*/
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
/**
* Forward propagation.
* @note There is no weight matrix for each input,
* because it just a simple add operation.
*/
void forward(PassType passType);
void forward(PassType passType) override;
/**
* Backward propagation.
*/
void backward(const UpdateCallback& callback = nullptr);
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -35,7 +35,8 @@ public:
~AgentLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
// if *numSamples* set,
// real layer output will only use first *numSamples* rows
......@@ -44,8 +45,8 @@ public:
numSamples_ = numSamples;
}
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr) {}
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override {}
};
/**
......@@ -56,8 +57,8 @@ public:
explicit SequenceAgentLayer(const LayerConfig& config) : AgentLayer(config) {}
~SequenceAgentLayer() {}
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr) {}
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override {}
};
/**
......@@ -78,7 +79,8 @@ public:
virtual ~GatherAgentLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
// call before addRealLayer
void copyIdAndSequenceInfo(const Argument& input,
......@@ -88,8 +90,8 @@ public:
// add one real layer, can call many times
void addRealLayer(LayerPtr layer) { realLayers_.push_back(layer); }
void forward(PassType passType);
void backward(const UpdateCallback& callback);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
};
/**
......@@ -133,7 +135,8 @@ public:
virtual ~ScatterAgentLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
/**
* @brief set real layer in generation
......@@ -182,8 +185,8 @@ public:
numSequences_ = numSequences;
}
void forward(PassType passType);
void backward(const UpdateCallback& callback);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
};
/**
......
......@@ -38,12 +38,11 @@ public:
explicit AverageLayer(const LayerConfig& config)
: SequencePoolLayer(config) {}
~AverageLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
MatrixPtr outMtx_;
......
......@@ -52,7 +52,8 @@ public:
*/
static Layer* create(const LayerConfig& config);
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
/**
* @brief Calculate feature map size. Some input uses frameHeight and
......
......@@ -33,9 +33,10 @@ public:
~BatchNormalizationLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
/// Epsilon value used in the batch normalization formula.
......@@ -58,7 +59,7 @@ protected:
/// to batch, channels* imagePixels.
void shrinkMat(const MatrixPtr& in, MatrixPtr& out);
void onPassEnd() { firstTest_ = true; }
void onPassEnd() override { firstTest_ = true; }
MatrixPtr tmpMat_, tmpGrad_;
MatrixPtr expandedIn_, expandedOut_;
......
......@@ -38,9 +38,10 @@ public:
virtual ~BilinearInterpLayer() {}
size_t getSize();
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -58,10 +58,11 @@ public:
~BlockExpandLayer() {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -32,9 +32,10 @@ namespace paddle {
class CRFDecodingLayer : public CRFLayer {
public:
explicit CRFDecodingLayer(const LayerConfig& config) : CRFLayer(config) {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
protected:
std::unique_ptr<LinearChainCRF> crf_;
......
......@@ -29,9 +29,10 @@ namespace paddle {
class CRFLayer : public Layer {
public:
explicit CRFLayer(const LayerConfig& config) : Layer(config) {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
protected:
size_t numClasses_;
......
......@@ -22,10 +22,11 @@ namespace paddle {
class CTCLayer : public Layer {
public:
explicit CTCLayer(const LayerConfig& config) : Layer(config) {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
virtual void forward(PassType passType);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void forwardImp(const Argument& softmaxSeqs, const Argument& labelSeqs);
virtual void backward(const UpdateCallback& callback);
void backward(const UpdateCallback& callback) override;
void backwardImp(const UpdateCallback& callback,
const Argument& softmaxSeqs,
const Argument& labelSeqs);
......
......@@ -28,10 +28,11 @@ public:
~ConcatenateLayer() {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(concat, ConcatenateLayer);
......@@ -101,10 +102,11 @@ public:
~ConcatenateLayer2() {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
std::vector<std::unique_ptr<Projection>> projections_;
......
......@@ -80,7 +80,8 @@ protected:
public:
explicit ConvBaseLayer(const LayerConfig& config) : Layer(config) {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
/**
* imgSizeH_ and imgSizeW_ will be set according to the previous input layers
......
......@@ -47,10 +47,11 @@ public:
~ConvShiftLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(conv_shift, ConvShiftLayer);
......
......@@ -49,10 +49,11 @@ public:
~ConvexCombinationLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(convex_comb, ConvexCombinationLayer);
......
......@@ -26,15 +26,23 @@ bool CosSimLayer::init(const LayerMap& layerMap,
Layer::init(layerMap, parameterMap);
CHECK_EQ(inputLayers_.size(), 2LU);
createFunction(forward_,
"CosSimForward",
FuncConfig().set("scale", (real)config_.cos_scale()));
createFunction(backward_,
"CosSimBackward",
FuncConfig().set("scale", (real)config_.cos_scale()));
return true;
}
void CosSimLayer::forward(PassType passType) {
Layer::forward(passType);
/* malloc memory for the output_ if necessary */
int batchSize = getInputValue(0)->getHeight();
int size = getSize();
CHECK_EQ(forward_.size(), 1) << "Only one forward function needed";
{
REGISTER_TIMER_INFO("CosFwResetTimer", getName().c_str());
......@@ -42,26 +50,43 @@ void CosSimLayer::forward(PassType passType) {
}
MatrixPtr outV = getOutputValue();
/* activation */ {
REGISTER_TIMER_INFO("CosFwAtvTimer", getName().c_str());
MatrixPtr prevOut1 = getInputValue(0);
MatrixPtr prevOut2 = getInputValue(1);
outV->cosSim(*prevOut1, *prevOut2, config_.cos_scale());
CHECK(outV && prevOut1 && prevOut2);
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*prevOut1);
inputs.addArg(*prevOut2);
outputs.addArg(*outV, ASSIGN_TO);
forward_[0]->calc(inputs, outputs);
}
}
void CosSimLayer::backward(const UpdateCallback& callback) {
/* activation */ {
REGISTER_TIMER_INFO("CosBpAtvTimer", getName().c_str());
MatrixPtr outG = this->getOutputGrad();
outG->cosSimDerivative(*this->getOutputValue(),
*getInputValue(0),
*getInputValue(1),
*getInputGrad(0),
*getInputGrad(1),
config_.cos_scale());
CHECK_EQ(backward_.size(), 1) << "Only one backward function needed";
const auto outG = this->getOutputGrad();
const auto outV = this->getOutputValue();
const auto inV1 = this->getInputValue(0);
const auto inV2 = this->getInputValue(1);
auto inG1 = this->getInputGrad(0);
auto inG2 = this->getInputGrad(1);
CHECK(outG && outV && inV1 && inV2 && inG1 && inG2);
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*outG);
inputs.addArg(*outV);
inputs.addArg(*inV1);
inputs.addArg(*inV2);
outputs.addArg(*inG1, ADD_TO);
outputs.addArg(*inG2, ADD_TO);
backward_[0]->calc(inputs, outputs);
}
}
......
......@@ -28,7 +28,7 @@ namespace paddle {
*
* - Input1: A vector (batchSize * dataDim) *
* - Input2: A vector (batchSize * dataDim) or (1 * dataDim) *
* - Output: A vector (dataDim * 1)
* - Output: A vector (batchSize * 1)
*
* The config file api is cos_sim.
*/
......@@ -38,10 +38,11 @@ public:
~CosSimLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -18,7 +18,6 @@ limitations under the License. */
#include "paddle/utils/Stat.h"
namespace paddle {
/**
* @brief A layer for computing cosine similarity between a vector
* and each row of a matrix
......@@ -46,10 +45,11 @@ public:
~CosSimVecMatLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(cos_vm, CosSimVecMatLayer);
......@@ -97,11 +97,22 @@ bool CosSimVecMatLayer::init(const LayerMap& layerMap,
dataDim,
/* trans= */ false,
useGpu_);
CHECK(tmpRow0 && tmpRow1 && tmpRow2 && tmpRow3 && tmpMtx0 && tmpMtx1);
createFunction(forward_,
"CosSimForward",
FuncConfig().set("scale", (real)config_.cos_scale()));
createFunction(backward_,
"CosSimBackward",
FuncConfig().set("scale", (real)config_.cos_scale()));
return true;
}
void CosSimVecMatLayer::forward(PassType passType) {
Layer::forward(passType);
CHECK_EQ(forward_.size(), 1) << "Only one forward function needed";
MatrixPtr inV0 = getInputValue(0);
MatrixPtr inV1 = getInputValue(1);
......@@ -117,17 +128,25 @@ void CosSimVecMatLayer::forward(PassType passType) {
}
MatrixPtr outV = getOutputValue();
CHECK(outV && inV0 && inV1);
REGISTER_TIMER_INFO("FwCosVMTimer", getName().c_str());
for (size_t i = 0; i < batchSize; i++) {
tmpRow0->setData(inV0->rowBuf(i));
tmpMtx0->setData(inV1->rowBuf(i));
tmpRow2->setData(outV->rowBuf(i));
tmpRow2->cosSim(*(tmpMtx0), *(tmpRow0), config_.cos_scale());
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*tmpMtx0);
inputs.addArg(*tmpRow0);
outputs.addArg(*tmpRow2, ASSIGN_TO);
forward_[0]->calc(inputs, outputs);
}
}
void CosSimVecMatLayer::backward(const UpdateCallback& callback) {
CHECK_EQ(backward_.size(), 1) << "Only one forward function needed";
MatrixPtr inV0 = getInputValue(0);
MatrixPtr inV1 = getInputValue(1);
MatrixPtr inG0 = getInputGrad(0);
......@@ -136,27 +155,27 @@ void CosSimVecMatLayer::backward(const UpdateCallback& callback) {
MatrixPtr outG = getOutputGrad();
size_t batchSize = inV0->getHeight();
CHECK(inV0 && inV1 && inG0 && inG1 && outV && outG);
REGISTER_TIMER_INFO("BwCosVMTimer", getName().c_str());
if (inG0 && inG1) {
for (size_t i = 0; i < batchSize; i++) {
tmpRow0->setData(inV0->rowBuf(i));
tmpRow1->setData(inG0->rowBuf(i));
tmpMtx0->setData(inV1->rowBuf(i));
tmpMtx1->setData(inG1->rowBuf(i));
tmpRow2->setData(outV->rowBuf(i));
tmpRow3->setData(outG->rowBuf(i));
tmpRow3->cosSimDerivative(*(tmpRow2),
*(tmpMtx0),
*(tmpRow0),
*(tmpMtx1),
*(tmpRow1),
config_.cos_scale());
}
} else {
CHECK(!inG0 || !inG1) << "Not supported";
for (size_t i = 0; i < batchSize; i++) {
tmpRow0->setData(inV0->rowBuf(i));
tmpRow1->setData(inG0->rowBuf(i));
tmpMtx0->setData(inV1->rowBuf(i));
tmpMtx1->setData(inG1->rowBuf(i));
tmpRow2->setData(outV->rowBuf(i));
tmpRow3->setData(outG->rowBuf(i));
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*tmpRow3);
inputs.addArg(*tmpRow2);
inputs.addArg(*tmpMtx0);
inputs.addArg(*tmpRow0);
outputs.addArg(*tmpMtx1, ADD_TO);
outputs.addArg(*tmpRow1, ADD_TO);
backward_[0]->calc(inputs, outputs);
}
}
......
......@@ -367,8 +367,6 @@ void LambdaCost::backward(const UpdateCallback& callback) {
getInputGrad(0)->add(*marginGrad_);
}
void LambdaCost::onPassEnd() {}
void LambdaCost::calcGrad(const real* outputScore,
const real* score,
real* gradData,
......@@ -611,14 +609,15 @@ class SumCostLayer : public Layer {
public:
explicit SumCostLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
bool ret = Layer::init(layerMap, parameterMap);
if (!ret) return ret;
CHECK_EQ(inputLayers_.size(), 1UL);
return true;
}
virtual void forward(PassType passType) {
void forward(PassType passType) override {
Layer::forward(passType);
const MatrixPtr& input = getInputValue(0);
......@@ -629,7 +628,7 @@ public:
output_.value->sumRows(*input, /* scaleSum= */ 1, /* scaleDest= */ 0);
}
virtual void backward(const UpdateCallback& callback = nullptr) {
void backward(const UpdateCallback& callback = nullptr) override {
getInputGrad(0)->add((real)1);
}
};
......
......@@ -32,15 +32,16 @@ class CostLayer : public Layer {
public:
explicit CostLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
LayerPtr getOutputLayer() { return inputLayers_[0]; }
LayerPtr getLabelLayer() { return inputLayers_[1]; }
virtual void forward(PassType passType);
void forward(PassType passType) override;
virtual void backward(const UpdateCallback& callback = nullptr);
void backward(const UpdateCallback& callback = nullptr) override;
virtual void forwardImp(Matrix& outputValue,
Argument& label,
......@@ -68,11 +69,14 @@ public:
explicit MultiClassCrossEntropy(const LayerConfig& config)
: CostLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost);
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
void backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) override;
};
/**
......@@ -95,11 +99,14 @@ public:
explicit MultiClassCrossEntropyWithSelfNorm(const LayerConfig& config)
: CostLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost);
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
void backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) override;
protected:
MatrixPtr sftMaxSum_;
......@@ -117,11 +124,14 @@ public:
explicit SoftBinaryClassCrossEntropy(const LayerConfig& config)
: CostLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost);
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
void backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) override;
protected:
MatrixPtr targetPerDim_;
......@@ -139,11 +149,14 @@ public:
explicit SumOfSquaresCostLayer(const LayerConfig& config)
: CostLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost);
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
void backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) override;
};
/**
......@@ -162,17 +175,18 @@ class RankingCost : public Layer {
public:
explicit RankingCost(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
LayerPtr getOutputLayer(size_t i) { return inputLayers_[i]; }
LayerPtr getLabelLayer() { return inputLayers_[2]; }
void forward(PassType passType);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr);
void backward(const UpdateCallback& callback = nullptr) override;
void onPassEnd();
void onPassEnd() override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost) {
(void)output;
......@@ -214,17 +228,16 @@ class LambdaCost : public Layer {
public:
explicit LambdaCost(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
LayerPtr getOutputLayer() { return inputLayers_[0]; }
LayerPtr getScoreLayer() { return inputLayers_[1]; }
void forward(PassType passType);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr);
void onPassEnd();
void backward(const UpdateCallback& callback = nullptr) override;
real calcNDCG(const real* outputScore, const real* score, int size);
void calcGrad(const real* outputScore,
......@@ -256,11 +269,14 @@ public:
explicit MultiBinaryLabelCrossEntropy(const LayerConfig& config)
: CostLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost);
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
void backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) override;
};
/**
......@@ -282,13 +298,16 @@ class HuberTwoClass : public CostLayer {
public:
explicit HuberTwoClass(const LayerConfig& config) : CostLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost);
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void forwardImpIn(Matrix& output, Argument& label, Matrix& cost);
void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
void backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) override;
void backwardImpIn(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};
......
......@@ -35,14 +35,15 @@ public:
~CudnnBatchNormLayer();
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
/**
* reshape tensor of ioDesc_.
*/
void reshape(int batchSize);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
/**
......
......@@ -45,9 +45,10 @@ public:
~CudnnConvLayer();
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
void addBiases();
void bpropBiases();
};
......
......@@ -45,7 +45,8 @@ public:
hl_pooling_mode_t* mode = nullptr);
explicit CudnnPoolLayer(const LayerConfig& config);
~CudnnPoolLayer();
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
/**
* Reshape input and output tensor descriptor.
......@@ -53,8 +54,8 @@ public:
* So reshaping is needed.
*/
void reshape(int batchSize);
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -33,13 +33,13 @@ public:
/**
* Prefetch sparse matrix/ids only.
*/
void prefetch() { output_ = data_; }
void prefetch() override { output_ = data_; }
/**
* Forward propagation. Copy data_ (value, in, grad, ids, cpuSequenceDims,
* sequenceStartPositions, subSequenceStartPositions, strs) to output_.
*/
virtual void forward(PassType passType) {
void forward(PassType passType) override {
Layer::forward(passType);
copyDataToOutput(output_);
if (FLAGS_show_layer_stat) {
......@@ -50,9 +50,9 @@ public:
/**
* Data layer's backward propagation do nothing.
*/
virtual void backward(const UpdateCallback& callback) { (void)callback; }
void backward(const UpdateCallback& callback) override { (void)callback; }
virtual void copyOutputToOtherDevice() {
void copyOutputToOtherDevice() override {
for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
copyDataToOutput(outputOtherDevice_[i]);
}
......
......@@ -44,10 +44,11 @@ public:
~DataNormLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
int mode_;
......
......@@ -27,14 +27,14 @@ class EosIdCheckLayer : public Layer {
public:
explicit EosIdCheckLayer(const LayerConfig& config) : Layer(config) {}
virtual bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
bool ret = Layer::init(layerMap, parameterMap);
CHECK_EQ(1UL, inputLayers_.size());
return ret;
}
virtual void forward(PassType passType) {
void forward(PassType passType) override {
Layer::forward(passType);
const Argument& input = getInput(0);
......@@ -42,7 +42,7 @@ public:
output_.ids->isEqualTo(*input.ids, config_.eos_id());
}
virtual void backward(const UpdateCallback& callback) {}
void backward(const UpdateCallback& callback) override {}
};
REGISTER_LAYER(eos_id, EosIdCheckLayer);
......
......@@ -48,7 +48,8 @@ public:
~ExpandConvBaseLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
size_t getOutputSize();
/**
......
......@@ -35,10 +35,11 @@ public:
~ExpandConvLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
};
} // namespace paddle
......@@ -34,10 +34,11 @@ public:
~ExpandConvTransLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
};
} // namespace paddle
......@@ -53,10 +53,11 @@ public:
~ExpandLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -46,10 +46,11 @@ public:
~FeatureMapExpandLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(featmap_expand, FeatureMapExpandLayer);
......
......@@ -36,13 +36,14 @@ public:
explicit FullyConnectedLayer(const LayerConfig& config) : Layer(config) {}
~FullyConnectedLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
Weight& getWeight(int idx) { return *weights_[idx]; }
void prefetch();
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void prefetch() override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -50,17 +50,18 @@ class GatedRecurrentLayer : public Layer, public GruCompute {
public:
explicit GatedRecurrentLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback);
void backward(const UpdateCallback& callback) override;
void resetState();
void resetState() override;
void setState(LayerStatePtr state);
void setState(LayerStatePtr state) override;
LayerStatePtr getState();
LayerStatePtr getState() override;
protected:
void forwardSequence(int batchSize,
......
......@@ -22,17 +22,18 @@ public:
~GetOutputLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
if (!Layer::init(layerMap, parameterMap)) return false;
CHECK_EQ(1U, inputLayers_.size());
CHECK_NE(inputArgument_[0], "");
return true;
}
void forward(PassType passType) {
void forward(PassType passType) override {
output_ = getPrev(0)->getOutput(inputArgument_[0]);
}
void backward(const UpdateCallback& callback = nullptr) {}
void backward(const UpdateCallback& callback = nullptr) override {}
};
REGISTER_LAYER(get_output, GetOutputLayer);
......
......@@ -55,10 +55,11 @@ public:
~GruStepLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(gru_step, GruStepLayer);
......
......@@ -61,9 +61,10 @@ class HierarchicalSigmoidLayer : public Layer {
public:
explicit HierarchicalSigmoidLayer(const LayerConfig& config)
: Layer(config) {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
protected:
/**
......
......@@ -43,10 +43,11 @@ public:
~InterpolationLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(interpolation, InterpolationLayer);
......
......@@ -74,17 +74,18 @@ class LstmLayer : public Layer, public LstmCompute {
public:
explicit LstmLayer(const LayerConfig &config) : Layer(config) {}
bool init(const LayerMap &layerMap, const ParameterMap &parameterMap);
bool init(const LayerMap &layerMap,
const ParameterMap &parameterMap) override;
void forward(PassType passType);
void forward(PassType passType) override;
void backward(const UpdateCallback &callback);
void backward(const UpdateCallback &callback) override;
void resetState();
void resetState() override;
void setState(LayerStatePtr state);
void setState(LayerStatePtr state) override;
LayerStatePtr getState();
LayerStatePtr getState() override;
protected:
/**
......
......@@ -35,10 +35,11 @@ public:
~LstmStepLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(lstm_step, LstmStepLayer);
......
......@@ -181,11 +181,12 @@ class MDLstmLayer : public LstmLayer {
public:
explicit MDLstmLayer(const LayerConfig& config) : LstmLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback);
void backward(const UpdateCallback& callback) override;
protected:
void forwardOneSequence(int start, CoordIterator& coordIter);
......
......@@ -30,8 +30,8 @@ private:
public:
explicit MaxIdLayer(const LayerConfig& config) : Layer(config) {}
virtual bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
bool ret = Layer::init(layerMap, parameterMap);
CHECK_EQ(1UL, inputLayers_.size());
......@@ -40,7 +40,7 @@ public:
return ret;
}
virtual void forward(PassType passType) {
void forward(PassType passType) override {
Layer::forward(passType);
const Argument& input = getInput(0);
size_t batchSize = input.getBatchSize();
......@@ -54,7 +54,7 @@ public:
input.value->rowMax(*output_.ids, *output_.in);
}
virtual void backward(const UpdateCallback& callback) {}
void backward(const UpdateCallback& callback) override {}
};
REGISTER_LAYER(maxid, MaxIdLayer);
......
......@@ -42,14 +42,13 @@ protected:
public:
explicit MaxLayer(const LayerConfig& config) : SequencePoolLayer(config) {}
~MaxLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
return SequencePoolLayer::init(layerMap, parameterMap);
}
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -45,10 +45,11 @@ public:
explicit MaxOutLayer(const LayerConfig& config) : Layer(config) {}
virtual ~MaxOutLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -35,21 +35,22 @@ public:
~MixedLayer() {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
virtual void prefetch();
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback = nullptr);
virtual void resetState();
void prefetch() override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
void resetState() override;
/**
* setState() should be called after getState().
* Argument state consists of all projections states.
*/
virtual void setState(LayerStatePtr state);
void setState(LayerStatePtr state) override;
/**
* Return state which consists of all projections states.
*/
virtual LayerStatePtr getState();
LayerStatePtr getState() override;
protected:
std::vector<std::unique_ptr<Projection>> projections_;
......
......@@ -69,10 +69,11 @@ public:
~MultiplexLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
private:
/**
......
......@@ -61,7 +61,8 @@ public:
rand_(0, config.num_classes() - 1),
prepared_(false) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
......@@ -146,7 +147,7 @@ public:
prepared_ = true;
}
void prefetch() {
void prefetch() override {
prepareSamples();
IVector::resizeOrCreate(labelIds_, samples_.size(), useGpu_);
int* ids = labelIds_->getData();
......@@ -163,7 +164,7 @@ public:
}
}
void forward(PassType passType) {
void forward(PassType passType) override {
Layer::forward(passType);
CHECK(!useGpu_) << "GPU is not supported";
......@@ -199,7 +200,7 @@ public:
forwardCost();
}
void backward(const UpdateCallback& callback) {
void backward(const UpdateCallback& callback) override {
Matrix::resizeOrCreate(sampleOut_.grad,
1,
samples_.size(),
......
......@@ -30,7 +30,8 @@ class NormLayer : public Layer {
public:
explicit NormLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
Layer::init(layerMap, parameterMap);
return true;
}
......@@ -56,9 +57,10 @@ protected:
public:
explicit ResponseNormLayer(const LayerConfig& config) : NormLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType) { LOG(FATAL) << "Not implemented"; }
void backward(const UpdateCallback& callback = nullptr) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override { LOG(FATAL) << "Not implemented"; }
void backward(const UpdateCallback& callback = nullptr) override {
LOG(FATAL) << "Not implemented";
}
};
......
......@@ -36,9 +36,10 @@ public:
size_t getSize();
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
TensorShape shape_;
......
......@@ -38,10 +38,11 @@ public:
~OuterProdLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(out_prod, OuterProdLayer);
......
......@@ -29,9 +29,10 @@ public:
~PadLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
void setOutDims(const size_t batchSize);
......
......@@ -56,9 +56,10 @@ public:
~ParameterReluLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -46,7 +46,8 @@ public:
*/
static Layer* create(const LayerConfig& config);
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
};
} // namespace paddle
......@@ -40,7 +40,7 @@ public:
size_t getSize();
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -40,10 +40,11 @@ public:
~PowerLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(power, PowerLayer);
......
......@@ -19,8 +19,8 @@ namespace paddle {
class PrintLayer : public Layer {
public:
explicit PrintLayer(const LayerConfig& config) : Layer(config) {}
void forward(PassType passType);
void backward(const UpdateCallback& callback) {}
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override {}
};
void PrintLayer::forward(PassType passType) {
......
......@@ -30,10 +30,11 @@ namespace paddle {
class PriorBoxLayer : public Layer {
public:
explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback) {}
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override {}
protected:
int numPriors_;
......
......@@ -45,17 +45,18 @@ class RecurrentLayer : public Layer {
public:
explicit RecurrentLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback);
void backward(const UpdateCallback& callback) override;
void resetState();
void resetState() override;
void setState(LayerStatePtr state);
void setState(LayerStatePtr state) override;
LayerStatePtr getState();
LayerStatePtr getState() override;
protected:
/**
......
......@@ -33,15 +33,15 @@ public:
void initSubNetwork(NeuralNetwork* rootNetwork,
const ModelConfig& config,
const std::vector<ParameterType>& parameterTypes,
bool useGpu);
bool useGpu) override;
void forward(PassType passType) {
void forward(PassType passType) override {
REGISTER_TIMER_INFO("RecurrentGroupFwTime", getName().c_str());
const std::vector<Argument> inArgs;
std::vector<Argument> outArgs;
network_->forward(inArgs, &outArgs, passType);
}
void backward(const UpdateCallback& callback) {
void backward(const UpdateCallback& callback) override {
REGISTER_TIMER_INFO("RecurrentGroupBwTime", getName().c_str());
network_->backward(nullptr);
......@@ -53,7 +53,8 @@ public:
/**
* @see Layer.accessSubNetwork
*/
void accessSubNetwork(const std::function<void(NeuralNetwork&)>& callback) {
void accessSubNetwork(
const std::function<void(NeuralNetwork&)>& callback) override {
callback(*network_);
}
......
......@@ -20,18 +20,19 @@ namespace paddle {
/**
* @brief A layer for resizing a minibatch matrix h*w to h'*w'
* @note
* origin matrix height * witdth)
* origin matrix height * width)
* resize matrix: (height * width / size) * size
*/
class ResizeLayer : public Layer {
public:
explicit ResizeLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback);
void backward(const UpdateCallback& callback) override;
};
REGISTER_LAYER(resize, ResizeLayer);
......
......@@ -35,8 +35,8 @@ public:
explicit SamplingIdLayer(const LayerConfig& config)
: Layer(config), rand1_(0, 1) {}
virtual bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override {
bool ret = Layer::init(layerMap, parameterMap);
CHECK_EQ(1UL, inputLayers_.size());
if (useGpu_) {
......@@ -48,7 +48,7 @@ public:
return ret;
}
void forward(PassType passType) {
void forward(PassType passType) override {
Layer::forward(passType);
if (useGpu_) {
for (size_t i = 0; i < inputLayers_.size(); i++) {
......@@ -83,7 +83,7 @@ public:
output_.ids->copyFrom(ids.data(), batchSize);
}
virtual void backward(const UpdateCallback& callback) {}
void backward(const UpdateCallback& callback) override {}
};
REGISTER_LAYER(sampling_id, SamplingIdLayer);
......
......@@ -37,10 +37,11 @@ public:
~ScalingLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(scaling, ScalingLayer);
......
......@@ -65,9 +65,10 @@ public:
: Layer(config), selCols_(nullptr) {}
~SelectiveFullyConnectedLayer() {}
void prefetch();
void prefetch() override;
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
Weight& getWeight(int idx) { return *weights_[idx]; }
......@@ -90,8 +91,8 @@ public:
void fillSelectiveData(
const std::shared_ptr<std::vector<std::pair<int*, size_t>>>& candidates);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
private:
/**
......
......@@ -35,10 +35,11 @@ public:
~SequenceConcatLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(seqconcat, SequenceConcatLayer);
......
......@@ -42,12 +42,11 @@ public:
explicit SequenceLastInstanceLayer(const LayerConfig& config)
: SequencePoolLayer(config) {}
~SequenceLastInstanceLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(seqlastins, SequenceLastInstanceLayer);
......
......@@ -46,12 +46,11 @@ protected:
public:
explicit SequencePoolLayer(const LayerConfig& config) : Layer(config) {}
virtual ~SequencePoolLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -34,12 +34,11 @@ protected:
public:
explicit SequenceReshapeLayer(const LayerConfig& config) : Layer(config) {}
~SequenceReshapeLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(seqreshape, SequenceReshapeLayer);
......
......@@ -39,12 +39,11 @@ class SlopeInterceptLayer : public Layer {
public:
explicit SlopeInterceptLayer(const LayerConfig& config) : Layer(config) {}
~SlopeInterceptLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(slope_intercept, SlopeInterceptLayer);
......
......@@ -43,9 +43,8 @@ protected:
public:
explicit SpatialPyramidPoolLayer(const LayerConfig& config) : Layer(config) {}
~SpatialPyramidPoolLayer() {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
ProjectionConfig getConfig(size_t sizeX_,
size_t sizeY_,
......@@ -54,7 +53,7 @@ public:
std::string& poolType_);
size_t getSize();
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -35,12 +35,11 @@ protected:
public:
explicit SubSequenceLayer(const LayerConfig& config) : Layer(config) {}
~SubSequenceLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(subseq, SubSequenceLayer);
......
......@@ -41,12 +41,11 @@ protected:
public:
explicit SumToOneNormLayer(const LayerConfig& config) : Layer(config) {}
~SumToOneNormLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(sum_to_one_norm, SumToOneNormLayer);
......
......@@ -44,13 +44,12 @@ protected:
public:
explicit TensorLayer(const LayerConfig& config) : Layer(config) {}
~TensorLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
Weight& getWeight(int idx) { return *weights_[idx]; }
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -32,9 +32,10 @@ class TransLayer : public Layer {
public:
explicit TransLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
} // namespace paddle
......@@ -26,7 +26,8 @@ class ValidationLayer : public Layer {
public:
explicit ValidationLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
LayerPtr getOutputLayer() { return inputLayers_[0]; }
......@@ -37,13 +38,13 @@ public:
return inputLayers_[2];
}
virtual void forward(PassType passType);
void forward(PassType passType) override;
virtual void backward(const UpdateCallback& callback = nullptr);
void backward(const UpdateCallback& callback = nullptr) override;
virtual void validationImp(MatrixPtr outputValue, IVectorPtr label) = 0;
virtual void onPassEnd() = 0;
void onPassEnd() override = 0;
};
/*
......@@ -57,11 +58,12 @@ public:
cpuLabel_(nullptr),
cpuWeight_(nullptr) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void validationImp(MatrixPtr outputValue, IVectorPtr label);
void validationImp(MatrixPtr outputValue, IVectorPtr label) override;
void onPassEnd();
void onPassEnd() override;
struct PredictionResult {
PredictionResult(real __out, int __label) : out(__out), label(__label) {}
......@@ -86,11 +88,12 @@ public:
explicit PnpairValidation(const LayerConfig& config)
: ValidationLayer(config) {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void validationImp(MatrixPtr outputValue, IVectorPtr label);
void validationImp(MatrixPtr outputValue, IVectorPtr label) override;
void onPassEnd();
void onPassEnd() override;
private:
bool passBegin_;
......
......@@ -30,9 +30,10 @@ public:
explicit WarpCTCLayer(const LayerConfig& config) : Layer(config) {}
~WarpCTCLayer() {}
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
virtual void forward(PassType passType);
virtual void backward(const UpdateCallback& callback);
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
protected:
/**
......
......@@ -941,59 +941,6 @@ void GpuMatrix::softreluDerivative(Matrix& output) {
void GpuMatrix::scaledTanh(Matrix& output, real p1, real p2) {
BaseMatrix::scaledTanh(output, p1, p2);
}
void GpuMatrix::cosSim(Matrix& output1, Matrix& output2, real scale) {
CHECK(output1.useGpu_ == true && output2.useGpu_ == true)
<< "Matrix type are not equal";
size_t numSamples = getHeight();
size_t dim = output1.getWidth();
CHECK_EQ(getWidth(), 1UL);
CHECK_EQ(output1.getHeight(), numSamples);
CHECK_EQ(output1.getWidth(), output2.getWidth());
real* out = getData();
real* x = output1.getData();
real* y = output2.getData();
hl_cossim(out, x, y, dim, output1.getHeight(), output2.getHeight(), scale);
}
void GpuMatrix::cosSimDerivative(Matrix& output,
Matrix& prevOut1,
Matrix& prevOut2,
Matrix& prevGrad1,
Matrix& prevGrad2,
real scale) {
CHECK(output.useGpu_ == true && prevOut1.useGpu_ == true &&
prevOut2.useGpu_ == true && prevGrad1.useGpu_ == true &&
prevGrad2.useGpu_ == true)
<< "Matrix type are not equal";
CHECK_EQ(getWidth(), 1UL);
CHECK_EQ(output.getWidth(), 1UL);
size_t numSamples = getHeight();
CHECK_EQ(output.getHeight(), numSamples);
CHECK_EQ(prevOut1.getHeight(), numSamples);
CHECK_EQ(prevGrad1.getHeight(), numSamples);
size_t dim = prevOut1.getWidth();
CHECK_EQ(prevOut2.getWidth(), dim);
CHECK_EQ(prevGrad1.getWidth(), dim);
CHECK_EQ(prevGrad2.getWidth(), dim);
real* grad = getData();
real* out = output.getData();
real* prevOutX = prevOut1.getData();
real* prevOutY = prevOut2.getData();
real* prevGradX = prevGrad1.getData();
real* prevGradY = prevGrad2.getData();
hl_cossim_derivative(grad,
out,
prevOutX,
prevOutY,
prevGradX,
prevGradY,
dim,
prevOut1.getHeight(),
prevOut2.getHeight(),
scale);
}
void GpuMatrix::randomizeUniform() {
CHECK(isContiguous());
......@@ -3470,105 +3417,6 @@ void CpuMatrix::softmaxDerivative(Matrix& output, Matrix& sftmaxSum) {
}
}
void CpuMatrix::cosSim(Matrix& output1, Matrix& output2, real scale) {
size_t numSamples = getHeight();
size_t dim = output1.getWidth();
CHECK_EQ(getWidth(), 1UL);
CHECK_EQ(output1.getHeight(), numSamples);
CHECK_EQ(output1.getWidth(), output2.getWidth());
real* out = getData();
const real* x = output1.getData();
const real* y = output2.getData();
size_t yInc = dim;
if (output2.getHeight() == 1LU) {
yInc = 0;
} else {
CHECK_EQ(output2.getHeight(), numSamples);
}
for (size_t i = 0; i < numSamples; ++i, x += dim, y += yInc) {
real squareSumX = 0;
real squareSumY = 0;
real xy = 0;
for (size_t j = 0; j < dim; ++j) {
squareSumX += _square(x[j]);
squareSumY += _square(y[j]);
xy += x[j] * y[j];
}
CHECK(squareSumX > 0 && squareSumY > 0);
out[i] = scale * xy / (std::sqrt(squareSumX) * std::sqrt(squareSumY));
}
}
void CpuMatrix::cosSimDerivative(Matrix& output,
Matrix& prevOut1,
Matrix& prevOut2,
Matrix& prevGrad1,
Matrix& prevGrad2,
real scale) {
CHECK(output.useGpu_ == false) << "Matrix type are not equal";
CHECK_EQ(getWidth(), 1UL);
CHECK_EQ(output.getWidth(), 1UL);
size_t numSamples = getHeight();
CHECK_EQ(output.getHeight(), numSamples);
CHECK_EQ(prevOut1.getHeight(), numSamples);
CHECK_EQ(prevGrad1.getHeight(), numSamples);
size_t dim = prevOut1.getWidth();
CHECK_EQ(prevOut2.getWidth(), dim);
CHECK_EQ(prevGrad1.getWidth(), dim);
CHECK_EQ(prevGrad2.getWidth(), dim);
const real* grad = getData();
const real* out = output.getData();
const real* prevOutX = prevOut1.getData();
const real* prevOutY = prevOut2.getData();
real* prevGradX = prevGrad1.getData();
real* prevGradY = prevGrad2.getData();
size_t yInc = dim;
if (prevOut2.getHeight() == 1LU) {
yInc = 0;
CHECK_EQ(prevGrad2.getHeight(), 1LU);
} else {
CHECK_EQ(prevOut2.getHeight(), numSamples);
CHECK_EQ(prevGrad2.getHeight(), numSamples);
}
for (size_t i = 0; i < numSamples; ++i,
prevOutX += dim,
prevOutY += yInc,
prevGradX += dim,
prevGradY += yInc) {
real squareSumX = 0;
real squareSumY = 0;
real xy = 0;
for (size_t j = 0; j < dim; ++j) {
squareSumX += _square(prevOutX[j]);
squareSumY += _square(prevOutY[j]);
xy += prevOutX[j] * prevOutY[j];
}
CHECK(squareSumX > 0 && squareSumY > 0);
if (xy == 0) {
real reciprocal = 1.0f / (std::sqrt(squareSumX) * std::sqrt(squareSumY));
for (size_t j = 0; j < dim; ++j) {
prevGradX[j] += scale * grad[i] * prevOutY[j] * reciprocal;
prevGradY[j] += scale * grad[i] * prevOutX[j] * reciprocal;
}
} else {
real reciprocalXY = 1.0f / xy;
real reciprocalSquareSumX = 1.0f / squareSumX;
real reciprocalSquareSumY = 1.0f / squareSumY;
for (size_t j = 0; j < dim; ++j) {
prevGradX[j] += out[i] * grad[i] * (prevOutY[j] * reciprocalXY -
prevOutX[j] * reciprocalSquareSumX);
prevGradY[j] += out[i] * grad[i] * (prevOutX[j] * reciprocalXY -
prevOutY[j] * reciprocalSquareSumY);
}
}
}
}
void CpuMatrix::sumOfSquares(Matrix& output, Matrix& label) {
CHECK(output.useGpu_ == false && label.useGpu_ == false)
<< "Matrix type are not equal";
......
......@@ -799,26 +799,6 @@ public:
LOG(FATAL) << "Not implemented";
}
/**
* cosine similarity, for each row i,
* this[i] = cos(output1[i], output2[i])
*
* output2 can only have one row, then for each row i,
* this[i] = cos(output1[i], output2[0])
*/
virtual void cosSim(Matrix& output1, Matrix& output2, real scale = 1.0f) {
LOG(FATAL) << "Not implemented";
}
virtual void cosSimDerivative(Matrix& output,
Matrix& prevOut1,
Matrix& prevOut2,
Matrix& prevGrad1,
Matrix& prevGrad2,
real scale = 1.0f) {
LOG(FATAL) << "Not implemented";
}
/// print out the values of elements to os
virtual void print(std::ostream& os) const {
LOG(FATAL) << "Not implemented";
......@@ -1324,14 +1304,6 @@ public:
void softreluDerivative(Matrix& output);
void scaledTanh(Matrix& output, real p1, real p2);
void cosSim(Matrix& output1, Matrix& output2, real scale);
void cosSimDerivative(Matrix& output,
Matrix& prevOut1,
Matrix& prevOut2,
Matrix& prevGrad1,
Matrix& prevGrad2,
real scale);
virtual void print(std::ostream& os) const;
virtual void print(std::ostream& os, size_t height, size_t width) const;
......@@ -1752,14 +1724,6 @@ public:
void softreluDerivative(Matrix& output);
void scaledTanh(Matrix& output, real p1, real p2);
void cosSim(Matrix& output1, Matrix& output2, real scale);
void cosSimDerivative(Matrix& output,
Matrix& prevOut1,
Matrix& prevOut2,
Matrix& prevGrad1,
Matrix& prevGrad2,
real scale);
void print(std::ostream& os) const;
void print(std::ostream& os, size_t height, size_t width) const;
void printOneRow(std::ostream& os, size_t idx) const;
......
......@@ -181,28 +181,6 @@ TEST(Matrix, copyByRowIndex) {
}
}
void testCosSim(int heightX, int heightY, int width, real scale) {
AutoCompare test(heightX, 1);
CpuMatrix arg1(heightX, width);
CpuMatrix arg2(heightY, width);
arg1.randomizeUniform();
arg2.randomizeUniform();
arg2.add(-0.5);
test.cmpWithArg(&Matrix::cosSim, arg1, arg2, scale);
}
TEST(Matrix, cosSim) {
for (auto heightX : {10, 100, 1000}) {
for (auto heightY : {1, heightX}) {
for (auto width : {10, 100, 1000}) {
for (auto scale : {1.0, 2.0}) {
testCosSim(heightX, heightY, width, scale);
}
}
}
}
}
void testParamReluForward(int height, int width, int w_height, int w_width) {
AutoCompare test(height, width);
CpuMatrix arg1(height, width);
......
......@@ -720,61 +720,6 @@ TEST(Matrix, sequenceAvgForward) {
}
}
void testCosSimDerivate(int heightX, int heightY, int width, real scale) {
MatrixPtr prevOutX = CpuMatrix::create(heightX, width, false, false);
MatrixPtr prevOutY = CpuMatrix::create(heightY, width, false, false);
MatrixPtr grad = CpuMatrix::create(heightX, 1, false, false);
MatrixPtr output = CpuMatrix::create(heightX, 1, false, false);
MatrixPtr prevGradX = CpuMatrix::create(heightX, width, false, false);
MatrixPtr prevGradY = CpuMatrix::create(heightY, width, false, false);
prevOutX->randomizeUniform();
prevOutY->randomizeUniform();
grad->randomizeUniform();
output->randomizeUniform();
prevGradX->randomizeUniform();
prevGradY->randomizeUniform();
MatrixPtr prevOutXGpu = GpuMatrix::create(heightX, width, false, true);
MatrixPtr prevOutYGpu = GpuMatrix::create(heightY, width, false, true);
MatrixPtr gradGpu = GpuMatrix::create(heightX, 1, false, true);
MatrixPtr outputGpu = GpuMatrix::create(heightX, 1, false, true);
MatrixPtr prevGradXGpu = GpuMatrix::create(heightX, width, false, true);
MatrixPtr prevGradYGpu = GpuMatrix::create(heightY, width, false, true);
prevOutXGpu->copyFrom(*prevOutX);
prevOutYGpu->copyFrom(*prevOutY);
gradGpu->copyFrom(*grad);
outputGpu->copyFrom(*output);
prevGradXGpu->copyFrom(*prevGradX);
prevGradYGpu->copyFrom(*prevGradY);
grad->cosSimDerivative(
*output, *prevOutX, *prevOutY, *prevGradX, *prevGradY, scale);
gradGpu->cosSimDerivative(*outputGpu,
*prevOutXGpu,
*prevOutYGpu,
*prevGradXGpu,
*prevGradYGpu,
scale);
TensorCheckErr(*prevGradX, *prevGradXGpu);
TensorCheckErr(*prevGradY, *prevGradYGpu);
}
TEST(Matrix, cosSimDerivate) {
for (auto heightX : {1, 10, 100}) {
for (auto heightY : {1, heightX}) {
for (auto width : {1, 10, 100}) {
for (auto scale : {1.0, 2.0}) {
testCosSimDerivate(heightX, heightY, width, scale);
}
}
}
}
}
void testParamReluBackwardDiff(int height,
int width,
int w_height,
......
......@@ -289,6 +289,7 @@ void mkDir(const char* filename) {
void mkDirRecursively(const char* dir) {
struct stat sb;
if (*dir == 0) return; // empty string
if (!stat(dir, &sb)) return;
mkDirRecursively(path::dirname(dir).c_str());
......
......@@ -893,11 +893,11 @@ class MaxOut(Cfg):
self.add_keys(locals())
def DataBase(async_load_data=False,
constant_slots=None,
data_ratio=1,
is_main_data=True,
usage_ratio=None):
def create_data_config_proto(async_load_data=False,
constant_slots=None,
data_ratio=1,
is_main_data=True,
usage_ratio=None):
# default: all sub dataproviders are treat as "main data".
# see proto/DataConfig.proto for is_main_data
data_config = DataConfig()
......@@ -923,7 +923,7 @@ def SimpleData(files=None,
context_len=None,
buffer_capacity=None,
**xargs):
data_config = DataBase(**xargs)
data_config = create_data_config_proto(**xargs)
data_config.type = 'simple'
data_config.files = files
data_config.feat_dim = feat_dim
......@@ -945,7 +945,7 @@ def PyData(files=None,
constant_slots=None,
load_thread_num=None,
**xargs):
data_config = DataBase(**xargs)
data_config = create_data_config_proto(**xargs)
data_config.type = 'py'
if load_data_module in g_py_module_name_list:
......@@ -996,7 +996,7 @@ def ProtoData(files=None,
constant_slots=None,
load_thread_num=None,
**xargs):
data_config = DataBase(**xargs)
data_config = create_data_config_proto(**xargs)
if type is None:
data_config.type = 'proto'
else:
......@@ -1035,7 +1035,7 @@ def Data(type,
buffer_capacity=None,
**xargs):
data_config = DataBase(**xargs)
data_config = create_data_config_proto(**xargs)
data_config.type = type
data_config.files = files
data_config.feat_dim = feat_dim
......
......@@ -58,8 +58,8 @@ def define_py_data_source(file_list,
:param obj: python object name. May be a function name if using
PyDataProviderWrapper.
:type obj: basestring
:param args: The best practice is using dict to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to
:param args: The best practice is using dict to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to
receive arguments.
:type args: string or picklable object
:param async: Load Data asynchronously or not.
......@@ -98,7 +98,7 @@ def define_py_data_sources(train_list,
The annotation is almost the same as define_py_data_sources2, except that
it can specific train_async and data_cls.
:param data_cls:
:param data_cls:
:param train_list: Train list name.
:type train_list: basestring
:param test_list: Test list name.
......@@ -111,8 +111,8 @@ def define_py_data_sources(train_list,
a tuple or list to this argument.
:type obj: basestring or tuple or list
:param args: The best practice is using dict() to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
or list to this argument.
:type args: string or picklable object or list or tuple.
:param train_async: Is training data load asynchronously or not.
......@@ -163,12 +163,12 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
.. code-block:: python
define_py_data_sources2(train_list="train.list",
test_list="test.list",
define_py_data_sources2(train_list="train.list",
test_list="test.list",
module="data_provider"
# if train/test use different configurations,
# obj=["process_train", "process_test"]
obj="process",
obj="process",
args={"dictionary": dict_name})
The related data provider can refer to :ref:`api_pydataprovider2_sequential_model` .
......@@ -185,8 +185,8 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
a tuple or list to this argument.
:type obj: basestring or tuple or list
:param args: The best practice is using dict() to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
or list to this argument.
:type args: string or picklable object or list or tuple.
:return: None
......@@ -195,13 +195,13 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
def py_data2(files, load_data_module, load_data_object, load_data_args,
**kwargs):
data = DataBase()
data = create_data_config_proto()
data.type = 'py2'
data.files = files
data.load_data_module = load_data_module
data.load_data_object = load_data_object
data.load_data_args = load_data_args
data.async_load_data = True
data.async_load_data = False
return data
define_py_data_sources(
......
......@@ -3677,26 +3677,27 @@ def pad_layer(input,
For example,
.. code-block::
input(2,2,2,3) = [
[ [[1,2,3], [3,4,5]],
[[2,3,5], [1,6,7]] ],
[ [[4,3,1], [1,8,7]],
[[3,8,9], [2,3,5]] ]
]
pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]
output(2,4,2,3) = [
[ [[0,0,0], [0,0,0]],
[[1,2,3], [3,4,5]],
[[2,3,5], [1,6,7]],
[[0,0,0], [0,0,0]] ],
[ [[0,0,0], [0,0,0]],
[[4,3,1], [1,8,7]],
[[3,8,9], [2,3,5]],
[[0,0,0], [0,0,0]] ]
]
.. code-block:: python
input(2,2,2,3) = [
[ [[1,2,3], [3,4,5]],
[[2,3,5], [1,6,7]] ],
[ [[4,3,1], [1,8,7]],
[[3,8,9], [2,3,5]] ]
]
pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]
output(2,4,2,3) = [
[ [[0,0,0], [0,0,0]],
[[1,2,3], [3,4,5]],
[[2,3,5], [1,6,7]],
[[0,0,0], [0,0,0]] ],
[ [[0,0,0], [0,0,0]],
[[4,3,1], [1,8,7]],
[[3,8,9], [2,3,5]],
[[0,0,0], [0,0,0]] ]
]
The simply usage is:
......@@ -4191,13 +4192,7 @@ def block_expand_layer(input,
@wrap_name_default()
@layer_support()
def maxout_layer(input,
groups,
num_channels=None,
size_x=None,
size_y=None,
name=None,
layer_attr=None):
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
"""
A layer to do max out on conv layer output.
- Input: output of a conv layer.
......@@ -4227,12 +4222,6 @@ def maxout_layer(input,
:type num_channels: int|None
:param groups: The group number of input layer.
:type groups: int
:param size_x: conv output width. If None will be set
automatically from previous output.
:type size_x: int|None
:param size_y: conv output height. If None will be set
automatically from previous output.
:type size_y: int|None
:param name: The name of this layer, which can not specify.
:type name: None|basestring.
:param layer_attr: Extra Layer attribute.
......
......@@ -19,7 +19,7 @@ model_config {
data_config {
type: "py2"
files: "train.list"
async_load_data: true
async_load_data: false
for_test: false
load_data_module: "a"
load_data_object: "c"
......@@ -58,7 +58,7 @@ opt_config {
test_data_config {
type: "py2"
files: "test.list"
async_load_data: true
async_load_data: false
for_test: true
load_data_module: "b"
load_data_object: "d"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册