Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
3900d562
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3900d562
编写于
12月 21, 2022
作者:
姜
姜永久
提交者:
GitHub
12月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm unittests eager guard test part15 layers2maxout (#48837)
上级
53ce406a
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
18 addition
and
632 deletion
+18
-632
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+4
-555
python/paddle/fluid/tests/unittests/test_limit_by_capacity_op.py
...paddle/fluid/tests/unittests/test_limit_by_capacity_op.py
+1
-7
python/paddle/fluid/tests/unittests/test_linalg_cond.py
python/paddle/fluid/tests/unittests/test_linalg_cond.py
+3
-19
python/paddle/fluid/tests/unittests/test_linspace.py
python/paddle/fluid/tests/unittests/test_linspace.py
+0
-6
python/paddle/fluid/tests/unittests/test_logical_op.py
python/paddle/fluid/tests/unittests/test_logical_op.py
+8
-10
python/paddle/fluid/tests/unittests/test_logit_op.py
python/paddle/fluid/tests/unittests/test_logit_op.py
+0
-6
python/paddle/fluid/tests/unittests/test_lookahead.py
python/paddle/fluid/tests/unittests/test_lookahead.py
+1
-7
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
+0
-10
python/paddle/fluid/tests/unittests/test_max_op.py
python/paddle/fluid/tests/unittests/test_max_op.py
+0
-5
python/paddle/fluid/tests/unittests/test_maxout_op.py
python/paddle/fluid/tests/unittests/test_maxout_op.py
+1
-7
未找到文件。
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
3900d562
...
...
@@ -27,12 +27,7 @@ import paddle.fluid.nets as nets
import
paddle.nn.functional
as
F
from
paddle.fluid
import
core
from
paddle.fluid.dygraph
import
base
,
to_variable
from
paddle.fluid.framework
import
(
Program
,
_test_eager_guard
,
default_main_program
,
program_guard
,
)
from
paddle.fluid.framework
import
Program
,
default_main_program
,
program_guard
from
paddle.tensor
import
random
...
...
@@ -102,14 +97,6 @@ class TestLayer(LayerTest):
return
ret
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
inp
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
x
=
base
.
to_variable
(
inp
)
custom
=
CustomLayer
(
input_size
=
3
,
linear1_size
=
2
)
ret
=
custom
(
x
,
do_linear2
=
False
)
np
.
testing
.
assert_array_equal
(
ret
.
numpy
().
shape
,
[
3
,
2
])
ret
=
custom
(
x
,
do_linear2
=
True
)
np
.
testing
.
assert_array_equal
(
ret
.
numpy
().
shape
,
[
3
,
1
])
inp
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
x
=
base
.
to_variable
(
inp
)
custom
=
CustomLayer
(
input_size
=
3
,
linear1_size
=
2
)
...
...
@@ -134,14 +121,6 @@ class TestLayer(LayerTest):
feed
=
{
'data'
:
inp
},
fetch_list
=
[
ret
,
ret2
]
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
base
.
to_variable
(
inp
)
dropout
=
paddle
.
nn
.
Dropout
(
p
=
0.35
)
dy_eager_ret
=
dropout
(
t
)
dy_eager_ret2
=
paddle
.
nn
.
functional
.
dropout
(
t
,
p
=
0.35
)
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
dy_eager_ret2_value
=
dy_eager_ret2
.
numpy
()
t
=
base
.
to_variable
(
inp
)
dropout
=
paddle
.
nn
.
Dropout
(
p
=
0.35
)
dy_ret
=
dropout
(
t
)
...
...
@@ -149,9 +128,6 @@ class TestLayer(LayerTest):
dy_ret_value
=
dy_ret
.
numpy
()
dy_ret2_value
=
dy_ret2
.
numpy
()
np
.
testing
.
assert_array_equal
(
dy_eager_ret_value
,
dy_eager_ret2_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_eager_ret_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
static_ret2
)
np
.
testing
.
assert_array_equal
(
dy_ret_value
,
dy_ret2_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_ret_value
)
...
...
@@ -173,16 +149,6 @@ class TestLayer(LayerTest):
feed
=
{
'data'
:
inp
},
fetch_list
=
[
ret
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
base
.
to_variable
(
inp
)
linear
=
paddle
.
nn
.
Linear
(
32
,
4
,
bias_attr
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
1
),
)
dy_eager_ret
=
linear
(
t
)
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
base
.
to_variable
(
inp
)
linear
=
paddle
.
nn
.
Linear
(
32
,
4
,
bias_attr
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
1
)
...
...
@@ -190,7 +156,6 @@ class TestLayer(LayerTest):
dy_ret
=
linear
(
t
)
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_eager_ret_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_ret_value
)
with
self
.
static_graph
():
...
...
@@ -275,18 +240,11 @@ class TestLayer(LayerTest):
feed
=
{
'data'
:
inp
},
fetch_list
=
[
ret
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
base
.
to_variable
(
inp
)
flatten
=
paddle
.
nn
.
Flatten
()
dy_eager_ret
=
flatten
(
t
)
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
base
.
to_variable
(
inp
)
flatten
=
paddle
.
nn
.
Flatten
()
dy_ret
=
flatten
(
t
)
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_eager_ret_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_ret_value
)
with
self
.
static_graph
():
...
...
@@ -328,18 +286,11 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
np
.
ones
([
3
,
3
,
5
,
5
],
dtype
=
'float32'
)
my_syncbn
=
paddle
.
nn
.
SyncBatchNorm
(
3
)
dy_eager_ret
=
my_syncbn
(
base
.
to_variable
(
t
))
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
np
.
ones
([
3
,
3
,
5
,
5
],
dtype
=
'float32'
)
my_syncbn
=
paddle
.
nn
.
SyncBatchNorm
(
3
)
dy_ret
=
my_syncbn
(
base
.
to_variable
(
t
))
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_ret_value
)
np
.
testing
.
assert_array_equal
(
static_ret
,
dy_eager_ret_value
)
def
test_relu
(
self
):
with
self
.
static_graph
():
...
...
@@ -350,17 +301,11 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_eager_ret
=
F
.
relu
(
base
.
to_variable
(
t
))
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_ret
=
F
.
relu
(
base
.
to_variable
(
t
))
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_ret_value
,
rtol
=
1e-05
)
def
test_matmul
(
self
):
with
self
.
static_graph
():
...
...
@@ -376,21 +321,12 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
t2
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_eager_ret
=
paddle
.
matmul
(
base
.
to_variable
(
t
),
base
.
to_variable
(
t2
)
)
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
t2
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_ret
=
paddle
.
matmul
(
base
.
to_variable
(
t
),
base
.
to_variable
(
t2
))
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_ret_value
,
rtol
=
1e-05
)
def
test_elementwise_math
(
self
):
n
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
...
...
@@ -420,14 +356,6 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
ret
=
paddle
.
add
(
to_variable
(
n
),
to_variable
(
n2
))
ret
=
paddle
.
pow
(
ret
,
to_variable
(
n3
))
ret
=
paddle
.
divide
(
ret
,
to_variable
(
n4
))
ret
=
paddle
.
subtract
(
ret
,
to_variable
(
n5
))
dy_eager_ret
=
paddle
.
multiply
(
ret
,
to_variable
(
n6
))
dy_eager_ret_value
=
dy_eager_ret
.
numpy
()
ret
=
paddle
.
add
(
to_variable
(
n
),
to_variable
(
n2
))
ret
=
paddle
.
pow
(
ret
,
to_variable
(
n3
))
ret
=
paddle
.
divide
(
ret
,
to_variable
(
n4
))
...
...
@@ -436,19 +364,12 @@ class TestLayer(LayerTest):
dy_ret_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_ret_value
,
rtol
=
1e-05
)
def
test_elementwise_minmax
(
self
):
n
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
n2
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
*
2
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
min_eager_ret
=
paddle
.
minimum
(
to_variable
(
n
),
to_variable
(
n2
))
max_eager_ret
=
paddle
.
maximum
(
to_variable
(
n
),
to_variable
(
n2
))
min_eager_ret_value
=
min_eager_ret
.
numpy
()
max_eager_ret_value
=
max_eager_ret
.
numpy
()
min_ret
=
paddle
.
minimum
(
to_variable
(
n
),
to_variable
(
n2
))
max_ret
=
paddle
.
maximum
(
to_variable
(
n
),
to_variable
(
n2
))
min_ret_value
=
min_ret
.
numpy
()
...
...
@@ -456,8 +377,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_allclose
(
n
,
min_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
n2
,
max_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
n
,
min_eager_ret_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
n2
,
max_eager_ret_value
,
rtol
=
1e-05
)
def
test_conv2d_transpose
(
self
):
inp_np
=
np
.
arange
(
0
,
24
).
reshape
([
2
,
3
,
2
,
2
]).
astype
(
'float32'
)
...
...
@@ -487,17 +406,6 @@ class TestLayer(LayerTest):
feed
=
{
'pixel'
:
inp_np
},
fetch_list
=
[
out
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
conv2d_transpose
=
paddle
.
nn
.
Conv2DTranspose
(
3
,
10
,
27
,
bias_attr
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
1
),
)
dy_eager_rlt
=
conv2d_transpose
(
base
.
to_variable
(
inp_np
))
dy_eager_rlt
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_eager_rlt
)
dy_eager_rlt_value
=
dy_eager_rlt
.
numpy
()
conv2d_transpose
=
paddle
.
nn
.
Conv2DTranspose
(
3
,
10
,
...
...
@@ -509,53 +417,8 @@ class TestLayer(LayerTest):
dy_rlt_value
=
dy_rlt
.
numpy
()
np
.
testing
.
assert_allclose
(
static_rlt2
,
static_rlt
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
dy_rlt_value
,
static_rlt2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
dy_eager_rlt_value
,
static_rlt2
,
rtol
=
1e-05
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
images
=
np
.
ones
([
2
,
3
,
5
,
5
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
conv2d1
=
paddle
.
nn
.
Conv2DTranspose
(
3
,
3
,
[
2
,
2
])
conv2d2
=
paddle
.
nn
.
Conv2DTranspose
(
3
,
3
,
[
2
,
2
],
weight_attr
=
weight_attr
,
)
dy_ret1
=
conv2d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv2d2
(
base
.
to_variable
(
images
))
self
.
assertFalse
(
np
.
array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
)
conv2d1_weight_np
=
conv2d1
.
weight
.
numpy
()
conv2d1_bias
=
conv2d1
.
bias
self
.
assertFalse
(
np
.
array_equal
(
conv2d1_weight_np
,
conv2d2
.
weight
.
numpy
())
)
conv2d2
.
weight
.
set_value
(
conv2d1_weight_np
)
np
.
testing
.
assert_array_equal
(
conv2d1_weight_np
,
conv2d2
.
weight
.
numpy
()
)
conv2d2
.
bias
.
set_value
(
conv2d1_bias
)
dy_ret1
=
conv2d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv2d2
(
base
.
to_variable
(
images
))
np
.
testing
.
assert_array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
conv2d2
.
weight
=
conv2d1
.
weight
conv2d2
.
bias
=
conv2d1
.
bias
np
.
testing
.
assert_array_equal
(
conv2d1
.
weight
.
numpy
(),
conv2d2
.
weight
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
conv2d1
.
bias
.
numpy
(),
conv2d2
.
bias
.
numpy
()
)
images
=
np
.
ones
([
2
,
3
,
5
,
5
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
...
...
@@ -660,19 +523,6 @@ class TestLayer(LayerTest):
feed
=
{
'x'
:
inp_np_x
,
'y'
:
inp_np_y
},
fetch_list
=
[
out
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
btp
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
,
bias_attr
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
1
),
)
dy_eager_rlt
=
btp
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_eager_rlt
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_eager_rlt
)
dy_eager_rlt_value
=
dy_eager_rlt
.
numpy
()
btp
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
...
...
@@ -684,14 +534,6 @@ class TestLayer(LayerTest):
dy_rlt_value
=
dy_rlt
.
numpy
()
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
btp2
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
)
dy_eager_rlt2
=
btp2
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_eager_rlt2
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_eager_rlt2
)
dy_eager_rlt2_value
=
dy_eager_rlt2
.
numpy
()
btp2
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
)
dy_rlt2
=
btp2
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
...
...
@@ -715,51 +557,10 @@ class TestLayer(LayerTest):
)[
0
]
np
.
testing
.
assert_array_equal
(
dy_rlt2_value
,
static_rlt3
)
np
.
testing
.
assert_array_equal
(
dy_eager_rlt2_value
,
static_rlt3
)
np
.
testing
.
assert_array_equal
(
static_rlt2
,
static_rlt
)
np
.
testing
.
assert_array_equal
(
dy_rlt_value
,
static_rlt
)
np
.
testing
.
assert_array_equal
(
dy_eager_rlt_value
,
static_rlt
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
custom_weight
=
np
.
random
.
randn
(
6
,
3
,
3
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
btp1
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
)
btp2
=
paddle
.
nn
.
Bilinear
(
3
,
3
,
6
,
weight_attr
=
weight_attr
)
dy_rlt1
=
btp1
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_rlt1
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_rlt1
)
dy_rlt2
=
btp2
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_rlt2
=
paddle
.
nn
.
functional
.
sigmoid
(
dy_rlt2
)
self
.
assertFalse
(
np
.
array_equal
(
dy_rlt1
.
numpy
(),
dy_rlt2
.
numpy
())
)
btp2
.
weight
.
set_value
(
btp1
.
weight
.
numpy
())
btp2
.
bias
.
set_value
(
btp1
.
bias
)
dy_rlt1
=
btp1
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
dy_rlt2
=
btp2
(
base
.
to_variable
(
inp_np_x
),
base
.
to_variable
(
inp_np_y
)
)
np
.
testing
.
assert_array_equal
(
dy_rlt1
.
numpy
(),
dy_rlt2
.
numpy
())
btp2
.
weight
=
btp1
.
weight
btp2
.
bias
=
btp1
.
bias
np
.
testing
.
assert_array_equal
(
btp1
.
weight
.
numpy
(),
btp2
.
weight
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
btp1
.
bias
.
numpy
(),
btp2
.
bias
.
numpy
()
)
custom_weight
=
np
.
random
.
randn
(
6
,
3
,
3
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
...
...
@@ -818,15 +619,6 @@ class TestLayer(LayerTest):
feed
=
{
'word'
:
inp_word
},
fetch_list
=
[
emb_rlt
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
emb2
=
paddle
.
nn
.
Embedding
(
dict_size
,
32
,
weight_attr
=
'eager_emb.w'
,
sparse
=
False
,
)
dy_eager_rlt
=
emb2
(
base
.
to_variable
(
inp_word
))
dy_eager_rlt_value
=
dy_eager_rlt
.
numpy
()
emb2
=
paddle
.
nn
.
Embedding
(
dict_size
,
32
,
weight_attr
=
'emb.w'
,
sparse
=
False
...
...
@@ -836,41 +628,8 @@ class TestLayer(LayerTest):
self
.
assertTrue
(
np
.
allclose
(
static_rlt2
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
dy_rlt_value
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
dy_eager_rlt_value
,
static_rlt
))
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
custom_weight
=
np
.
random
.
randn
(
dict_size
,
32
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
emb1
=
paddle
.
nn
.
Embedding
(
dict_size
,
32
,
sparse
=
False
)
emb2
=
paddle
.
nn
.
Embedding
(
dict_size
,
32
,
weight_attr
=
weight_attr
,
sparse
=
False
,
)
rep1
=
emb1
(
base
.
to_variable
(
inp_word
))
rep2
=
emb2
(
base
.
to_variable
(
inp_word
))
self
.
assertFalse
(
np
.
array_equal
(
emb1
.
weight
.
numpy
(),
custom_weight
)
)
np
.
testing
.
assert_array_equal
(
emb2
.
weight
.
numpy
(),
custom_weight
)
self
.
assertFalse
(
np
.
array_equal
(
rep1
.
numpy
(),
rep2
.
numpy
()))
emb2
.
weight
.
set_value
(
emb1
.
weight
.
numpy
())
rep2
=
emb2
(
base
.
to_variable
(
inp_word
))
np
.
testing
.
assert_array_equal
(
rep1
.
numpy
(),
rep2
.
numpy
())
emb2
.
weight
=
emb1
.
weight
np
.
testing
.
assert_array_equal
(
emb1
.
weight
.
numpy
(),
emb2
.
weight
.
numpy
()
)
custom_weight
=
np
.
random
.
randn
(
dict_size
,
32
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
...
...
@@ -897,18 +656,6 @@ class TestLayer(LayerTest):
def
test_one_hot
(
self
):
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
label
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([[
1
],
[
1
],
[
3
],
[
0
]])
)
one_hot_label1
=
fluid
.
layers
.
one_hot
(
input
=
label
,
depth
=
4
)
one_hot_label2
=
fluid
.
layers
.
one_hot
(
input
=
label
,
depth
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
4
]))
)
np
.
testing
.
assert_array_equal
(
one_hot_label1
.
numpy
(),
one_hot_label2
.
numpy
()
)
label
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([[
1
],
[
1
],
[
3
],
[
0
]]))
one_hot_label1
=
fluid
.
layers
.
one_hot
(
input
=
label
,
depth
=
4
)
one_hot_label2
=
fluid
.
layers
.
one_hot
(
...
...
@@ -920,17 +667,6 @@ class TestLayer(LayerTest):
def
test_split
(
self
):
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
3
,
8
,
5
)))
x0
,
x1
=
paddle
.
split
(
input
,
num_or_sections
=
2
,
axis
=
1
)
x00
,
x11
=
paddle
.
split
(
input
,
num_or_sections
=
2
,
axis
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
1
])),
)
np
.
testing
.
assert_array_equal
(
x0
.
numpy
(),
x00
.
numpy
())
np
.
testing
.
assert_array_equal
(
x1
.
numpy
(),
x11
.
numpy
())
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
3
,
8
,
5
)))
x0
,
x1
=
paddle
.
split
(
input
,
num_or_sections
=
2
,
axis
=
1
)
x00
,
x11
=
paddle
.
split
(
...
...
@@ -943,19 +679,6 @@ class TestLayer(LayerTest):
def
test_topk
(
self
):
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
13
,
11
)))
top5_values1
,
top5_indices1
=
paddle
.
topk
(
input
,
k
=
5
)
top5_values2
,
top5_indices2
=
paddle
.
topk
(
input
,
k
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
5
]))
)
np
.
testing
.
assert_array_equal
(
top5_values1
.
numpy
(),
top5_values2
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
top5_indices1
.
numpy
(),
top5_indices2
.
numpy
()
)
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
13
,
11
)))
top5_values1
,
top5_indices1
=
paddle
.
topk
(
input
,
k
=
5
)
top5_values2
,
top5_indices2
=
paddle
.
topk
(
...
...
@@ -995,14 +718,6 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
paddle
.
nn
.
Conv3D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
)
dy_eager_ret
=
conv3d
(
base
.
to_variable
(
images
))
dy_eager_rlt_value
=
dy_eager_ret
.
numpy
()
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
paddle
.
nn
.
Conv3D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
...
...
@@ -1011,56 +726,9 @@ class TestLayer(LayerTest):
dy_rlt_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
static_ret2
,
rtol
=
1e-05
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
conv3d1
=
paddle
.
nn
.
Conv3D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
)
conv3d2
=
paddle
.
nn
.
Conv3D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
,
weight_attr
=
weight_attr
,
)
dy_ret1
=
conv3d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv3d2
(
base
.
to_variable
(
images
))
self
.
assertFalse
(
np
.
array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
)
conv3d1_weight_np
=
conv3d1
.
weight
.
numpy
()
conv3d1_bias
=
conv3d1
.
bias
self
.
assertFalse
(
np
.
array_equal
(
conv3d1_weight_np
,
conv3d2
.
weight
.
numpy
())
)
conv3d2
.
weight
.
set_value
(
conv3d1_weight_np
)
np
.
testing
.
assert_array_equal
(
conv3d1_weight_np
,
conv3d2
.
weight
.
numpy
()
)
conv3d1
.
bias
.
set_value
(
conv3d1_bias
)
dy_ret1
=
conv3d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv3d2
(
base
.
to_variable
(
images
))
np
.
testing
.
assert_array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
conv3d2
.
weight
=
conv3d1
.
weight
conv3d2
.
bias
=
conv3d1
.
bias
np
.
testing
.
assert_array_equal
(
conv3d1
.
weight
.
numpy
(),
conv3d2
.
weight
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
conv3d1
.
bias
.
numpy
(),
conv3d2
.
bias
.
numpy
()
)
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
...
...
@@ -1104,7 +772,7 @@ class TestLayer(LayerTest):
conv3d1
.
bias
.
numpy
(),
conv3d2
.
bias
.
numpy
()
)
def
func
_group_norm
(
self
):
def
test
_group_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
...
...
@@ -1176,11 +844,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
static_ret2
,
rtol
=
1e-05
)
def
test_group_norm
(
self
):
with
_test_eager_guard
():
self
.
func_group_norm
()
self
.
func_group_norm
()
def
test_instance_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
...
...
@@ -1211,29 +874,17 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
instanceNorm
=
paddle
.
nn
.
InstanceNorm2D
(
num_features
=
shape
[
1
])
dy_eager_ret
=
instanceNorm
(
base
.
to_variable
(
input
))
dy_eager_rlt_value
=
dy_eager_ret
.
numpy
()
instanceNorm
=
paddle
.
nn
.
InstanceNorm2D
(
num_features
=
shape
[
1
])
dy_ret
=
instanceNorm
(
base
.
to_variable
(
input
))
dy_rlt_value
=
dy_ret
.
numpy
()
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
instanceNorm
=
paddle
.
nn
.
InstanceNorm2D
(
num_features
=
shape
[
1
])
dy_eager_ret
=
instanceNorm
(
base
.
to_variable
(
input
))
dy_eager_rlt_value2
=
dy_eager_ret
.
numpy
()
instanceNorm
=
paddle
.
nn
.
InstanceNorm2D
(
num_features
=
shape
[
1
])
dy_ret
=
instanceNorm
(
base
.
to_variable
(
input
))
dy_rlt_value2
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_rlt_value2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
static_ret2
,
rtol
=
1e-05
)
with
self
.
static_graph
():
...
...
@@ -1302,19 +953,11 @@ class TestLayer(LayerTest):
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
spectralNorm
=
paddle
.
nn
.
SpectralNorm
(
shape
,
axis
=
1
,
power_iters
=
2
)
dy_eager_ret
=
spectralNorm
(
base
.
to_variable
(
input
))
dy_eager_rlt_value
=
dy_eager_ret
.
numpy
()
spectralNorm
=
paddle
.
nn
.
SpectralNorm
(
shape
,
axis
=
1
,
power_iters
=
2
)
dy_ret
=
spectralNorm
(
base
.
to_variable
(
input
))
dy_rlt_value
=
dy_ret
.
numpy
()
np
.
testing
.
assert_allclose
(
static_ret
,
dy_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
dy_eager_rlt_value
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
static_ret
,
static_ret2
,
rtol
=
1e-05
)
def
test_conv3d_transpose
(
self
):
...
...
@@ -1340,15 +983,6 @@ class TestLayer(LayerTest):
feed
=
{
'pixel'
:
input_array
},
fetch_list
=
[
out
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
conv3d_transpose
=
paddle
.
nn
.
Conv3DTranspose
(
in_channels
=
3
,
out_channels
=
12
,
kernel_size
=
12
,
)
dy_eager_rlt
=
conv3d_transpose
(
base
.
to_variable
(
input_array
))
dy_eager_rlt_value
=
dy_eager_rlt
.
numpy
()
conv3d_transpose
=
paddle
.
nn
.
Conv3DTranspose
(
in_channels
=
3
,
out_channels
=
12
,
kernel_size
=
12
)
...
...
@@ -1356,59 +990,8 @@ class TestLayer(LayerTest):
dy_rlt_value
=
dy_rlt
.
numpy
()
np
.
testing
.
assert_allclose
(
static_rlt2
,
static_rlt
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
dy_rlt_value
,
static_rlt
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
dy_eager_rlt_value
,
static_rlt
,
rtol
=
1e-05
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
custom_weight
)
)
conv3d1
=
paddle
.
nn
.
Conv3DTranspose
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
,
bias_attr
=
'eager_conv3d1_b'
,
)
conv3d2
=
paddle
.
nn
.
Conv3DTranspose
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
2
,
weight_attr
=
weight_attr
,
bias_attr
=
'eager_conv3d2_b'
,
)
dy_ret1
=
conv3d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv3d2
(
base
.
to_variable
(
images
))
self
.
assertFalse
(
np
.
array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
)
conv3d1_weight_np
=
conv3d1
.
weight
.
numpy
()
conv3d1_bias
=
conv3d1
.
bias
self
.
assertFalse
(
np
.
array_equal
(
conv3d1_weight_np
,
conv3d2
.
weight
.
numpy
())
)
conv3d2
.
weight
.
set_value
(
conv3d1_weight_np
)
np
.
testing
.
assert_array_equal
(
conv3d1_weight_np
,
conv3d2
.
weight
.
numpy
()
)
conv3d1
.
bias
.
set_value
(
conv3d1_bias
)
dy_ret1
=
conv3d1
(
base
.
to_variable
(
images
))
dy_ret2
=
conv3d2
(
base
.
to_variable
(
images
))
np
.
testing
.
assert_array_equal
(
dy_ret1
.
numpy
(),
dy_ret2
.
numpy
())
conv3d2
.
weight
=
conv3d1
.
weight
conv3d2
.
bias
=
conv3d1
.
bias
np
.
testing
.
assert_array_equal
(
conv3d1
.
weight
.
numpy
(),
conv3d2
.
weight
.
numpy
()
)
np
.
testing
.
assert_array_equal
(
conv3d1
.
bias
.
numpy
(),
conv3d2
.
bias
.
numpy
()
)
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
custom_weight
=
np
.
random
.
randn
(
3
,
3
,
2
,
2
,
2
).
astype
(
"float32"
)
weight_attr
=
fluid
.
ParamAttr
(
...
...
@@ -1456,7 +1039,7 @@ class TestLayer(LayerTest):
conv3d1
.
bias
.
numpy
(),
conv3d2
.
bias
.
numpy
()
)
def
func
_while_loop
(
self
):
def
test
_while_loop
(
self
):
with
self
.
static_graph
():
i
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
0
)
ten
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
10
)
...
...
@@ -1491,11 +1074,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_array_equal
(
static_ret
[
0
],
dy_ret
[
0
].
numpy
())
def
test_while_loop
(
self
):
with
_test_eager_guard
():
self
.
func_while_loop
()
self
.
func_while_loop
()
def
test_compare
(
self
):
value_a
=
np
.
arange
(
3
)
value_b
=
np
.
arange
(
3
)
...
...
@@ -1508,14 +1086,6 @@ class TestLayer(LayerTest):
feed
=
{
"a"
:
value_a
,
"b"
:
value_b
},
fetch_list
=
[
cond
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da
=
base
.
to_variable
(
value_a
)
db
=
base
.
to_variable
(
value_b
)
dcond
=
paddle
.
less_than
(
x
=
da
,
y
=
db
)
for
i
in
range
(
len
(
static_ret
)):
self
.
assertTrue
(
dcond
.
numpy
()[
i
]
==
static_ret
[
i
])
da
=
base
.
to_variable
(
value_a
)
db
=
base
.
to_variable
(
value_b
)
dcond
=
paddle
.
less_than
(
x
=
da
,
y
=
db
)
...
...
@@ -1532,14 +1102,6 @@ class TestLayer(LayerTest):
feed
=
{
"a1"
:
value_a
,
"b1"
:
value_b
},
fetch_list
=
[
cond1
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da1
=
base
.
to_variable
(
value_a
)
db1
=
base
.
to_variable
(
value_b
)
dcond1
=
paddle
.
less_equal
(
x
=
da1
,
y
=
db1
)
for
i
in
range
(
len
(
static_ret1
)):
self
.
assertTrue
(
dcond1
.
numpy
()[
i
]
==
static_ret1
[
i
])
da1
=
base
.
to_variable
(
value_a
)
db1
=
base
.
to_variable
(
value_b
)
dcond1
=
paddle
.
less_equal
(
x
=
da1
,
y
=
db1
)
...
...
@@ -1556,14 +1118,6 @@ class TestLayer(LayerTest):
feed
=
{
"a2"
:
value_a
,
"b2"
:
value_b
},
fetch_list
=
[
cond2
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da2
=
base
.
to_variable
(
value_a
)
db2
=
base
.
to_variable
(
value_b
)
dcond2
=
paddle
.
greater_than
(
x
=
da2
,
y
=
db2
)
for
i
in
range
(
len
(
static_ret2
)):
self
.
assertTrue
(
dcond2
.
numpy
()[
i
]
==
static_ret2
[
i
])
da2
=
base
.
to_variable
(
value_a
)
db2
=
base
.
to_variable
(
value_b
)
dcond2
=
paddle
.
greater_than
(
x
=
da2
,
y
=
db2
)
...
...
@@ -1580,14 +1134,6 @@ class TestLayer(LayerTest):
feed
=
{
"a3"
:
value_a
,
"b3"
:
value_b
},
fetch_list
=
[
cond3
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da3
=
base
.
to_variable
(
value_a
)
db3
=
base
.
to_variable
(
value_b
)
dcond3
=
paddle
.
greater_equal
(
x
=
da3
,
y
=
db3
)
for
i
in
range
(
len
(
static_ret3
)):
self
.
assertTrue
(
dcond3
.
numpy
()[
i
]
==
static_ret3
[
i
])
da3
=
base
.
to_variable
(
value_a
)
db3
=
base
.
to_variable
(
value_b
)
dcond3
=
paddle
.
greater_equal
(
x
=
da3
,
y
=
db3
)
...
...
@@ -1604,14 +1150,6 @@ class TestLayer(LayerTest):
feed
=
{
"a4"
:
value_a
,
"b4"
:
value_b
},
fetch_list
=
[
cond4
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da4
=
base
.
to_variable
(
value_a
)
db4
=
base
.
to_variable
(
value_b
)
dcond4
=
paddle
.
equal
(
x
=
da4
,
y
=
db4
)
for
i
in
range
(
len
(
static_ret4
)):
self
.
assertTrue
(
dcond4
.
numpy
()[
i
]
==
static_ret4
[
i
])
da4
=
base
.
to_variable
(
value_a
)
db4
=
base
.
to_variable
(
value_b
)
dcond4
=
paddle
.
equal
(
x
=
da4
,
y
=
db4
)
...
...
@@ -1628,14 +1166,6 @@ class TestLayer(LayerTest):
feed
=
{
"a5"
:
value_a
,
"b5"
:
value_b
},
fetch_list
=
[
cond5
]
)[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
da5
=
base
.
to_variable
(
value_a
)
db5
=
base
.
to_variable
(
value_b
)
dcond5
=
paddle
.
equal
(
x
=
da5
,
y
=
db5
)
for
i
in
range
(
len
(
static_ret5
)):
self
.
assertTrue
(
dcond5
.
numpy
()[
i
]
==
static_ret5
[
i
])
da5
=
base
.
to_variable
(
value_a
)
db5
=
base
.
to_variable
(
value_b
)
dcond5
=
paddle
.
equal
(
x
=
da5
,
y
=
db5
)
...
...
@@ -1672,31 +1202,6 @@ class TestLayer(LayerTest):
static_res
=
ret
[
0
]
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
a
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
0.1
]).
astype
(
'float32'
))
b
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
0.23
]).
astype
(
'float32'
)
)
out
=
paddle
.
static
.
nn
.
cond
(
a
<
b
,
lambda
:
less_than_branch
(
a
,
b
),
lambda
:
greater_equal_branch
(
a
,
b
),
)
out2
=
paddle
.
static
.
nn
.
cond
(
a
>=
b
,
lambda
:
greater_equal_branch
(
a
,
b
),
lambda
:
less_than_branch
(
a
,
b
),
)
eager_dynamic_res
=
out
.
numpy
()
eager_dynamic_res2
=
out2
.
numpy
()
np
.
testing
.
assert_array_equal
(
eager_dynamic_res
,
eager_dynamic_res2
)
with
self
.
assertRaises
(
TypeError
):
paddle
.
static
.
nn
.
cond
(
a
<
b
,
'str'
,
'str'
)
with
self
.
assertRaises
(
TypeError
):
paddle
.
static
.
nn
.
cond
(
a
>=
b
,
'str'
,
'str'
)
a
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
0.1
]).
astype
(
'float32'
))
b
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
0.23
]).
astype
(
'float32'
))
out
=
paddle
.
static
.
nn
.
cond
(
...
...
@@ -1718,7 +1223,6 @@ class TestLayer(LayerTest):
paddle
.
static
.
nn
.
cond
(
a
>=
b
,
'str'
,
'str'
)
np
.
testing
.
assert_array_equal
(
static_res
,
dynamic_res
)
np
.
testing
.
assert_array_equal
(
static_res
,
eager_dynamic_res
)
def
test_case
(
self
):
def
fn_1
():
...
...
@@ -1755,24 +1259,6 @@ class TestLayer(LayerTest):
static_res1
,
static_res2
=
exe
.
run
(
fetch_list
=
[
out_1
,
out_2
])
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
x
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.3
)
y
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.1
)
z
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.2
)
pred_1
=
paddle
.
less_than
(
z
,
x
)
# true: 0.2 < 0.3
pred_2
=
paddle
.
less_than
(
x
,
y
)
# false: 0.3 < 0.1
pred_3
=
paddle
.
equal
(
x
,
y
)
# false: 0.3 == 0.1
out_1
=
paddle
.
static
.
nn
.
case
(
pred_fn_pairs
=
[(
pred_1
,
fn_1
),
(
pred_2
,
fn_2
)],
default
=
fn_3
)
out_2
=
paddle
.
static
.
nn
.
case
(
pred_fn_pairs
=
[(
pred_2
,
fn_2
),
(
pred_3
,
fn_3
)]
)
eager_dynamic_res1
=
out_1
.
numpy
()
eager_dynamic_res2
=
out_2
.
numpy
()
x
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.3
)
y
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.1
)
z
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.2
)
...
...
@@ -1792,8 +1278,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_array_equal
(
static_res1
,
dynamic_res1
)
np
.
testing
.
assert_array_equal
(
static_res2
,
dynamic_res2
)
np
.
testing
.
assert_array_equal
(
static_res1
,
eager_dynamic_res1
)
np
.
testing
.
assert_array_equal
(
static_res2
,
eager_dynamic_res2
)
def
test_switch_case
(
self
):
def
fn_1
():
...
...
@@ -1835,33 +1319,6 @@ class TestLayer(LayerTest):
)
with
self
.
dynamic_graph
():
with
_test_eager_guard
():
index_1
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
1
)
index_2
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
2
)
out_1
=
paddle
.
static
.
nn
.
switch_case
(
branch_index
=
index_1
,
branch_fns
=
{
1
:
fn_1
,
2
:
fn_2
},
default
=
fn_3
,
)
out_2
=
paddle
.
static
.
nn
.
switch_case
(
branch_index
=
index_2
,
branch_fns
=
[(
1
,
fn_1
),
(
2
,
fn_2
)],
default
=
fn_3
,
)
out_3
=
paddle
.
static
.
nn
.
switch_case
(
branch_index
=
index_2
,
branch_fns
=
[(
0
,
fn_1
),
(
4
,
fn_2
),
(
7
,
fn_3
)],
)
eager_dynamic_res1
=
out_1
.
numpy
()
eager_dynamic_res2
=
out_2
.
numpy
()
eager_dynamic_res3
=
out_3
.
numpy
()
index_1
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
1
)
index_2
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int32'
,
value
=
2
)
...
...
@@ -1887,9 +1344,6 @@ class TestLayer(LayerTest):
np
.
testing
.
assert_array_equal
(
static_res1
,
dynamic_res1
)
np
.
testing
.
assert_array_equal
(
static_res2
,
dynamic_res2
)
np
.
testing
.
assert_array_equal
(
static_res3
,
dynamic_res3
)
np
.
testing
.
assert_array_equal
(
static_res1
,
eager_dynamic_res1
)
np
.
testing
.
assert_array_equal
(
static_res2
,
eager_dynamic_res2
)
np
.
testing
.
assert_array_equal
(
static_res3
,
eager_dynamic_res3
)
def
test_crop_tensor
(
self
):
with
self
.
static_graph
():
...
...
@@ -1972,7 +1426,7 @@ class TestBook(LayerTest):
)
self
.
all_close_compare
=
set
({
"make_spectral_norm"
})
def
func
_all_layers
(
self
):
def
test
_all_layers
(
self
):
attrs
=
(
getattr
(
self
,
name
)
for
name
in
dir
(
self
))
methods
=
filter
(
inspect
.
ismethod
,
attrs
)
for
method
in
methods
:
...
...
@@ -2028,11 +1482,6 @@ class TestBook(LayerTest):
),
)
def
test_all_layers
(
self
):
with
_test_eager_guard
():
self
.
func_all_layers
()
self
.
func_all_layers
()
def
_get_np_data
(
self
,
shape
,
dtype
,
append_batch_size
=
True
):
np
.
random
.
seed
(
self
.
seed
)
if
append_batch_size
:
...
...
python/paddle/fluid/tests/unittests/test_limit_by_capacity_op.py
浏览文件 @
3900d562
...
...
@@ -19,7 +19,6 @@ import numpy as np
import
paddle
from
paddle.distributed.models.moe
import
utils
from
paddle.fluid
import
core
from
paddle.fluid.framework
import
_test_eager_guard
def
limit_by_capacity
(
expert_count
,
_capacity
,
n_worker
):
...
...
@@ -88,7 +87,7 @@ class TestLimitByCapacityInt64API(unittest.TestCase):
assert
all_close
(
self
.
out
,
res
[
0
],
self
.
n_worker
)
def
func
_dygraph_api
(
self
):
def
test
_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
capacity
=
paddle
.
to_tensor
(
self
.
capacity
)
expert_count_tensor
=
paddle
.
to_tensor
(
self
.
expert_count
)
...
...
@@ -97,11 +96,6 @@ class TestLimitByCapacityInt64API(unittest.TestCase):
)
assert
all_close
(
self
.
out
,
out
.
numpy
(),
self
.
n_worker
)
def
test_dygraph_api
(
self
):
with
_test_eager_guard
():
self
.
func_dygraph_api
()
self
.
func_dygraph_api
()
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
...
...
python/paddle/fluid/tests/unittests/test_linalg_cond.py
浏览文件 @
3900d562
...
...
@@ -18,7 +18,6 @@ import numpy as np
import
paddle
import
paddle.static
as
static
from
paddle.fluid.framework
import
_test_eager_guard
p_list_n_n
=
(
"fro"
,
"nuc"
,
1
,
-
1
,
np
.
inf
,
-
np
.
inf
)
p_list_m_n
=
(
None
,
2
,
-
2
)
...
...
@@ -92,21 +91,16 @@ class API_TestStaticCond(unittest.TestCase):
class
API_TestDygraphCond
(
unittest
.
TestCase
):
def
func
_out
(
self
):
def
test
_out
(
self
):
paddle
.
disable_static
()
# test calling results of 'cond' in dynamic mode
x_list_n_n
,
x_list_m_n
=
gen_input
()
test_dygraph_assert_true
(
self
,
x_list_n_n
,
p_list_n_n
+
p_list_m_n
)
test_dygraph_assert_true
(
self
,
x_list_m_n
,
p_list_m_n
)
def
test_out
(
self
):
with
_test_eager_guard
():
self
.
func_out
()
self
.
func_out
()
class
TestCondAPIError
(
unittest
.
TestCase
):
def
func
_dygraph_api_error
(
self
):
def
test
_dygraph_api_error
(
self
):
paddle
.
disable_static
()
# test raising errors when 'cond' is called in dygraph mode
p_list_error
=
(
'fro_'
,
'_nuc'
,
-
0.7
,
0
,
1.5
,
3
)
...
...
@@ -121,11 +115,6 @@ class TestCondAPIError(unittest.TestCase):
x_tensor
=
paddle
.
to_tensor
(
x
)
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
cond
,
x_tensor
,
p
)
def
test_dygraph_api_error
(
self
):
with
_test_eager_guard
():
self
.
func_dygraph_api_error
()
self
.
func_dygraph_api_error
()
def
test_static_api_error
(
self
):
paddle
.
enable_static
()
# test raising errors when 'cond' is called in static mode
...
...
@@ -162,18 +151,13 @@ class TestCondAPIError(unittest.TestCase):
class
TestCondEmptyTensorInput
(
unittest
.
TestCase
):
def
func
_dygraph_empty_tensor_input
(
self
):
def
test
_dygraph_empty_tensor_input
(
self
):
paddle
.
disable_static
()
# test calling results of 'cond' when input is an empty tensor in dynamic mode
x_list_n_n
,
x_list_m_n
=
gen_empty_input
()
test_dygraph_assert_true
(
self
,
x_list_n_n
,
p_list_n_n
+
p_list_m_n
)
test_dygraph_assert_true
(
self
,
x_list_m_n
,
p_list_m_n
)
def
test_dygraph_empty_tensor_input
(
self
):
with
_test_eager_guard
():
self
.
func_dygraph_empty_tensor_input
()
self
.
func_dygraph_empty_tensor_input
()
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
...
...
python/paddle/fluid/tests/unittests/test_linspace.py
浏览文件 @
3900d562
...
...
@@ -20,7 +20,6 @@ from op_test import OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
core
,
program_guard
from
paddle.fluid.framework
import
_test_eager_guard
class
TestLinspaceOpCommonCase
(
OpTest
):
...
...
@@ -128,11 +127,6 @@ class TestLinspaceAPI(unittest.TestCase):
self
.
assertEqual
((
out2
.
numpy
()
==
np_out2
).
all
(),
True
)
self
.
assertEqual
((
out3
.
numpy
()
==
np_out3
).
all
(),
True
)
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_variable_input2
()
self
.
test_imperative
()
class
TestLinspaceOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_logical_op.py
浏览文件 @
3900d562
...
...
@@ -17,7 +17,6 @@ import unittest
import
numpy
as
np
import
paddle
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.framework
import
_non_static_mode
from
paddle.static
import
Executor
,
Program
,
program_guard
...
...
@@ -106,15 +105,14 @@ def run_eager(x_np, y_np, op_str, use_gpu=False, binary_op=True):
if
use_gpu
and
paddle
.
is_compiled_with_cuda
():
place
=
paddle
.
CUDAPlace
(
0
)
paddle
.
disable_static
(
place
)
with
_test_eager_guard
():
op
=
getattr
(
paddle
,
op_str
)
x
=
paddle
.
to_tensor
(
x_np
,
dtype
=
x_np
.
dtype
)
if
not
binary_op
:
dygraph_result
=
op
(
x
)
else
:
y
=
paddle
.
to_tensor
(
y_np
,
dtype
=
y_np
.
dtype
)
dygraph_result
=
op
(
x
,
y
)
return
dygraph_result
op
=
getattr
(
paddle
,
op_str
)
x
=
paddle
.
to_tensor
(
x_np
,
dtype
=
x_np
.
dtype
)
if
not
binary_op
:
dygraph_result
=
op
(
x
)
else
:
y
=
paddle
.
to_tensor
(
y_np
,
dtype
=
y_np
.
dtype
)
dygraph_result
=
op
(
x
,
y
)
return
dygraph_result
def
np_data_generator
(
np_shape
,
dtype
,
*
args
,
**
kwargs
):
...
...
python/paddle/fluid/tests/unittests/test_logit_op.py
浏览文件 @
3900d562
...
...
@@ -18,7 +18,6 @@ import numpy as np
from
op_test
import
OpTest
import
paddle
from
paddle.fluid.framework
import
_test_eager_guard
np
.
random
.
seed
(
10
)
...
...
@@ -117,11 +116,6 @@ class TestLogitAPI(unittest.TestCase):
x
=
paddle
.
fluid
.
data
(
name
=
'X2'
,
shape
=
[
100
],
dtype
=
'float32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
logit
,
x
,
dtype
=
'int32'
)
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_check_api
()
self
.
test_errors
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_lookahead.py
浏览文件 @
3900d562
...
...
@@ -19,7 +19,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn
as
nn
from
paddle.fluid.framework
import
_test_eager_guard
LOOKAHEAD_K
=
5
LOOKAHEAD_ALPHA
=
0.2
...
...
@@ -71,7 +70,7 @@ class TestLookAhead(unittest.TestCase):
)
fast_param
=
latest_b
-
SGD_LR
*
b_grad
def
func_
test_look_ahead_dygraph
(
self
):
def
test_look_ahead_dygraph
(
self
):
BATCH_SIZE
=
16
BATCH_NUM
=
4
EPOCH_NUM
=
4
...
...
@@ -152,11 +151,6 @@ class TestLookAhead(unittest.TestCase):
train
(
layer
,
loader
,
loss_fn
,
lookahead
)
def
test_look_ahead_dygraph
(
self
):
with
_test_eager_guard
():
self
.
func_test_look_ahead_dygraph
()
self
.
func_test_look_ahead_dygraph
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
浏览文件 @
3900d562
...
...
@@ -20,7 +20,6 @@ from op_test import OpTest, convert_float_to_uint16, get_numeric_gradient
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.fluid.tests.unittests.testsuite
import
create_op
...
...
@@ -559,11 +558,6 @@ class TestMatMulV2API(unittest.TestCase):
{
'FLAGS_gemm_use_half_precision_compute_type'
:
False
}
)
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_dygraph
()
self
.
test_dygraph_fp16
()
class
TestComplexMatMulOp
(
OpTest
):
def
setUp
(
self
):
...
...
@@ -732,10 +726,6 @@ class TestMatmulop(unittest.TestCase):
paddle
.
enable_static
()
def
func_dygraph_matmul
(
self
):
# noqa: F811
with
_test_eager_guard
():
self
.
func_dygraph_matmul
()
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
...
...
python/paddle/fluid/tests/unittests/test_max_op.py
浏览文件 @
3900d562
...
...
@@ -20,7 +20,6 @@ from test_sum_op import TestReduceOPTensorAxisBase
import
paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
_test_eager_guard
class
ApiMaxTest
(
unittest
.
TestCase
):
...
...
@@ -83,10 +82,6 @@ class ApiMaxTest(unittest.TestCase):
z_expected
=
np
.
array
(
np
.
max
(
np_x
,
axis
=
0
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
def
test_eager_api
(
self
):
with
_test_eager_guard
():
self
.
test_imperative_api
()
def
test_big_dimension
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
rand
(
shape
=
[
2
,
2
,
2
,
2
,
2
,
2
,
2
])
...
...
python/paddle/fluid/tests/unittests/test_maxout_op.py
浏览文件 @
3900d562
...
...
@@ -20,7 +20,6 @@ from op_test import OpTest
import
paddle
import
paddle.fluid.core
as
core
import
paddle.nn.functional
as
F
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
enable_static
()
np
.
random
.
seed
(
1
)
...
...
@@ -108,7 +107,7 @@ class TestMaxoutAPI(unittest.TestCase):
for
r
in
res
:
np
.
testing
.
assert_allclose
(
out_ref
,
r
,
rtol
=
1e-05
)
def
func_
test_dygraph_api
(
self
):
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
maxout
(
x
,
self
.
groups
,
self
.
axis
)
...
...
@@ -136,11 +135,6 @@ class TestMaxoutAPI(unittest.TestCase):
x_float32
=
paddle
.
fluid
.
data
(
name
=
'x_float32'
,
shape
=
[
2
,
4
,
6
,
8
])
self
.
assertRaises
(
ValueError
,
F
.
maxout
,
x_float32
,
2
,
2
)
def
test_dygraph_api
(
self
):
with
_test_eager_guard
():
self
.
func_test_dygraph_api
()
self
.
func_test_dygraph_api
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录