未验证 提交 365975fd 编写于 作者: C chenjian 提交者: GitHub

[cherry-pick] Refine statistic table and bug fix (#41581)

* Refine statistic table (#41524)

* Add get profiler from config (#41532)

* no

* maintain old profiler

* add get profiler from serialization config

* add unit test

* improve coverage

* fix

* Revert "improve coverage"

This reverts commit 4a980bfda48adadee551d0e1c5740bc5b7389200.

* fix unit

* fix

* fix
上级 f3296eae
......@@ -16,6 +16,7 @@ from __future__ import print_function
import unittest
import numpy as np
import tempfile
import paddle
import paddle.profiler as profiler
......@@ -138,6 +139,146 @@ class TestNvprof(unittest.TestCase):
y = x / 2.0
class TestGetProfiler(unittest.TestCase):
def test_getprofiler(self):
config_content = '''
{
"targets": ["CPU"],
"scheduler": [3,4],
"on_trace_ready": {
"export_chrome_tracing":{
"module": "paddle.profiler",
"use_direct": false,
"args": [],
"kwargs": {
"dir_name": "testdebug/"
}
}
},
"timer_only": false
}
'''
filehandle = tempfile.NamedTemporaryFile(mode='w')
filehandle.write(config_content)
filehandle.flush()
import paddle.profiler.profiler as profiler
profiler = profiler.get_profiler(filehandle.name)
x_value = np.random.randn(2, 3, 3)
x = paddle.to_tensor(
x_value, stop_gradient=False, place=paddle.CPUPlace())
with profiler:
for i in range(5):
y = x / 2.0
ones_like_y = paddle.ones_like(y)
profiler.step()
# below tests are just for coverage, wrong config
# test use_direct
config_content = '''
{
"targets": ["Cpu", "Gpu"],
"scheduler": {
"make_scheduler":{
"module": "paddle.profiler",
"use_direct": true,
"args": [],
"kwargs": {}
}
},
"on_trace_ready": {
"export_chrome_tracing":{
"module": "paddle.profiler1",
"use_direct": true,
"args": [],
"kwargs": {
}
}
},
"timer_only": false
}
'''
filehandle = tempfile.NamedTemporaryFile(mode='w')
filehandle.write(config_content)
filehandle.flush()
import paddle.profiler.profiler as profiler
try:
profiler = profiler.get_profiler(filehandle.name)
except:
pass
# test scheduler
config_content = '''
{
"targets": ["Cpu", "Gpu"],
"scheduler": {
"make_scheduler":{
"module": "paddle.profiler",
"use_direct": false,
"args": [],
"kwargs": {
"closed": 1,
"ready": 1,
"record": 2
}
}
},
"on_trace_ready": {
"export_chrome_tracing":{
"module": "paddle.profiler",
"use_direct": true,
"args": [],
"kwargs": {
}
}
},
"timer_only": false
}
'''
filehandle = tempfile.NamedTemporaryFile(mode='w')
filehandle.write(config_content)
filehandle.flush()
import paddle.profiler.profiler as profiler
profiler = profiler.get_profiler(filehandle.name)
# test exception
config_content = '''
{
"targets": [1],
"scheduler": {
"make_scheduler1":{
"module": "paddle.profiler",
"use_direct": false,
"args": [],
"kwargs": {
"closed": 1,
"ready": 1,
"record": 2
}
}
},
"on_trace_ready": {
"export_chrome_tracing1":{
"module": "paddle.profiler",
"use_direct": false,
"args": [],
"kwargs": {
"dir_name": "testdebug/"
}
}
},
"timer_only": 1
}
'''
filehandle = tempfile.NamedTemporaryFile(mode='w')
filehandle.write(config_content)
filehandle.flush()
import paddle.profiler.profiler as profiler
profiler = profiler.get_profiler(filehandle.name)
# test path error
import paddle.profiler.profiler as profiler
profiler = profiler.get_profiler('nopath.json')
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
......
......@@ -185,20 +185,22 @@ class TestProfilerStatistic(unittest.TestCase):
profiler.TracerEventType.Communication), 5)
self.assertEqual(len(event_summary.items), 2)
self.assertEqual(len(event_summary.userdefined_items), 1)
self.assertEqual(len(event_summary.model_perspective_items), 3)
self.assertEqual(len(event_summary.model_perspective_items), 4)
self.assertEqual(len(event_summary.memory_manipulation_items), 1)
self.assertEqual(event_summary.items['conv2d'].cpu_time, 15)
self.assertEqual(event_summary.items['conv2d'].gpu_time, 25)
self.assertEqual(event_summary.items['conv2d'].general_gpu_time, 25)
self.assertEqual(
event_summary.model_perspective_items['Forward'].cpu_time, 100)
self.assertEqual(
event_summary.model_perspective_items['Forward'].gpu_time, 135)
event_summary.model_perspective_items['Forward'].general_gpu_time,
135)
self.assertEqual(
event_summary.model_perspective_items['Backward'].gpu_time, 0)
event_summary.model_perspective_items['Backward'].general_gpu_time,
0)
self.assertEqual(
event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15)
self.assertEqual(
event_summary.memory_manipulation_items['AsyncMemcpy'].gpu_time, 60)
self.assertEqual(event_summary.memory_manipulation_items['AsyncMemcpy']
.general_gpu_time, 60)
print(
profiler.profiler_statistic._build_table(
statistic_data,
......@@ -226,31 +228,31 @@ class TestProfilerStatistic(unittest.TestCase):
userdefined_node = HostPythonNode('Communication Time',
profiler.TracerEventType.UserDefined,
100, 110, 1000, 1001)
reduce_all_launchkernel0 = HostPythonNode(
allreduce_launchkernel0 = HostPythonNode(
'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 102, 104,
1000, 1001)
nccl_reduce_all_kernel0 = DevicePythonNode(
'nccl_reduce_all_kernel', profiler.TracerEventType.Kernel, 105, 120,
nccl_allreduce_kernel0 = DevicePythonNode(
'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 105, 120,
0, 0, 2)
communication_node = HostPythonNode(
'Communication', profiler.TracerEventType.Communication, 105, 110,
1000, 1001)
reduce_all_op1 = HostPythonNode('reduce_all_op1',
profiler.TracerEventType.Operator, 105,
108, 1000, 1001)
reduce_all_op1_infershape = HostPythonNode(
'reduce_all_op1::infershape',
profiler.TracerEventType.OperatorInner, 105, 106, 1000, 1001)
allreduce_op1 = HostPythonNode('allreduce_op1',
profiler.TracerEventType.Operator, 105,
108, 1000, 1001)
allreduce_op1_infershape = HostPythonNode(
'allreduce_op1::infershape', profiler.TracerEventType.OperatorInner,
105, 106, 1000, 1001)
reduce_all_launchkernel1 = HostPythonNode(
allreduce_launchkernel1 = HostPythonNode(
'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 106, 107,
1000, 1001)
nccl_reduce_all_kernel1 = DevicePythonNode(
'nccl_reduce_all_kernel', profiler.TracerEventType.Kernel, 130, 150,
nccl_allreduce_kernel1 = DevicePythonNode(
'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 130, 150,
0, 0, 2)
backward_node = HostPythonNode('Gradient Backward',
......@@ -305,19 +307,19 @@ class TestProfilerStatistic(unittest.TestCase):
'sync_batch_norm_memcpy', profiler.TracerEventType.Memcpy, 150, 200,
0, 0, 1)
reduce_all_node2 = HostPythonNode('reduce_all',
profiler.TracerEventType.Operator,
230, 250, 1000, 1001)
allreduce_node2 = HostPythonNode('allreduce',
profiler.TracerEventType.Operator, 230,
250, 1000, 1001)
reduce_all_node2_infershape = HostPythonNode(
'reduce_all_node2::infershape',
allreduce_node2_infershape = HostPythonNode(
'allreduce_node2::infershape',
profiler.TracerEventType.OperatorInner, 231, 232, 1000, 1001)
reduce_all_launchkernel2 = HostPythonNode(
allreduce_launchkernel2 = HostPythonNode(
'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 235, 240,
1000, 1001)
nccl_reduce_all_kernel2 = DevicePythonNode(
'nccl_reduce_all_kernel', profiler.TracerEventType.Kernel, 250, 280,
nccl_allreduce_kernel2 = DevicePythonNode(
'nccl_allreduce_kernel', profiler.TracerEventType.Kernel, 250, 280,
0, 0, 2)
root_node.children_node.append(profilerstep_node)
......@@ -329,12 +331,12 @@ class TestProfilerStatistic(unittest.TestCase):
yolonet_node.children_node.extend(
[sync_batch_norm_node, userdefined_node])
userdefined_node.children_node.append(communication_node)
userdefined_node.runtime_node.append(reduce_all_launchkernel0)
reduce_all_launchkernel0.device_node.append(nccl_reduce_all_kernel0)
communication_node.children_node.append(reduce_all_op1)
reduce_all_op1.children_node.append(reduce_all_op1_infershape)
reduce_all_op1.runtime_node.append(reduce_all_launchkernel1)
reduce_all_launchkernel1.device_node.append(nccl_reduce_all_kernel1)
userdefined_node.runtime_node.append(allreduce_launchkernel0)
allreduce_launchkernel0.device_node.append(nccl_allreduce_kernel0)
communication_node.children_node.append(allreduce_op1)
allreduce_op1.children_node.append(allreduce_op1_infershape)
allreduce_op1.runtime_node.append(allreduce_launchkernel1)
allreduce_launchkernel1.device_node.append(nccl_allreduce_kernel1)
conv2d_node.children_node.extend(
[conv2d_infer_shape, conv2d_compute, conv2d_MemCpy])
conv2d_compute.runtime_node.append(conv2d_launchkernel)
......@@ -350,10 +352,10 @@ class TestProfilerStatistic(unittest.TestCase):
sync_batch_norm_MemCpy.runtime_node.append(sync_batch_norm_cudaMemCpy)
sync_batch_norm_launchkernel.device_node.append(sync_batch_norm_kernel)
sync_batch_norm_cudaMemCpy.device_node.append(sync_batch_norm_memcpy)
optimization_node.children_node.append(reduce_all_node2)
reduce_all_node2.children_node.append(reduce_all_node2_infershape)
reduce_all_node2.runtime_node.append(reduce_all_launchkernel2)
reduce_all_launchkernel2.device_node.append(nccl_reduce_all_kernel2)
optimization_node.children_node.append(allreduce_node2)
allreduce_node2.children_node.append(allreduce_node2_infershape)
allreduce_node2.runtime_node.append(allreduce_launchkernel2)
allreduce_launchkernel2.device_node.append(nccl_allreduce_kernel2)
thread_tree = {'thread1001': root_node}
extra_info = {
'Process Cpu Utilization': '1.02',
......@@ -415,20 +417,22 @@ class TestProfilerStatistic(unittest.TestCase):
distributed_summary.overlap_range), 85)
self.assertEqual(len(event_summary.items), 4)
self.assertEqual(len(event_summary.userdefined_items), 1)
self.assertEqual(len(event_summary.model_perspective_items), 3)
self.assertEqual(len(event_summary.model_perspective_items), 4)
self.assertEqual(len(event_summary.memory_manipulation_items), 1)
self.assertEqual(event_summary.items['conv2d'].cpu_time, 15)
self.assertEqual(event_summary.items['conv2d'].gpu_time, 25)
self.assertEqual(event_summary.items['conv2d'].general_gpu_time, 25)
self.assertEqual(
event_summary.model_perspective_items['Forward'].cpu_time, 100)
self.assertEqual(
event_summary.model_perspective_items['Forward'].gpu_time, 315)
event_summary.model_perspective_items['Forward'].general_gpu_time,
315)
self.assertEqual(
event_summary.model_perspective_items['Backward'].gpu_time, 0)
event_summary.model_perspective_items['Backward'].general_gpu_time,
0)
self.assertEqual(
event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15)
self.assertEqual(
event_summary.memory_manipulation_items['AsyncMemcpy'].gpu_time, 60)
self.assertEqual(event_summary.memory_manipulation_items['AsyncMemcpy']
.general_gpu_time, 60)
print(
profiler.profiler_statistic._build_table(
statistic_data,
......
......@@ -18,6 +18,8 @@ import datetime
from enum import Enum
from typing import Any, Callable, Iterable, Optional, Union
from warnings import warn
import importlib
import json
import paddle
from paddle.fluid.core import (_Profiler, _ProfilerResult, ProfilerOptions,
......@@ -741,3 +743,73 @@ class Profiler:
op_detail=op_detail,
thread_sep=thread_sep,
time_unit=time_unit))
def get_profiler(config_path):
try:
with open(config_path, 'r') as filehandle:
config_dict = json.load(filehandle)
except Exception as e:
print('Load config file for profiler error: {}'.format(e))
print('Use default parameters instead.')
return Profiler()
translated_config_dict = {}
if "targets" in config_dict:
try:
translated_config_dict['targets'] = []
for target in config_dict['targets']:
if target.lower() == "cpu":
translated_config_dict['targets'].append(ProfilerTarget.CPU)
elif target.lower() == 'gpu':
translated_config_dict['targets'].append(ProfilerTarget.GPU)
except:
print('Set targets parameter error, use default parameter instead.')
translated_config_dict['targets'] = None
if "scheduler" in config_dict:
try:
if isinstance(config_dict['scheduler'], dict):
for key, value in config_dict['scheduler'].items():
module_path = value['module']
use_direct = value['use_direct']
module = importlib.import_module(module_path)
method = getattr(module, key)
if not use_direct:
translated_config_dict['scheduler'] = method(
*value['args'], **value['kwargs'])
else:
translated_config_dict['scheduler'] = method
else:
translated_config_dict['scheduler'] = [
config_dict['scheduler'][0], config_dict['scheduler'][1]
]
except:
print(
'Set scheduler parameter error, use default parameter instead.')
translated_config_dict['scheduler'] = None
if "on_trace_ready" in config_dict:
try:
if isinstance(config_dict['on_trace_ready'], dict):
for key, value in config_dict['on_trace_ready'].items():
module_path = value['module']
use_direct = value['use_direct']
module = importlib.import_module(module_path)
method = getattr(module, key)
if not use_direct:
translated_config_dict['on_trace_ready'] = method(
*value['args'], **value['kwargs'])
else:
translated_config_dict['on_trace_ready'] = method
except:
print(
'Set on_trace_ready parameter error, use default parameter instead.'
)
translated_config_dict['on_trace_ready'] = None
if "timer_only" in config_dict:
if isinstance(config_dict['timer_only'], bool):
translated_config_dict['timer_only'] = config_dict['timer_only']
else:
print(
'Set timer_only parameter error, use default parameter instead.')
return Profiler(**translated_config_dict)
......@@ -28,7 +28,7 @@ _AllTracerEventType = [
TracerEventType.PythonOp, TracerEventType.PythonUserDefined
]
_CommunicationOpName = ['reduce', 'broadcast', 'rpc']
_CommunicationOpName = ['allreduce', 'broadcast', 'rpc']
class SortedKeys(Enum):
......@@ -74,8 +74,10 @@ class HostStatisticNode:
self.runtime_node = []
self.cpu_time = 0
self.self_cpu_time = 0
self.gpu_time = 0
self.gpu_time = 0 # kernel time
self.self_gpu_time = 0
self.general_gpu_time = 0 # besides kernel, include time of gpu events like memcpy and memset
self.self_general_gpu_time = 0
def cal_statistic(self):
for child in self.children_node:
......@@ -86,14 +88,20 @@ class HostStatisticNode:
self.cpu_time = self.hostnode.end_ns - self.hostnode.start_ns
for child in self.children_node:
self.gpu_time += child.gpu_time
self.general_gpu_time += child.general_gpu_time
self.self_cpu_time -= (child.end_ns - child.start_ns)
for rt in self.runtime_node:
self.self_cpu_time -= (rt.end_ns - rt.start_ns)
self.gpu_time += rt.gpu_time
self.self_gpu_time += rt.gpu_time
self.general_gpu_time += rt.general_gpu_time
self.self_general_gpu_time += rt.general_gpu_time
for device in self.hostnode.device_node:
self.gpu_time += (device.end_ns - device.start_ns)
self.self_gpu_time += (device.end_ns - device.start_ns)
if device.type == TracerEventType.Kernel:
self.gpu_time += (device.end_ns - device.start_ns)
self.self_gpu_time += (device.end_ns - device.start_ns)
self.general_gpu_time += (device.end_ns - device.start_ns)
self.self_general_gpu_time += (device.end_ns - device.start_ns)
@property
def end_ns(self):
......@@ -258,6 +266,8 @@ class DistributedSummary:
self.communication_range = []
self.computation_range = []
self.overlap_range = []
self.cpu_calls = 0
self.gpu_calls = 0
def parse(self, nodetrees):
'''
......@@ -300,6 +310,8 @@ class DistributedSummary:
else:
self.computation_range.append((
devicenode.start_ns, devicenode.end_ns))
self.cpu_calls = len(set(self.cpu_communication_range))
self.gpu_calls = len(set(self.gpu_communication_range))
self.cpu_communication_range = merge_self_ranges(
self.cpu_communication_range, is_sorted=False)
self.gpu_communication_range = merge_self_ranges(
......@@ -354,6 +366,9 @@ class EventSummary:
self.min_gpu_time = float('inf')
self.devices = {}
self.operator_inners = {}
self.general_gpu_time = 0
self.min_general_gpu_time = float('inf')
self.max_general_gpu_time = 0
@property
def avg_cpu_time(self):
......@@ -363,6 +378,10 @@ class EventSummary:
def avg_gpu_time(self):
return self.gpu_time / self.call
@property
def avg_general_gpu_time(self):
return self.general_gpu_time / self.call
def add_cpu_time(self, time):
if time > self.max_cpu_time:
self.max_cpu_time = time
......@@ -377,6 +396,13 @@ class EventSummary:
self.min_gpu_time = time
self.gpu_time += time
def add_general_gpu_time(self, time):
if time > self.max_general_gpu_time:
self.max_general_gpu_time = time
if time < self.min_general_gpu_time:
self.min_general_gpu_time = time
self.general_gpu_time += time
def add_call(self):
self.call += 1
......@@ -384,6 +410,7 @@ class EventSummary:
self.add_call()
self.add_cpu_time(node.cpu_time)
self.add_gpu_time(node.gpu_time)
self.add_general_gpu_time(node.general_gpu_time)
for child in node.children_node:
if child.name not in self.operator_inners:
self.operator_inners[
......@@ -407,6 +434,9 @@ class EventSummary:
self.gpu_time = 0
self.max_gpu_time = 0
self.min_gpu_time = float('inf')
self.general_gpu_time = 0
self.min_general_gpu_time = float('inf')
self.max_general_gpu_time = 0
@property
def avg_cpu_time(self):
......@@ -416,6 +446,10 @@ class EventSummary:
def avg_gpu_time(self):
return self.gpu_time / self.call
@property
def avg_general_gpu_time(self):
return self.general_gpu_time / self.call
def add_cpu_time(self, time):
if time > self.max_cpu_time:
self.max_cpu_time = time
......@@ -430,6 +464,13 @@ class EventSummary:
self.min_gpu_time = time
self.gpu_time += time
def add_general_gpu_time(self, time):
if time > self.max_general_gpu_time:
self.max_general_gpu_time = time
if time < self.min_general_gpu_time:
self.min_general_gpu_time = time
self.general_gpu_time += time
def add_call(self):
self.call += 1
......@@ -437,6 +478,7 @@ class EventSummary:
self.add_call()
self.add_cpu_time(node.cpu_time)
self.add_gpu_time(node.gpu_time)
self.add_general_gpu_time(node.general_gpu_time)
def __init__(self):
self.items = {} # for operator summary
......@@ -478,6 +520,8 @@ class EventSummary:
self.add_model_perspective_item(
child) #find first model perspective node
else:
if child.type == TracerEventType.ProfileStep:
self.add_model_perspective_item(child)
deque.append(child)
def add_operator_item(self, operator_node):
......@@ -533,6 +577,8 @@ class EventSummary:
name = 'Optimization'
elif model_perspective_node.type == TracerEventType.Dataloader:
name = 'Dataloader'
elif model_perspective_node.type == TracerEventType.ProfileStep:
name = 'ProfileStep'
else:
return
if name not in self.model_perspective_items:
......@@ -626,7 +672,6 @@ def _build_table(statistic_data,
# construct table string
append(add_title(line_length, "Device Summary"))
append('Time unit: {}'.format(time_unit))
append(header_sep)
append(row_format.format(*headers))
append(header_sep)
......@@ -661,7 +706,7 @@ def _build_table(statistic_data,
return ''.join(result)
###### Print Overview Summary ######
headers = ['Event Type', 'CPU Time', 'Ratio (%)']
headers = ['Event Type', 'Calls', 'CPU Time', 'Ratio (%)']
row_format_list = [""]
header_sep_list = [""]
line_length_list = [-SPACING_SIZE]
......@@ -680,13 +725,13 @@ def _build_table(statistic_data,
append(header_sep)
append(row_format.format(*headers))
append(header_sep)
row_values = [
'Total Time', format_time(
total_time, unit=time_unit), format_ratio(1)
]
append(row_format.format(*row_values))
cpu_type_time = collections.defaultdict(int)
gpu_type_time = collections.defaultdict(int)
cpu_call_times = collections.defaultdict(int)
gpu_call_times = collections.defaultdict(int)
cpu_call_times.update(statistic_data.time_range_summary.call_times)
gpu_call_times.update(statistic_data.time_range_summary.call_times)
for event_type, value in statistic_data.time_range_summary.CPUTimeRangeSum.items(
):
if event_type != TracerEventType.Communication:
......@@ -694,6 +739,19 @@ def _build_table(statistic_data,
if statistic_data.distributed_summary.cpu_communication_range:
cpu_type_time[TracerEventType.Communication] = sum_ranges(
statistic_data.distributed_summary.cpu_communication_range)
cpu_call_times[
TracerEventType.
Communication] = statistic_data.distributed_summary.cpu_calls
for event_type in [
TracerEventType.Dataloader, TracerEventType.Forward,
TracerEventType.Backward, TracerEventType.Optimization
]:
event_type_name = str(event_type).split('.')[1]
if event_type in cpu_call_times and event_type_name in statistic_data.event_summary.model_perspective_items:
cpu_call_times[
event_type] = statistic_data.event_summary.model_perspective_items[
event_type_name].call
gpu_time_range = collections.defaultdict(list)
for device_id, device_time_ranges in statistic_data.time_range_summary.GPUTimeRange.items(
......@@ -706,22 +764,34 @@ def _build_table(statistic_data,
if statistic_data.distributed_summary.gpu_communication_range:
gpu_type_time[TracerEventType.Communication] = sum_ranges(
statistic_data.distributed_summary.gpu_communication_range)
gpu_call_times[
TracerEventType.
Communication] = statistic_data.distributed_summary.gpu_calls
sorted_items = sorted(
cpu_type_time.items(), key=lambda x: x[1], reverse=True)
for event_type, time in sorted_items:
event_type, time = sorted_items[0]
row_values = [
'{}'.format(str(event_type).split('.')[1]), cpu_call_times[event_type],
format_time(
time, unit=time_unit), format_ratio(float(time) / total_time)
]
append(row_format.format(*row_values))
for event_type, time in sorted_items[1:]:
row_values = [
' {}'.format(str(event_type).split('.')[1]), format_time(
' {}'.format(str(event_type).split('.')[1]),
cpu_call_times[event_type], format_time(
time, unit=time_unit), format_ratio(float(time) / total_time)
]
append(row_format.format(*row_values))
append(header_sep)
headers = ['', 'GPU Time', 'Ratio (%)']
headers = ['', 'Calls', 'GPU Time', 'Ratio (%)']
append(row_format.format(*headers))
append(header_sep)
for event_type, time in gpu_type_time.items():
row_values = [
' {}'.format(str(event_type).split('.')[1]), format_time(
' {}'.format(str(event_type).split('.')[1]),
gpu_call_times[event_type], format_time(
time, unit=time_unit), format_ratio(float(time) / total_time)
]
append(row_format.format(*row_values))
......@@ -730,7 +800,7 @@ def _build_table(statistic_data,
append(
"Note:\nIn this table, We sum up all collected events in terms of event type.\n"
"The time of events collected on host are presented as CPU Time, and as GPU Time if on device.\n"
"Ratio = CPU(GPU) Time / Total Time.\n"
"The time with ratio 100% is the base time for calculating ratio. \n"
"Events with different types may overlap or inclusion, e.g. Operator includes OperatorInner, so the sum of ratios is not 100%.\n"
"The time of events in the same type with overlap will not calculate twice, and all time is summed after merged.\n"
"Example:\n"
......@@ -746,21 +816,21 @@ def _build_table(statistic_data,
###### Print Model Summary Report ######
model_perspective_items = statistic_data.event_summary.model_perspective_items
if model_perspective_items:
if len(model_perspective_items) > 1:
all_row_values = []
row_values = [
'Total Time', '-', '{} / - / - / - / {}'.format(
format_time(
total_time, unit=time_unit), format_ratio(1)),
'- / - / - / -/ -'
]
all_row_values.append(row_values)
accmulation_time = 0
for name in ['Dataloader', 'Forward', 'Backward', 'Optimization']:
gpu_accmulation_time = 0
gpu_total_time = 0
for name in [
'ProfileStep', 'Dataloader', 'Forward', 'Backward',
'Optimization'
]:
if name in model_perspective_items:
item = model_perspective_items[name]
name = '{}'.format(
name) if 'ProfileStep' in name else ' {}'.format(name)
row_values = [
' {}'.format(name), item.call,
'{}'.format(name), item.call,
'{} / {} / {} / {} / {}'.format(
format_time(
item.cpu_time, unit=time_unit),
......@@ -783,15 +853,23 @@ def _build_table(statistic_data,
format_ratio(float(item.gpu_time) / total_time))
]
all_row_values.append(row_values)
accmulation_time += item.cpu_time
if 'ProfileStep' not in name:
accmulation_time += item.cpu_time
gpu_accmulation_time += item.gpu_time
else:
gpu_total_time = item.gpu_time
other_time = total_time - accmulation_time
other_gpu_time = gpu_total_time - gpu_accmulation_time
row_values = [
' Others', '-', '{} / - / - / - / {}'.format(
format_time(
other_time, unit=time_unit),
format_ratio(float(other_time) / total_time)),
'- / - / - / - / -'
'{} / - / - / - / {}'.format(
format_time(
other_gpu_time, unit=time_unit),
format_ratio(float(other_gpu_time) / gpu_total_time))
]
all_row_values.append(row_values)
# Calculate the column width
......@@ -835,6 +913,7 @@ def _build_table(statistic_data,
append(
"Note:\nIn this table, GPU time is the sum of all device(GPU) events called in the phase.\n"
"Unlike overview summary, if two device(GPU) events execute on different streams with overlap time, we sum them directly here.\n"
"The time with ratio 100% is the base time for calculating ratio. \n"
)
append('-' * line_length)
append('')
......@@ -872,21 +951,27 @@ def _build_table(statistic_data,
overlap_time = sum_ranges(
statistic_data.distributed_summary.overlap_range)
row_values = [
'Communication', format_time(
'ProfileStep', format_time(
total_time, unit=time_unit),
format_ratio(float(total_time) / total_time)
]
append(row_format.format(*row_values))
row_values = [
' Communication', format_time(
communication_time, unit=time_unit),
format_ratio(float(communication_time) / total_time)
]
append(row_format.format(*row_values))
row_values = [
'Computation', format_time(
' Computation', format_time(
computation_time, unit=time_unit),
format_ratio(float(computation_time) / total_time)
]
append(row_format.format(*row_values))
row_values = [
'Overlap', format_time(
' Overlap', format_time(
overlap_time, unit=time_unit),
format_ratio(float(overlap_time) / total_time)
]
......@@ -896,6 +981,7 @@ def _build_table(statistic_data,
"Note:\nCommunication time: Communication Event time, Communication Op time and its kernel time on gpu.\n"
"Computation time: Kernel time, except kernels belong to communication(nccl kernels).\n"
"Overlap time: Communication time intersects with computation time.\n"
"The time with ratio 100% is the base time for calculating ratio. \n"
"Example:\n"
"Communication:\n"
" CPU: |_________________|\n"
......@@ -938,20 +1024,22 @@ def _build_table(statistic_data,
items.items(), key=lambda x: x[1].min_cpu_time)
elif sorted_by == SortedKeys.GPUTotal:
sorted_items = sorted(
items.items(), key=lambda x: x[1].gpu_time, reverse=True)
items.items(),
key=lambda x: x[1].general_gpu_time,
reverse=True)
elif sorted_by == SortedKeys.GPUAvg:
sorted_items = sorted(
items.items(),
key=lambda x: x[1].avg_gpu_time,
key=lambda x: x[1].avg_general_gpu_time,
reverse=True)
elif sorted_by == SortedKeys.GPUMax:
sorted_items = sorted(
items.items(),
key=lambda x: x[1].max_gpu_time,
key=lambda x: x[1].max_general_gpu_time,
reverse=True)
elif sorted_by == SortedKeys.GPUMin:
sorted_items = sorted(
items.items(), key=lambda x: x[1].min_gpu_time)
items.items(), key=lambda x: x[1].min_general_gpu_time)
for name, item in sorted_items:
row_values = [
......@@ -967,14 +1055,15 @@ def _build_table(statistic_data,
format_ratio(float(item.cpu_time) / total_time)),
'{} / {} / {} / {} / {}'.format(
format_time(
item.gpu_time, unit=time_unit),
item.general_gpu_time, unit=time_unit),
format_time(
item.avg_gpu_time, unit=time_unit),
item.avg_general_gpu_time, unit=time_unit),
format_time(
item.max_gpu_time, unit=time_unit),
item.max_general_gpu_time, unit=time_unit),
format_time(
item.min_gpu_time, unit=time_unit),
format_ratio(float(item.gpu_time) / total_time))
item.min_general_gpu_time, unit=time_unit),
format_ratio(
float(item.general_gpu_time) / total_time))
]
all_row_values.append(row_values)
if op_detail:
......@@ -998,18 +1087,23 @@ def _build_table(statistic_data,
float(innerop_node.cpu_time) / total_time)),
'{} / {} / {} / {} / {}'.format(
format_time(
innerop_node.gpu_time, unit=time_unit),
innerop_node.general_gpu_time,
unit=time_unit),
format_time(
innerop_node.avg_gpu_time, unit=time_unit),
innerop_node.avg_general_gpu_time,
unit=time_unit),
format_time(
innerop_node.max_gpu_time, unit=time_unit),
innerop_node.max_general_gpu_time,
unit=time_unit),
format_time(
innerop_node.min_gpu_time, unit=time_unit),
innerop_node.min_general_gpu_time,
unit=time_unit),
format_ratio(
float(innerop_node.gpu_time) / total_time))
float(innerop_node.general_gpu_time) /
total_time))
]
all_row_values.append(row_values)
for device_node_name, devicenode in innerop_node.devices.items(
for device_node_name, device_node in innerop_node.devices.items(
):
if len(device_node_name) + 4 > name_column_width:
device_node_name = device_node_name[:
......@@ -1018,21 +1112,21 @@ def _build_table(statistic_data,
device_node_name += "..."
row_values = [
' {}'.format(device_node_name),
devicenode.call, '- / - / - / - / -',
device_node.call, '- / - / - / - / -',
'{} / {} / {} / {} / {}'.format(
format_time(
devicenode.gpu_time, unit=time_unit),
device_node.gpu_time, unit=time_unit),
format_time(
devicenode.avg_gpu_time,
device_node.avg_gpu_time,
unit=time_unit),
format_time(
devicenode.max_gpu_time,
device_node.max_gpu_time,
unit=time_unit),
format_time(
devicenode.min_gpu_time,
device_node.min_gpu_time,
unit=time_unit),
format_ratio(
float(devicenode.gpu_time) /
float(device_node.gpu_time) /
total_time))
]
all_row_values.append(row_values)
......@@ -1043,19 +1137,19 @@ def _build_table(statistic_data,
- 5]
device_node_name += "..."
row_values = [
' {}'.format(device_node_name), devicenode.call,
' {}'.format(device_node_name), device_node.call,
'- / - / - / - / -',
'{} / {} / {} / {} / {}'.format(
format_time(
devicenode.gpu_time, unit=time_unit),
device_node.gpu_time, unit=time_unit),
format_time(
devicenode.avg_gpu_time, unit=time_unit),
device_node.avg_gpu_time, unit=time_unit),
format_time(
devicenode.max_gpu_time, unit=time_unit),
device_node.max_gpu_time, unit=time_unit),
format_time(
devicenode.min_gpu_time, unit=time_unit),
device_node.min_gpu_time, unit=time_unit),
format_ratio(
float(devicenode.gpu_time) / total_time))
float(device_node.gpu_time) / total_time))
]
all_row_values.append(row_values)
# Calculate the column width
......@@ -1123,14 +1217,14 @@ def _build_table(statistic_data,
format_ratio(float(item.cpu_time) / total_time)),
'{} / {} / {} / {} / {}'.format(
format_time(
item.gpu_time, unit=time_unit),
item.general_gpu_time, unit=time_unit),
format_time(
item.avg_gpu_time, unit=time_unit),
item.avg_general_gpu_time, unit=time_unit),
format_time(
item.max_gpu_time, unit=time_unit),
item.max_general_gpu_time, unit=time_unit),
format_time(
item.min_gpu_time, unit=time_unit),
format_ratio(float(item.gpu_time) / total_time)),
item.min_general_gpu_time, unit=time_unit),
format_ratio(float(item.general_gpu_time) / total_time)),
]
all_row_values.append(row_values)
......@@ -1207,20 +1301,22 @@ def _build_table(statistic_data,
items.items(), key=lambda x: x[1].min_cpu_time)
elif sorted_by == SortedKeys.GPUTotal:
sorted_items = sorted(
items.items(), key=lambda x: x[1].gpu_time, reverse=True)
items.items(),
key=lambda x: x[1].general_gpu_time,
reverse=True)
elif sorted_by == SortedKeys.GPUAvg:
sorted_items = sorted(
items.items(),
key=lambda x: x[1].avg_gpu_time,
key=lambda x: x[1].avg_general_gpu_time,
reverse=True)
elif sorted_by == SortedKeys.GPUMax:
sorted_items = sorted(
items.items(),
key=lambda x: x[1].max_gpu_time,
key=lambda x: x[1].max_general_gpu_time,
reverse=True)
elif sorted_by == SortedKeys.GPUMin:
sorted_items = sorted(
items.items(), key=lambda x: x[1].min_gpu_time)
items.items(), key=lambda x: x[1].min_general_gpu_time)
for name, item in sorted_items:
row_values = [
......@@ -1238,14 +1334,15 @@ def _build_table(statistic_data,
format_ratio(float(item.cpu_time) / total_time)),
'{} / {} / {} / {} / {}'.format(
format_time(
item.gpu_time, unit=time_unit),
item.general_gpu_time, unit=time_unit),
format_time(
item.avg_gpu_time, unit=time_unit),
item.avg_general_gpu_time, unit=time_unit),
format_time(
item.max_gpu_time, unit=time_unit),
item.max_general_gpu_time, unit=time_unit),
format_time(
item.min_gpu_time, unit=time_unit),
format_ratio(float(item.gpu_time) / total_time)),
item.min_general_gpu_time, unit=time_unit),
format_ratio(
float(item.general_gpu_time) / total_time)),
]
all_row_values.append(row_values)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册