未验证 提交 361c6ccc 编写于 作者: Z Zhong Hui 提交者: GitHub

OP error message enhancement of l2_normalize, matmul, mean, etc

* fix error message of l2_normalize, matmul, mean, etc. 
* add the test case for those ops
上级 b3520b14
...@@ -324,12 +324,9 @@ class MatMulOp : public framework::OperatorWithKernel { ...@@ -324,12 +324,9 @@ class MatMulOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(framework::InferShapeContext *context) const override { void InferShape(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"), OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
"Input(X) of MatMulOp should not be null."); OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
PADDLE_ENFORCE(context->HasInput("Y"), OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
"Input(Y) of MatMulOp should not be null.");
PADDLE_ENFORCE(context->HasOutput("Out"),
"Output(Out) of MatMulOp should not be null.");
auto dim_x = context->GetInputDim("X"); auto dim_x = context->GetInputDim("X");
auto dim_y = context->GetInputDim("Y"); auto dim_y = context->GetInputDim("Y");
...@@ -349,14 +346,15 @@ class MatMulOp : public framework::OperatorWithKernel { ...@@ -349,14 +346,15 @@ class MatMulOp : public framework::OperatorWithKernel {
} }
if (context->IsRuntime()) { if (context->IsRuntime()) {
PADDLE_ENFORCE( PADDLE_ENFORCE_EQ(
mat_dim_x.batch_size_ == mat_dim_y.batch_size_ || mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0, mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
"ShapeError: The batch size of the two matrices should be equal, or " true, platform::errors::InvalidArgument(
"The batch size of the two matrices should be equal, or "
"at least one is zero.\n" "at least one is zero.\n"
"But received X's shape: %s, Y's shape: %s.", "But received X's shape: %s, Y's shape: %s.",
DumpMatrixShape(mat_dim_x).c_str(), DumpMatrixShape(mat_dim_x).c_str(),
DumpMatrixShape(mat_dim_y).c_str()); DumpMatrixShape(mat_dim_y).c_str()));
} }
int64_t dim_out_y = mat_dim_y.width_; int64_t dim_out_y = mat_dim_y.width_;
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) #if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
...@@ -365,20 +363,20 @@ class MatMulOp : public framework::OperatorWithKernel { ...@@ -365,20 +363,20 @@ class MatMulOp : public framework::OperatorWithKernel {
if (context->IsRuntime()) { if (context->IsRuntime()) {
PADDLE_ENFORCE_LE( PADDLE_ENFORCE_LE(
head_number, mat_dim_x.width_, head_number, mat_dim_x.width_,
"ShapeError: Unsatisfied mkl acceleration library requirements: " platform::errors::InvalidArgument(
"Unsatisfied mkl acceleration library requirements: "
"The number of heads " "The number of heads "
"(%d) must be equal to X's width. But received X's shape: %s.", "(%d) must be equal to X's width. But received X's shape: %s.",
head_number, DumpMatrixShape(mat_dim_x).c_str()); head_number, DumpMatrixShape(mat_dim_x).c_str()));
if (!split_vertical_y && head_number > 0) { if (!split_vertical_y && head_number > 0) {
dim_out_y = head_number * mat_dim_y.width_; dim_out_y = head_number * mat_dim_y.width_;
} }
} }
#else #else
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_,
mat_dim_x.width_, mat_dim_y.height_,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"ShapeError: Input X's width should be equal to the Y's height, " "Input X's width should be equal to the Y's height, "
"but received X's shape: [%s]," "but received X's shape: [%s],"
"Y's shape: [%s].", "Y's shape: [%s].",
dim_x, dim_y)); dim_x, dim_y));
...@@ -520,10 +518,10 @@ class MatMulOpGrad : public framework::OperatorWithKernel { ...@@ -520,10 +518,10 @@ class MatMulOpGrad : public framework::OperatorWithKernel {
protected: protected:
void InferShape(framework::InferShapeContext *context) const override { void InferShape(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null"); OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null"); OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")), OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
"Input(Out@GRAD) should not be null"); "Out@GRAD", "matmul");
auto x_dims = context->GetInputDim("X"); auto x_dims = context->GetInputDim("X");
auto y_dims = context->GetInputDim("Y"); auto y_dims = context->GetInputDim("Y");
......
...@@ -25,10 +25,8 @@ class MeanOp : public framework::OperatorWithKernel { ...@@ -25,10 +25,8 @@ class MeanOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mean");
"Input(X) of MeanOp should not be null."); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "mean");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of MeanOp should not be null.");
ctx->SetOutputDim("Out", {1}); ctx->SetOutputDim("Out", {1});
} }
}; };
......
...@@ -59,17 +59,20 @@ class MeanCUDAKernel : public framework::OpKernel<T> { ...@@ -59,17 +59,20 @@ class MeanCUDAKernel : public framework::OpKernel<T> {
auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes, trans_x, auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes, trans_x,
out_data, size_prob, stream); out_data, size_prob, stream);
PADDLE_ENFORCE_CUDA_SUCCESS(err, PADDLE_ENFORCE_CUDA_SUCCESS(
"MeanOP failed to get reduce workspace size", err, platform::errors::External(
cudaGetErrorString(err)); "MeanOP failed to get reduce workspace size %s.",
cudaGetErrorString(err)));
framework::Tensor tmp; framework::Tensor tmp;
auto* temp_storage = tmp.mutable_data<uint8_t>( auto* temp_storage = tmp.mutable_data<uint8_t>(
framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}), framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
context.GetPlace()); context.GetPlace());
err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes, trans_x, err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes, trans_x,
out_data, size_prob, stream); out_data, size_prob, stream);
PADDLE_ENFORCE_CUDA_SUCCESS(err, "MeanOP failed to run reduce computation", PADDLE_ENFORCE_CUDA_SUCCESS(
cudaGetErrorString(err)); err, platform::errors::External(
"MeanOP failed to run CUDA reduce computation: %s.",
cudaGetErrorString(err)));
} }
}; };
...@@ -78,10 +81,10 @@ class MeanCUDAGradKernel : public framework::OpKernel<T> { ...@@ -78,10 +81,10 @@ class MeanCUDAGradKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto OG = context.Input<Tensor>(framework::GradVarName("Out")); auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(OG->numel(), 1,
OG->numel(), 1,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"Mean Gradient Input Tensor len should be 1. But received %d", "Mean Gradient Input Tensor len should be 1. But "
"received Out@Grad's elements num is %d.",
OG->numel())); OG->numel()));
auto IG = context.Output<Tensor>(framework::GradVarName("X")); auto IG = context.Output<Tensor>(framework::GradVarName("X"));
IG->mutable_data<T>(context.GetPlace()); IG->mutable_data<T>(context.GetPlace());
......
...@@ -50,7 +50,11 @@ class MeanGradKernel : public framework::OpKernel<T> { ...@@ -50,7 +50,11 @@ class MeanGradKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto OG = context.Input<Tensor>(framework::GradVarName("Out")); auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
PADDLE_ENFORCE(OG->numel() == 1, "Mean Gradient should be scalar"); PADDLE_ENFORCE_EQ(OG->numel(), 1UL,
platform::errors::InvalidArgument(
"Mean Gradient should be scalar. But received "
"Out@Grad's elements num is %d.",
OG->numel()));
auto IG = context.Output<Tensor>(framework::GradVarName("X")); auto IG = context.Output<Tensor>(framework::GradVarName("X"));
IG->mutable_data<T>(context.GetPlace()); IG->mutable_data<T>(context.GetPlace());
......
...@@ -74,10 +74,9 @@ class MulOp : public framework::OperatorWithKernel { ...@@ -74,10 +74,9 @@ class MulOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
x_mat_dims[1], y_mat_dims[0], x_mat_dims[1], y_mat_dims[0],
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"After flatten the input tensor X and Y to 2-D dimensions " "After flatten the input tensor X and Y to 2-D dimensions matrix "
"matrix X1 and Y1, the matrix X1's width must be equal with matrix " "X1 and Y1, the matrix X1's width must be equal with matrix Y1's "
"Y1's height. But received X's shape = [%s], X1's shape = [%s], " "height. But received X's shape = [%s], X1's shape = [%s], X1's "
"X1's "
"width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = " "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
"%s.", "%s.",
x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims, x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims,
...@@ -212,10 +211,10 @@ class MulGradOp : public framework::OperatorWithKernel { ...@@ -212,10 +211,10 @@ class MulGradOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null"); OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Input(Out@GRAD) should not be null"); "Out@GRAD", "mul");
auto x_dims = ctx->GetInputDim("X"); auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y"); auto y_dims = ctx->GetInputDim("Y");
...@@ -253,9 +252,9 @@ class MulDoubleGradOp : public framework::OperatorWithKernel { ...@@ -253,9 +252,9 @@ class MulDoubleGradOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null"); OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null"); OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
if (ctx->HasOutput("DDOut") && if (ctx->HasOutput("DDOut") &&
(ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) { (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
......
...@@ -43,7 +43,11 @@ struct Array { ...@@ -43,7 +43,11 @@ struct Array {
template <typename VectorLikeType> template <typename VectorLikeType>
static inline Array<T, ElementCount> From(const VectorLikeType& vec) { static inline Array<T, ElementCount> From(const VectorLikeType& vec) {
PADDLE_ENFORCE_EQ(vec.size(), ElementCount, "size not match"); PADDLE_ENFORCE_EQ(vec.size(), ElementCount,
platform::errors::InvalidArgument(
"Cub reduce Array: size not match. Received "
"vec.size() %d != ElementCount %d.",
vec.size(), ElementCount));
size_t n = static_cast<size_t>(vec.size()); size_t n = static_cast<size_t>(vec.size());
Array<T, ElementCount> ret; Array<T, ElementCount> ret;
for (size_t i = 0; i < n; ++i) ret[i] = vec[i]; for (size_t i = 0; i < n; ++i) ret[i] = vec[i];
...@@ -159,13 +163,20 @@ static inline int GetDesiredBlockDim(int block_dim) { ...@@ -159,13 +163,20 @@ static inline int GetDesiredBlockDim(int block_dim) {
static inline void CheckReduceRankIsValid(int reduce_rank, int rank) { static inline void CheckReduceRankIsValid(int reduce_rank, int rank) {
if (rank % 2 == 0) { if (rank % 2 == 0) {
PADDLE_ENFORCE_EQ(reduce_rank, rank / 2); PADDLE_ENFORCE_EQ(reduce_rank, rank / 2,
platform::errors::InvalidArgument(
"ReduceOp: invalid reduce rank. When rank = %d, "
"reduce_rank must be %d, but got %d.",
rank, rank / 2, reduce_rank));
} else { } else {
auto lower_rank = (rank - 1) / 2; auto lower_rank = (rank - 1) / 2;
auto upper_rank = (rank + 1) / 2; auto upper_rank = (rank + 1) / 2;
PADDLE_ENFORCE(reduce_rank == lower_rank || reduce_rank == upper_rank, PADDLE_ENFORCE_EQ(
"When rank = %d, reduce_rank must be %d or %d, but got %d", reduce_rank == lower_rank || reduce_rank == upper_rank, true,
rank, lower_rank, upper_rank, reduce_rank); platform::errors::InvalidArgument(
"ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
"must be %d or %d, but got %d.",
rank, lower_rank, upper_rank, reduce_rank));
} }
} }
......
...@@ -264,31 +264,31 @@ class ReduceOp : public framework::OperatorWithKernel { ...@@ -264,31 +264,31 @@ class ReduceOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
"Input(X) of ReduceOp should not be null."); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ReduceOp should not be null.");
auto x_dims = ctx->GetInputDim("X"); auto x_dims = ctx->GetInputDim("X");
auto x_rank = x_dims.size(); auto x_rank = x_dims.size();
PADDLE_ENFORCE_LE(x_rank, 6, PADDLE_ENFORCE_LE(x_rank, 6,
"ShapeError: The input tensor X's dimensions of Reduce " platform::errors::InvalidArgument(
"The input tensor X's dimensions of ReduceOp "
"should be less equal than 6. But received X's " "should be less equal than 6. But received X's "
"dimensions = %d, X's shape = [%s].", "dimensions = %d, X's shape = [%s].",
x_rank, x_dims); x_rank, x_dims));
auto dims = ctx->Attrs().Get<std::vector<int>>("dim"); auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
PADDLE_ENFORCE_GT( PADDLE_ENFORCE_GT(dims.size(), 0,
dims.size(), 0, platform::errors::InvalidArgument(
"ShapeError: The input dim dimensions of Reduce " "The input dim dimensions of ReduceOp "
"should be greater than 0. But received the dim dimesions of Reduce " "should be greater than 0. But received the dim "
" = %d", "dimesions of Reduce = %d.",
dims.size()); dims.size()));
for (size_t i = 0; i < dims.size(); ++i) { for (size_t i = 0; i < dims.size(); ++i) {
PADDLE_ENFORCE_LT(dims[i], x_rank, PADDLE_ENFORCE_LT(dims[i], x_rank,
"ShapeError: The reduce dim index %d should be in the " platform::errors::InvalidArgument(
"range [-dimension(X), dimension(X)]." "The reduce dim index %d should be in the "
"which dimesion = %d, But received dim index = %d", "range [-dimension(X), dimension(X)] "
i, x_rank, dims[i]); "which dimesion = %d. But received dim index = %d.",
i, x_rank, dims[i]));
if (dims[i] < 0) dims[i] = x_rank + dims[i]; if (dims[i] < 0) dims[i] = x_rank + dims[i];
} }
sort(dims.begin(), dims.end()); sort(dims.begin(), dims.end());
...@@ -346,19 +346,24 @@ class ReduceGradOp : public framework::OperatorWithKernel { ...@@ -346,19 +346,24 @@ class ReduceGradOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Input(Out@GRAD) should not be null."); "Out@GRAD", "ReduceOp");
auto x_dims = ctx->GetInputDim("X"); auto x_dims = ctx->GetInputDim("X");
auto x_rank = x_dims.size(); auto x_rank = x_dims.size();
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported."); PADDLE_ENFORCE_LE(x_rank, 6,
platform::errors::InvalidArgument(
"Tensors with rank at most 6 are supported by "
"ReduceOp. Received tensor with rank %d.",
x_rank));
auto dims = ctx->Attrs().Get<std::vector<int>>("dim"); auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
for (size_t i = 0; i < dims.size(); ++i) { for (size_t i = 0; i < dims.size(); ++i) {
PADDLE_ENFORCE_LT(dims[i], x_rank, PADDLE_ENFORCE_LT(dims[i], x_rank,
"ShapeError: The reduce dim index %d should be in the " platform::errors::InvalidArgument(
"range [-dimension(X), dimension(X)]." "The reduce dim index %d should be in the "
"which dimesion = %d, But received dim index = %d", "range [-dimension(X), dimension(X)], "
i, x_rank, dims[i]); "which dimesion = %d. But received dim index = %d.",
i, x_rank, dims[i]));
if (dims[i] < 0) dims[i] = x_rank + dims[i]; if (dims[i] < 0) dims[i] = x_rank + dims[i];
} }
sort(dims.begin(), dims.end()); sort(dims.begin(), dims.end());
......
...@@ -94,17 +94,24 @@ class UniformRandomOp : public framework::OperatorWithKernel { ...@@ -94,17 +94,24 @@ class UniformRandomOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "UniformRandom"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "UniformRandomOp");
PADDLE_ENFORCE_LT(ctx->Attrs().Get<float>("min"),
ctx->Attrs().Get<float>("max"), PADDLE_ENFORCE_LT(
ctx->Attrs().Get<float>("min"), ctx->Attrs().Get<float>("max"),
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"uniform_random's min must less then max")); "The uniform_random's min must less then max. But received min = "
"%f great than or equal max = %f.",
ctx->Attrs().Get<float>("min"), ctx->Attrs().Get<float>("max")));
PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_num"), 0, PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_num"), 0,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"diag_num must greater than or equal 0")); "The uniform_random's diag_num must greater than or "
"equal 0. But recevied diag_num (%d) < 0.",
ctx->Attrs().Get<int>("diag_num")));
PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_step"), 0, PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_step"), 0,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"diag_step must greater than or equal 0")); "The uniform_random's diag_step must greater than or "
"equal 0. But recevied diag_step (%d) < 0.",
ctx->Attrs().Get<int>("diag_step")));
if (ctx->HasInputs("ShapeTensorList")) { if (ctx->HasInputs("ShapeTensorList")) {
// top prority shape // top prority shape
......
...@@ -59,8 +59,12 @@ inline std::vector<int64_t> GetNewDataFromShapeTensorList( ...@@ -59,8 +59,12 @@ inline std::vector<int64_t> GetNewDataFromShapeTensorList(
vec_new_shape.reserve(list_new_shape_tensor.size()); vec_new_shape.reserve(list_new_shape_tensor.size());
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) { for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i]; auto tensor = list_new_shape_tensor[i];
PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}), PADDLE_ENFORCE_EQ(
"shape of dim tensor should be [1]"); tensor->dims(), framework::make_ddim({1}),
platform::errors::InvalidArgument(
"Shape of dim tensor in uniform_random_op should be [1]"
"But received tensor's dim=%s.",
tensor->dims()));
if (tensor->type() == framework::proto::VarType::INT32) { if (tensor->type() == framework::proto::VarType::INT32) {
if (platform::is_gpu_place(tensor->place())) { if (platform::is_gpu_place(tensor->place())) {
......
...@@ -4627,6 +4627,7 @@ def reduce_all(input, dim=None, keep_dim=False, name=None): ...@@ -4627,6 +4627,7 @@ def reduce_all(input, dim=None, keep_dim=False, name=None):
# keep_dim=True, x.shape=(2,2), out.shape=(2,1) # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
""" """
check_variable_and_dtype(input, 'input', ('bool'), 'reduce_all')
helper = LayerHelper('reduce_all', **locals()) helper = LayerHelper('reduce_all', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list): if dim is not None and not isinstance(dim, list):
...@@ -4686,6 +4687,7 @@ def reduce_any(input, dim=None, keep_dim=False, name=None): ...@@ -4686,6 +4687,7 @@ def reduce_any(input, dim=None, keep_dim=False, name=None):
# keep_dim=True, x.shape=(2,2), out.shape=(2,1) # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
""" """
check_variable_and_dtype(input, 'input', ('bool'), 'reduce_any')
helper = LayerHelper('reduce_any', **locals()) helper = LayerHelper('reduce_any', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list): if dim is not None and not isinstance(dim, list):
...@@ -4919,8 +4921,9 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): ...@@ -4919,8 +4921,9 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None):
if len(x.shape) == 1: if len(x.shape) == 1:
axis = 0 axis = 0
helper = LayerHelper("l2_normalize", **locals()) check_variable_and_dtype(x, "X", ("float32", "float64"), "norm")
helper = LayerHelper("l2_normalize", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
norm = helper.create_variable_for_type_inference(dtype=x.dtype) norm = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op( helper.append_op(
...@@ -9951,6 +9954,11 @@ def uniform_random_batch_size_like(input, ...@@ -9951,6 +9954,11 @@ def uniform_random_batch_size_like(input,
""" """
check_variable_and_dtype(input, 'Input', ("float32", 'float64'),
'uniform_random_batch_size_like')
check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like')
check_dtype(dtype, 'dtype', ('float32', 'float64'),
'uniform_random_batch_size_like')
helper = LayerHelper('uniform_random_batch_size_like', **locals()) helper = LayerHelper('uniform_random_batch_size_like', **locals())
out = helper.create_variable_for_type_inference(dtype) out = helper.create_variable_for_type_inference(dtype)
...@@ -10634,7 +10642,7 @@ def rank(input): ...@@ -10634,7 +10642,7 @@ def rank(input):
input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32") input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
rank = fluid.layers.rank(input) # rank=(3,) rank = fluid.layers.rank(input) # rank=(3,)
""" """
check_type(input, 'input', (Variable), 'input')
ndims = len(input.shape) ndims = len(input.shape)
out = assign(np.array(ndims, 'int32')) out = assign(np.array(ndims, 'int32'))
...@@ -14263,7 +14271,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0): ...@@ -14263,7 +14271,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random') check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
if not isinstance(dtype, core.VarDesc.VarType): if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype) dtype = convert_np_dtype_to_dtype_(dtype)
check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random') check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random')
def get_new_shape_tensor(list_shape): def get_new_shape_tensor(list_shape):
new_shape_tensor = [] new_shape_tensor = []
......
...@@ -16,6 +16,8 @@ from __future__ import print_function ...@@ -16,6 +16,8 @@ from __future__ import print_function
import unittest import unittest
import numpy as np import numpy as np
import paddle
import paddle.fluid as fluid
from op_test import OpTest, skip_check_grad_ci from op_test import OpTest, skip_check_grad_ci
...@@ -87,5 +89,16 @@ class TestNormOp5(TestNormOp): ...@@ -87,5 +89,16 @@ class TestNormOp5(TestNormOp):
pass pass
class API_NormTest(unittest.TestCase):
def test_errors(self):
with fluid.program_guard(fluid.Program()):
def test_norm_x_type():
data = fluid.data(name="x", shape=[3, 3], dtype="int64")
out = fluid.layers.l2_normalize(data)
self.assertRaises(TypeError, test_norm_x_type)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -138,6 +138,18 @@ class TestAllOpWithKeepDim(OpTest): ...@@ -138,6 +138,18 @@ class TestAllOpWithKeepDim(OpTest):
self.check_output() self.check_output()
class TestAllOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of reduce_all_op must be Variable.
input1 = 12
self.assertRaises(TypeError, fluid.layers.reduce_all, input1)
# The input dtype of reduce_all_op must be bool.
input2 = fluid.layers.data(
name='input2', shape=[12, 10], dtype="int32")
self.assertRaises(TypeError, fluid.layers.reduce_all, input2)
class TestAnyOp(OpTest): class TestAnyOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "reduce_any" self.op_type = "reduce_any"
...@@ -174,6 +186,18 @@ class TestAnyOpWithKeepDim(OpTest): ...@@ -174,6 +186,18 @@ class TestAnyOpWithKeepDim(OpTest):
self.check_output() self.check_output()
class TestAnyOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of reduce_any_op must be Variable.
input1 = 12
self.assertRaises(TypeError, fluid.layers.reduce_any, input1)
# The input dtype of reduce_any_op must be bool.
input2 = fluid.layers.data(
name='input2', shape=[12, 10], dtype="int32")
self.assertRaises(TypeError, fluid.layers.reduce_any, input2)
class Test1DReduce(OpTest): class Test1DReduce(OpTest):
def setUp(self): def setUp(self):
self.op_type = "reduce_sum" self.op_type = "reduce_sum"
......
...@@ -177,6 +177,12 @@ class TestUniformRandomOpError(unittest.TestCase): ...@@ -177,6 +177,12 @@ class TestUniformRandomOpError(unittest.TestCase):
self.assertRaises(TypeError, test_Variable) self.assertRaises(TypeError, test_Variable)
def test_Variable2():
x1 = np.zeros((4, 784))
fluid.layers.uniform_random(x1)
self.assertRaises(TypeError, test_Variable2)
def test_dtype(): def test_dtype():
x2 = fluid.layers.data( x2 = fluid.layers.data(
name='x2', shape=[4, 784], dtype='float32') name='x2', shape=[4, 784], dtype='float32')
...@@ -426,5 +432,33 @@ class TestUniformRandomDygraphMode(unittest.TestCase): ...@@ -426,5 +432,33 @@ class TestUniformRandomDygraphMode(unittest.TestCase):
self.assertTrue((x_np[i] > 0 and x_np[i] < 1.0)) self.assertTrue((x_np[i] > 0 and x_np[i] < 1.0))
class TestUniformRandomBatchSizeLikeOpError(unittest.TestCase):
def test_errors(self):
main_prog = Program()
start_prog = Program()
with program_guard(main_prog, start_prog):
def test_Variable():
x1 = fluid.create_lod_tensor(
np.zeros((4, 784)), [[1, 1, 1, 1]], fluid.CPUPlace())
fluid.layers.uniform_random_batch_size_like(x1)
self.assertRaises(TypeError, test_Variable)
def test_shape():
x1 = fluid.layers.data(
name='x2', shape=[4, 784], dtype='float32')
fluid.layers.uniform_random_batch_size_like(x1, shape="shape")
self.assertRaises(TypeError, test_shape)
def test_dtype():
x2 = fluid.layers.data(
name='x2', shape=[4, 784], dtype='float32')
fluid.layers.uniform_random_batch_size_like(x2, 'int32')
self.assertRaises(TypeError, test_dtype)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册