From 36080ae85d593d21d0c6bba18c3cc63a37b6f006 Mon Sep 17 00:00:00 2001 From: Aurelius84 Date: Wed, 14 Jul 2021 11:41:22 +0800 Subject: [PATCH] [Dy2Stat] Ignore to convert paddle.no_grad (#34136) * fix paddle.no_grad * fix paddle.no_grad --- .../dygraph_to_static/grad_transformer.py | 5 +++ .../unittests/dygraph_to_static/test_grad.py | 38 ++++++++++++++++--- 2 files changed, 37 insertions(+), 6 deletions(-) diff --git a/python/paddle/fluid/dygraph/dygraph_to_static/grad_transformer.py b/python/paddle/fluid/dygraph/dygraph_to_static/grad_transformer.py index f7a59063ae..272d480c5b 100644 --- a/python/paddle/fluid/dygraph/dygraph_to_static/grad_transformer.py +++ b/python/paddle/fluid/dygraph/dygraph_to_static/grad_transformer.py @@ -83,5 +83,10 @@ def is_grad_api_node(node): assert isinstance(node, gast.Call) api_name = utils.ast_to_source_code(node.func).strip() if utils.is_paddle_api(node): + if 'no_grad' in api_name: + warnings.warn( + "paddle.no_grad is only supported for inference model, and not supported for training under @to_static." + ) + return False return api_name.endswith("grad") return False diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_grad.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_grad.py index ab87beb9e1..6c43796215 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_grad.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_grad.py @@ -48,6 +48,22 @@ class GradLinearLayer(paddle.nn.Layer): return dx +class NoGradLinearLayer(paddle.nn.Layer): + def __init__(self): + super(NoGradLinearLayer, self).__init__() + self.linear = paddle.nn.Linear(5, 5, bias_attr=False) + + @paddle.jit.to_static + def forward(self, x): + x.stop_gradient = False + + with paddle.no_grad(): + y = self.linear(x) + + out = y + x + return out + + class TestGrad(unittest.TestCase): def setUp(self): self.func = GradLayer() @@ -72,15 +88,16 @@ class TestGradLinear(TestGrad): self.func = GradLinearLayer() self.x = paddle.ones(shape=[10, 2, 5], dtype='float32') self.x.stop_gradient = False + self.infer_model_path = "double_grad_infer_model" + self.train_model_path = "double_grad_train_model" def test_save_infer_program(self): - path = "double_grad_infer_model" input_spec = [ paddle.static.InputSpec( shape=[10, 2, 5], dtype='float32') ] - paddle.jit.save(self.func, path, input_spec=input_spec) - load_func = paddle.jit.load(path) + paddle.jit.save(self.func, self.infer_model_path, input_spec=input_spec) + load_func = paddle.jit.load(self.infer_model_path) origin_res = self.func(self.x).numpy() load_res = load_func(self.x).numpy() @@ -96,16 +113,25 @@ class TestGradLinear(TestGrad): avg_loss = paddle.mean(paddle.abs(out - 1)) avg_loss.backward() optimizer.minimize(avg_loss) + print(self.x.grad.mean()) self.func.clear_gradients() - path = "double_grad_train_model" - paddle.jit.save(self.func, path) - load_func = paddle.jit.load(path) + paddle.jit.save(self.func, self.train_model_path) + load_func = paddle.jit.load(self.train_model_path) origin_res = self.func(self.x).numpy() load_res = load_func(self.x).numpy() self.assertTrue(np.allclose(origin_res, load_res)) +class TestNoGradLinear(TestGradLinear): + def setUp(self): + self.func = NoGradLinearLayer() + self.x = paddle.ones(shape=[10, 2, 5], dtype='float32') + self.x.stop_gradient = False + self.infer_model_path = "no_grad_infer_model" + self.train_model_path = "no_grad_train_model" + + if __name__ == '__main__': unittest.main() -- GitLab