<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
default Bias.</li>
...
...
@@ -1925,7 +1925,7 @@ Inputs can be list of paddle.v2.config_base.Layer or list of projection.</p>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
...
...
@@ -2202,7 +2202,7 @@ output sequence has T*M/N instances, the dimension of each instance is N.</p>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – extra layer attributes.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
...
...
@@ -2236,7 +2236,7 @@ default Bias.</li>
and <spanclass="math">\(f\)</span> is activation function.</p>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list|tuple</em>) – Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
paddle.v2.config_base.Layer.</li>
<li><strong>act</strong> (<em>paddle.v2.Activation.Base</em>) – Activation Type, default is tanh.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type, default is tanh.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|bool</em>) – Bias attribute. If False, means no bias. None is default
bias.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer attribute.</li>
...
...
@@ -2560,7 +2560,7 @@ For example, each sample:</p>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) – weight layer, can be None(default)</li>
<li><strong>num_classes</strong> (<em>int</em>) – number of classes.</li>
<li><strong>act</strong> (<em>paddle.v2.Activation.Base</em>) – Activation, default is Sigmoid.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation, default is Sigmoid.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) – The Parameter Attribute|list.</li>
<li><strong>num_neg_samples</strong> (<em>int</em>) – number of negative samples. Default is 10.</li>
<li><strong>neg_distribution</strong> (<em>list|tuple|collections.Sequence|None</em>) – The distribution for generating the random negative labels.
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
default Bias.</li>
...
...
@@ -1932,7 +1932,7 @@ Inputs can be list of paddle.v2.config_base.Layer or list of projection.</p>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
...
...
@@ -2209,7 +2209,7 @@ output sequence has T*M/N instances, the dimension of each instance is N.</p>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – extra layer attributes.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em><em> or </em><em>None</em><em> or </em><em>bool</em>) – The Bias Attribute. If no bias, then pass False or
something not type of paddle.v2.attr.ParameterAttribute. None will get a
...
...
@@ -2243,7 +2243,7 @@ default Bias.</li>
and <spanclass="math">\(f\)</span> is activation function.</p>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list|tuple</em>) – Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
paddle.v2.config_base.Layer.</li>
<li><strong>act</strong> (<em>paddle.v2.Activation.Base</em>) – Activation Type, default is tanh.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation Type, default is tanh.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|bool</em>) – Bias attribute. If False, means no bias. None is default
bias.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer attribute.</li>
...
...
@@ -2567,7 +2567,7 @@ For example, each sample:</p>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) – weight layer, can be None(default)</li>
<li><strong>num_classes</strong> (<em>int</em>) – number of classes.</li>
<li><strong>act</strong> (<em>paddle.v2.Activation.Base</em>) – Activation, default is Sigmoid.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation, default is Sigmoid.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) – The Parameter Attribute|list.</li>
<li><strong>num_neg_samples</strong> (<em>int</em>) – number of negative samples. Default is 10.</li>
<li><strong>neg_distribution</strong> (<em>list|tuple|collections.Sequence|None</em>) – The distribution for generating the random negative labels.