Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
35483a20
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
35483a20
编写于
4月 18, 2018
作者:
G
gongweibao
提交者:
GitHub
4月 18, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add neural transformer leanring rate decay function. (#9951)
Add neural transformer leanring rate decay function
上级
fbe56247
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
30 addition
and
3 deletion
+30
-3
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+30
-3
未找到文件。
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
35483a20
...
...
@@ -20,7 +20,7 @@ from ..initializer import init_on_cpu
__all__
=
[
'exponential_decay'
,
'natural_exp_decay'
,
'inverse_time_decay'
,
'polynomial_decay'
,
'piecewise_decay'
'polynomial_decay'
,
'piecewise_decay'
,
'noam_decay'
]
"""
When training a model, it's often useful to decay the
...
...
@@ -32,14 +32,41 @@ strategy according to this module.
"""
def
_decay_step_counter
():
def
_decay_step_counter
(
begin
=
0
):
# the first global step is zero in learning rate decay
global_step
=
nn
.
autoincreased_step_counter
(
counter_name
=
'@LR_DECAY_COUNTER@'
,
begin
=
0
,
step
=
1
)
counter_name
=
'@LR_DECAY_COUNTER@'
,
begin
=
begin
,
step
=
1
)
global_step
=
tensor
.
cast
(
global_step
,
'float32'
)
return
global_step
def
noam_decay
(
d_model
,
warmup_steps
):
"""Apply decay to learning rate.
```python
lr_value = np.power(d_model, -0.5) * np.min([
np.power(current_steps, -0.5),
np.power(warmup_steps, -1.5) * current_steps
])
```
Args:
d_model(Variable): The dimensionality of input and output of model.
Reference: attention is all you need
https://arxiv.org/pdf/1706.03762.pdf
warmup_steps(Variable): A super parameter.
Returns:
The decayed learning rate.
"""
global_step
=
_decay_step_counter
(
1
)
with
init_on_cpu
():
a
=
global_step
**-
0.5
b
=
(
warmup_steps
**-
1.5
)
*
global_step
lr_value
=
(
d_model
**-
0.5
)
*
ops
.
elementwise_min
(
a
,
b
)
return
lr_value
def
exponential_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
"""Applies exponential decay to the learning rate.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录