diff --git a/python/paddle/fluid/tests/unittests/test_dist_train_op.py b/python/paddle/fluid/tests/unittests/test_dist_train_op.py new file mode 100644 index 0000000000000000000000000000000000000000..d3f4f74fe79030f5ff6f20725d65ac5280f55243 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_dist_train_op.py @@ -0,0 +1,100 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import paddle.fluid as fluid +import paddle.fluid.core as core +import paddle.fluid.layers as layers +import numpy +from multiprocessing import Process +from threading import Thread +import os, sys +import time + + +class TestSendOp(unittest.TestCase): + def test_send(self): + # Run init_serv in a thread + place = fluid.CPUPlace() + # NOTE: python thread will not work here due to GIL. + p = Process(target=self.init_serv, args=(place, )) + p.daemon = True + p.start() + + time.sleep(8) + with open("/tmp/paddle.selected_port", "r") as fn: + selected_port = int(fn.readlines()[0]) + self.init_client(place, selected_port) + # FIXME(typhoonzero): find a way to gracefully shutdown the server. + os.system("kill -9 %d" % p.pid) + p.join() + + self.run_local(place) + self.assertTrue(numpy.allclose(self.local_out, self.dist_out)) + + def init_serv(self, place): + main = fluid.Program() + + with fluid.program_guard(main): + serv = layers.ListenAndServ( + "127.0.0.1:0", ["X"], optimizer_mode=False) + with serv.do(): + x = layers.data( + shape=[32, 32], + dtype='float32', + name="X", + append_batch_size=False) + fluid.initializer.Constant(value=1.0)(x, main.global_block()) + o = layers.scale(x=x, scale=10.0) + main.global_block().create_var( + name=o.name, psersistable=False, dtype=o.dtype, shape=o.shape) + + self.server_exe = fluid.Executor(place) + self.server_exe.run(main) + + def init_client(self, place, port): + main = fluid.Program() + with fluid.program_guard(main): + x = layers.data( + shape=[32, 32], + dtype='float32', + name='X', + append_batch_size=False) + fluid.initializer.Constant(value=2.3)(x, main.global_block()) + get_var = main.global_block().create_var( + name="scale_0.tmp_0", # server side var + dtype="float32", + persistable=False, + shape=[32, 32]) + o = layers.Send("127.0.0.1:%d" % port, [x], [get_var]) + exe = fluid.Executor(place) + self.dist_out = exe.run(main, fetch_list=o) # o is a list + + def run_local(self, place): + main = fluid.Program() + with fluid.program_guard(main): + x = layers.data( + shape=[32, 32], + dtype='float32', + name='X', + append_batch_size=False) + fluid.initializer.Constant(value=2.3)(x, main.global_block()) + o = layers.scale(x=x, scale=10.0) + exe = fluid.Executor(place) + self.local_out = exe.run(main, fetch_list=[o]) + + +if __name__ == "__main__": + unittest.main()