From 343464dff80fee903674c8c222b85a5bf37bf6ad Mon Sep 17 00:00:00 2001 From: lijianshe02 <48898730+lijianshe02@users.noreply.github.com> Date: Sun, 26 Apr 2020 16:57:22 +0800 Subject: [PATCH] =?UTF-8?q?API/OP=20(affine=5Fchannel,=20group=5Fnorm,=20l?= =?UTF-8?q?ayer=5Fnorm,=20random=5Fcrop,=20unpool,=20=E2=80=A6=20(#24118)?= =?UTF-8?q?=20(#24158)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * API/OP (affine_channel, group_norm, layer_norm, random_crop, unpool, log_loss) error message enhancement test=develop --- paddle/fluid/operators/affine_channel_op.cc | 53 +++++++----- paddle/fluid/operators/layer_norm_op.cc | 84 +++++++++++++------ paddle/fluid/operators/log_loss_op.cc | 57 ++++++++----- paddle/fluid/operators/random_crop_op.cc | 11 ++- paddle/fluid/operators/unpool_op.cc | 25 ++---- python/paddle/fluid/layers/nn.py | 14 +++- .../tests/unittests/test_affine_channel_op.py | 33 ++++++++ .../tests/unittests/test_group_norm_op.py | 20 +++++ .../fluid/tests/unittests/test_log_loss_op.py | 30 +++++++ .../tests/unittests/test_random_crop_op.py | 26 ++++++ 10 files changed, 268 insertions(+), 85 deletions(-) diff --git a/paddle/fluid/operators/affine_channel_op.cc b/paddle/fluid/operators/affine_channel_op.cc index c040b1b76d..1b584fc557 100644 --- a/paddle/fluid/operators/affine_channel_op.cc +++ b/paddle/fluid/operators/affine_channel_op.cc @@ -61,14 +61,10 @@ class AffineChannelOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of AffineChannelOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Scale"), - "Input(Scale) of AffineChannelOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Bias"), - "Input(Bias) of AffineChannelOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of AffineChannelOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AffineChannel"); + OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "AffineChannel"); + OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "AffineChannel"); + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "AffineChannel"); auto x_dims = ctx->GetInputDim("X"); auto scale_dims = ctx->GetInputDim("Scale"); @@ -80,13 +76,32 @@ class AffineChannelOp : public framework::OperatorWithKernel { ? x_dims[1] : x_dims[x_dims.size() - 1]); - PADDLE_ENFORCE_EQ(scale_dims.size(), 1UL); - PADDLE_ENFORCE_EQ(b_dims.size(), 1UL); + PADDLE_ENFORCE_EQ( + scale_dims.size(), 1UL, + platform::errors::InvalidArgument( + "The dimensions of Input(Scale) must be 1," + "But received the dimensions of Input(Scale) is [%d] ", + scale_dims.size())); + PADDLE_ENFORCE_EQ(b_dims.size(), 1UL, + platform::errors::InvalidArgument( + "The dimensions of Input(Bias) must be 1," + "But received the dimensions of Input(Bias) is [%d] ", + scale_dims.size())); if (ctx->IsRuntime() || scale_dims[0] > 0) { - PADDLE_ENFORCE_EQ(scale_dims[0], C); + PADDLE_ENFORCE_EQ( + scale_dims[0], C, + platform::errors::InvalidArgument( + "The first dimension value of Input(Scale) must be [%d]," + "But received [%d].", + C, scale_dims[0])); } if (ctx->IsRuntime() || b_dims[0] > 0) { - PADDLE_ENFORCE_EQ(b_dims[0], C); + PADDLE_ENFORCE_EQ( + b_dims[0], C, + platform::errors::InvalidArgument( + "The first dimension value of Input(Bias) must be [%d]," + "But received [%d].", + C, b_dims[0])); } ctx->SetOutputDim("Out", ctx->GetInputDim("X")); @@ -98,19 +113,19 @@ class AffineChannelOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null."); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", + framework::GradVarName("Out"), "AffineChannelGrad"); if (ctx->HasOutput(framework::GradVarName("X"))) { - PADDLE_ENFORCE(ctx->HasInput("Scale"), - "Input(Scale) should not be null."); + OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", + "AffineChannelGrad"); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim(framework::GradVarName("Out"))); } if (ctx->HasOutput(framework::GradVarName("Scale"))) { // Scale@GRAD and Bias@GRAD must exist at the same time. - PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), - "Output(Scale@GRAD) should not be null."); - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); + OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Bias")), "Output", + framework::GradVarName("Bias"), "AffineChannelGrad"); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AffineChannelGrad"); ctx->SetOutputDim(framework::GradVarName("Scale"), ctx->GetInputDim("Scale")); ctx->SetOutputDim(framework::GradVarName("Bias"), diff --git a/paddle/fluid/operators/layer_norm_op.cc b/paddle/fluid/operators/layer_norm_op.cc index b600af950c..b738a80a0d 100644 --- a/paddle/fluid/operators/layer_norm_op.cc +++ b/paddle/fluid/operators/layer_norm_op.cc @@ -27,36 +27,62 @@ class LayerNormOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of LayerNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Y"), - "Output(Y) of LayerNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Mean"), - "Output(Mean) of LayerNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Variance"), - "Output(Variance) of LayerNormOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "LayerNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "LayerNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance", + "LayerNorm"); auto x_dim = ctx->GetInputDim("X"); auto begin_norm_axis = ctx->Attrs().Get("begin_norm_axis"); - PADDLE_ENFORCE_LT(begin_norm_axis, x_dim.size(), - "'begin_norm_axis' must be less than the rank of X."); + PADDLE_ENFORCE_LT( + begin_norm_axis, x_dim.size(), + platform::errors::InvalidArgument( + "'begin_norm_axis' must be less than the dimensions of X," + "But received 'begin_norm_axis' is [%d]," + "received the dimensions of X is [%d].", + begin_norm_axis, x_dim.size())); auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis); int left = static_cast(matrix_dim[0]); int right = static_cast(matrix_dim[1]); if (ctx->HasInput("Scale")) { - PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1, + platform::errors::InvalidArgument( + "The dimensions of Input(Scale) must be 1, but " + "received dimensions of" + "Input(Scale) is [%d]", + ctx->GetInputDim("Scale").size())); if (ctx->IsRuntime()) { - PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], right, - "scale should with right"); + PADDLE_ENFORCE_EQ( + ctx->GetInputDim("Scale")[0], right, + platform::errors::InvalidArgument( + "The first dimension value of Input(Scale) must equal to be the" + "second dimension value of the flattened 2D matrix of Input(X)," + "But received the first dimension value of Input(Scale) is" + "[%d], the second dimension value of the flattened 2D matrix of" + " Input(Scale) is [%d].", + ctx->GetInputDim("Scale")[0], right)); } } if (ctx->HasInput("Bias")) { - PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1, + platform::errors::InvalidArgument( + "The dimensions of Input(Bias) must be 1, but " + "received dimensions of" + "Input(Bias) is [%d]", + ctx->GetInputDim("Bias").size())); if (ctx->IsRuntime()) { - PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], right, - "bias should with right"); + PADDLE_ENFORCE_EQ( + ctx->GetInputDim("Bias")[0], right, + platform::errors::InvalidArgument( + "The first dimension value of Input(Bias) must equal to be the" + "second dimension value of the flattened 2D matrix of Input(X)," + "But received the first dimension value of Input(Bias) is" + "[%d], the second dimension value of the flattened 2D matrix of" + " Input(Bias) is [%d].", + ctx->GetInputDim("Scale")[0], right)); } } @@ -90,8 +116,11 @@ class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker { "Constant for numerical stability [default 1e-5].") .SetDefault(1e-5) .AddCustomChecker([](const float &epsilon) { - PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f, - "'epsilon' should be between 0.0 and 0.001."); + PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true, + platform::errors::InvalidArgument( + "'epsilon' in Op(LayerNorm) should be between" + "0.0 and 0.001, But received [%s].", + epsilon)); }); AddAttr("begin_norm_axis", "the axis of `begin_norm_axis ... Rank(X) - 1` will be " @@ -100,7 +129,10 @@ class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker { .SetDefault(1) .AddCustomChecker([](const int &begin_norm_axis) { PADDLE_ENFORCE_GT(begin_norm_axis, 0, - "'begin_norm_axis' should be greater than zero."); + platform::errors::InvalidArgument( + "'begin_norm_axis' in Op(LayerNorm) should be" + "greater than zero. But received [%d].", + begin_norm_axis)); }); AddComment(R"DOC( @@ -122,14 +154,12 @@ class LayerNormGradOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext *ctx) const override { // check input - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of LayerNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Mean"), - "Input(Mean) of LayerNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Variance"), - "Input(Variance) of LayerNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), - "Input(Y@GRAD) of LayerNormOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNormGrad"); + OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "LayerNormGrad"); + OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", + "LayerNormGrad"); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input", + framework::GradVarName("Y"), "LayerNormGrad"); // check output if (ctx->HasOutput(framework::GradVarName("X"))) { diff --git a/paddle/fluid/operators/log_loss_op.cc b/paddle/fluid/operators/log_loss_op.cc index f1fd5a04f6..1569512dc7 100644 --- a/paddle/fluid/operators/log_loss_op.cc +++ b/paddle/fluid/operators/log_loss_op.cc @@ -23,25 +23,37 @@ class LogLossOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("Predicted"), - "Input(Predicted) must be initialized."); - PADDLE_ENFORCE(ctx->HasInput("Labels"), - "Input(Labels) must be initialized."); + OP_INOUT_CHECK(ctx->HasInput("Predicted"), "Input", "Predicted", "LogLoss"); + OP_INOUT_CHECK(ctx->HasInput("Labels"), "Input", "Labels", "LogLoss"); auto pred_dims = ctx->GetInputDim("Predicted"); auto label_dims = ctx->GetInputDim("Labels"); if (ctx->IsRuntime() || (framework::product(pred_dims) > 0 && framework::product(label_dims) > 0)) { - PADDLE_ENFORCE_EQ(pred_dims, label_dims); + PADDLE_ENFORCE_EQ( + pred_dims, label_dims, + platform::errors::InvalidArgument( + "The dimensions of Input(Predicted) must be equal to the" + "dimensions of Input(Labels), but received dimensions of " + "Input(Predicted)" + "is [%s], received dimensions of Input(Labels) is [%s].", + pred_dims, label_dims)); } PADDLE_ENFORCE_EQ(pred_dims.size(), 2, - "The rank of Input(Predicted) must be 2 and the shape is " - "[batch_size, 1]."); + platform::errors::InvalidArgument( + "The dimensions of Input(Predicted) must be 2," + "But received dimensions of Input(Predicted)" + "is [%d]", + pred_dims.size())); if (ctx->IsRuntime()) { - PADDLE_ENFORCE_EQ(pred_dims[1], 1, - "Each row of Input(Predicted) contains a real value, " - "so the 2nd dimension of Input(X) must be 1."); + PADDLE_ENFORCE_EQ( + pred_dims[1], 1, + platform::errors::InvalidArgument( + "Each row of Input(Predicted) contains a real value, " + "so the 2nd dimension of Input(X) must be 1," + "But got [%d]", + pred_dims[1])); } ctx->SetOutputDim("Loss", {pred_dims[0], 1}); ctx->ShareLoD("Predicted", "Loss"); @@ -87,18 +99,25 @@ class LogLossGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("Predicted"), - "Input(Predicted) should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Labels"), - "Input(Labels) should not be null."); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")), - "Input(Loss@GRAD) should not be null."); - PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Predicted")), - "Output(Predicted@GRAD) should not be null."); + OP_INOUT_CHECK(ctx->HasInput("Predicted"), "Input", "Predicted", + "LogLossGrad"); + OP_INOUT_CHECK(ctx->HasInput("Labels"), "Input", "Labels", "LogLossGrad"); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Loss")), "Input", + framework::GradVarName("Loss"), "LogLossGrad"); + OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Predicted")), + "Output", framework::GradVarName("Predicted"), + "LogLossGrad"); auto pred_dims = ctx->GetInputDim("Predicted"); auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss")); - PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims); + PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims, + platform::errors::InvalidArgument( + "The dimensions of loss_grad must be equal to the " + "dimensions of Predicted," + "But received dimensions of loss_grad is [%s], " + "received Predicted is " + "[%s]", + loss_grad_dims, pred_dims)); auto pred_grad_name = framework::GradVarName("Predicted"); ctx->SetOutputDim(pred_grad_name, pred_dims); diff --git a/paddle/fluid/operators/random_crop_op.cc b/paddle/fluid/operators/random_crop_op.cc index f12ea0275d..bec4e924c2 100644 --- a/paddle/fluid/operators/random_crop_op.cc +++ b/paddle/fluid/operators/random_crop_op.cc @@ -27,7 +27,11 @@ class RandomCropOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_GT( x_dim.size(), static_cast(shape.size()), platform::errors::InvalidArgument( - "Rank of Input(X) must be equal to length of Attr(shape)")); + "The dimensions of Input(X) must be greater than the length of " + "Attr(shape)," + "But received dimensions of Input(X) is [%d], receivecd length" + "of Attr(shape) is [%d].", + x_dim.size(), static_cast(shape.size()))); auto out_dim = framework::vectorize(x_dim); for (size_t i = 1; i <= shape.size(); ++i) { size_t x_i = x_dim.size() - i; @@ -36,7 +40,10 @@ class RandomCropOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_GE( x_dim[x_i], shape[shape_i], platform::errors::InvalidArgument( - "Size of Input(X) must be larger than Attr(shape)")); + "The dimensions of Input(X) must be larger than Attr(shape)," + "But received dimensions of Input(X) is [%d], received" + "size of Attr(shape) is [%d].", + x_dim[x_i], shape[shape_i])); } out_dim[x_i] = shape[shape_i]; } diff --git a/paddle/fluid/operators/unpool_op.cc b/paddle/fluid/operators/unpool_op.cc index db172767e7..2da248aaea 100644 --- a/paddle/fluid/operators/unpool_op.cc +++ b/paddle/fluid/operators/unpool_op.cc @@ -83,15 +83,9 @@ class UnpoolOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE_EQ( - ctx->HasInput("X"), true, - platform::errors::NotFound("Input(X) of UnpoolOp is not found.")); - PADDLE_ENFORCE_EQ( - ctx->HasInput("Indices"), true, - platform::errors::NotFound("Input(Indices) of UnpoolOp is not found.")); - PADDLE_ENFORCE_EQ( - ctx->HasOutput("Out"), true, - platform::errors::NotFound("Output(Out) of UnpoolOp is not found.")); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Unpool"); + OP_INOUT_CHECK(ctx->HasInput("Indices"), "Input", "Indices", "Unpool"); + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Unpool"); auto in_x_dims = ctx->GetInputDim("X"); auto in_y_dims = ctx->GetInputDim("Indices"); std::string unpooling_type = @@ -101,8 +95,8 @@ class UnpoolOp : public framework::OperatorWithKernel { std::vector paddings = ctx->Attrs().Get>("paddings"); PADDLE_ENFORCE_EQ(in_x_dims.size() == 4, true, platform::errors::InvalidArgument( - "Unpooling intput(X) must be of 4-dimensional, but " - "received X's dimension is %d.", + "Unpooling Intput(X) must be of 4-dimensional, but " + "received Input(X)'s dimension is %d.", in_x_dims.size())); PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims); @@ -146,12 +140,9 @@ class UnpoolOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE_EQ( - ctx->HasInput("X"), true, - platform::errors::NotFound("Input(X) of UnpoolOpGradOp is not found.")); - PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true, - platform::errors::NotFound( - "Input(X@GRAD) of UnpoolOpGradOp is not found.")); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "UnpoolGrad"); + OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output", + framework::GradVarName("X"), "UnpoolGrad"); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 349ab62a0d..f3ae171a16 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -3376,6 +3376,8 @@ def layer_norm(input, assert in_dygraph_mode( ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!" helper = LayerHelper('layer_norm', **locals()) + check_variable_and_dtype(input, 'input', ['float32', 'float64'], + 'layer_norm') dtype = helper.input_dtype() # create intput and parameters @@ -3480,7 +3482,8 @@ def group_norm(input, """ helper = LayerHelper('group_norm', **locals()) dtype = helper.input_dtype() - + check_variable_and_dtype(input, 'input', ['float32', 'float64'], + 'group_norm') # create intput and parameters inputs = {'X': input} input_shape = input.shape @@ -8145,6 +8148,10 @@ def random_crop(x, shape, seed=None): """ helper = LayerHelper("random_crop", **locals()) + check_variable_and_dtype(x, 'x', + ['float32', 'float64', 'uint8', 'int16', 'int32'], + 'random_crop') + check_type(shape, 'shape', (list, Variable), 'random_crop') dtype = x.dtype out = helper.create_variable_for_type_inference(dtype) if seed is None: @@ -12039,6 +12046,9 @@ def affine_channel(x, """ helper = LayerHelper("affine_channel", **locals()) + check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'affine_channel') + check_type(scale, 'scale', (Variable, type(None)), 'affine_channel') + check_type(bias, 'bias', (Variable, type(None)), 'affine_channel') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( @@ -12357,6 +12367,8 @@ def log_loss(input, label, epsilon=1e-4, name=None): cost = fluid.layers.log_loss(input=prob, label=label) """ helper = LayerHelper('log_loss', **locals()) + check_variable_and_dtype(input, 'input', ['float32'], 'log_loss') + check_variable_and_dtype(label, 'label', ['float32'], 'log_loss') loss = helper.create_variable_for_type_inference(dtype=input.dtype) diff --git a/python/paddle/fluid/tests/unittests/test_affine_channel_op.py b/python/paddle/fluid/tests/unittests/test_affine_channel_op.py index 2ce774a2bd..c524fb6930 100644 --- a/python/paddle/fluid/tests/unittests/test_affine_channel_op.py +++ b/python/paddle/fluid/tests/unittests/test_affine_channel_op.py @@ -21,6 +21,7 @@ import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core +import paddle.fluid as fluid def affine_channel(x, scale, bias, layout): @@ -67,6 +68,38 @@ class TestAffineChannelOp(OpTest): self.layout = 'NCHW' +class TestAffineChannelOpError(unittest.TestCase): + def test_errors(self): + with fluid.program_guard(fluid.Program()): + + def test_x_type(): + input_data = np.random.random(2, 1, 2, 2).astype("float32") + fluid.layers.affine_channel(input_data) + + self.assertRaises(TypeError, test_x_type) + + def test_x_dtype(): + x2 = fluid.layers.data( + name='x2', shape=[None, 1, 2, 2], dtype='int32') + fluid.layers.affine_channel(x2) + + self.assertRaises(TypeError, test_x_dtype) + + def test_scale_type(): + x3 = fluid.layers.data( + name='x3', shape=[None, 1, 2, 2], dtype='float32') + fluid.layers.affine_channel(x3, scale=1) + + self.assertRaises(TypeError, test_scale_type) + + def test_bias_type(): + x4 = fluid.layers.data( + name='x4', shape=[None, 1, 2, 2], dtype='float32') + fluid.layers.affine_channel(x4, bias=1) + + self.assertRaises(TypeError, test_bias_type) + + class TestAffineChannelNHWC(TestAffineChannelOp): def init_test_case(self): self.shape = [2, 12, 12, 100] diff --git a/python/paddle/fluid/tests/unittests/test_group_norm_op.py b/python/paddle/fluid/tests/unittests/test_group_norm_op.py index 716019f3d1..0ac8def94d 100644 --- a/python/paddle/fluid/tests/unittests/test_group_norm_op.py +++ b/python/paddle/fluid/tests/unittests/test_group_norm_op.py @@ -40,6 +40,26 @@ def group_norm_naive(x, scale, bias, epsilon, groups, data_layout): return output, mean.reshape((N, G)), var.reshape((N, G)) +class TestGroupNormOpError(unittest.TestCase): + def test_errors(self): + with fluid.program_guard(fluid.Program(), fluid.Program()): + + def test_x_type(): + input = np.random.random(2, 100, 3, 5).astype('float32') + goups = 2 + fluid.layers.group_norm(input, groups) + + self.assertRaises(TypeError, test_x_type) + + def test_x_dtype(): + x2 = fluid.layers.data( + name='x2', shape=[2, 100, 3, 5], dtype='int32') + groups = 2 + fluid.layers.group_norm(x2, groups) + + self.assertRaises(TypeError, test_x_dtype) + + class TestGroupNormOp(OpTest): def setUp(self): self.op_type = "group_norm" diff --git a/python/paddle/fluid/tests/unittests/test_log_loss_op.py b/python/paddle/fluid/tests/unittests/test_log_loss_op.py index 27da4d1816..0c57c0addf 100644 --- a/python/paddle/fluid/tests/unittests/test_log_loss_op.py +++ b/python/paddle/fluid/tests/unittests/test_log_loss_op.py @@ -17,6 +17,7 @@ from __future__ import print_function import unittest import numpy as np from op_test import OpTest +import paddle.fluid as fluid def sigmoid_array(x): @@ -49,5 +50,34 @@ class TestLogLossOp(OpTest): self.check_grad(['Predicted'], 'Loss', max_relative_error=0.03) +class TestLogLossOpError(unittest.TestCase): + def test_errors(self): + with fluid.program_guard(fluid.Program()): + + def test_x_type(): + input_data = np.random.random(100, 1).astype("float32") + fluid.layers.log_loss(input_data) + + self.assertRaises(TypeError, test_x_type) + + def test_x_dtype(): + x2 = fluid.layers.data(name='x2', shape=[100, 1], dtype='int32') + fluid.layers.log_loss(x2) + + self.assertRaises(TypeError, test_x_dtype) + + def test_label_type(): + input_data = np.random.random(100, 1).astype("float32") + fluid.layers.log_loss(input_data) + + self.assertRaises(TypeError, test_label_type) + + def test_label_dtype(): + x2 = fluid.layers.data(name='x2', shape=[100, 1], dtype='int32') + fluid.layers.log_loss(x2) + + self.assertRaises(TypeError, test_label_dtype) + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_random_crop_op.py b/python/paddle/fluid/tests/unittests/test_random_crop_op.py index db65b9e3e9..98e060f69d 100644 --- a/python/paddle/fluid/tests/unittests/test_random_crop_op.py +++ b/python/paddle/fluid/tests/unittests/test_random_crop_op.py @@ -18,6 +18,7 @@ import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest +import paddle.fluid as fluid class TestRandomCropOp(OpTest): @@ -45,5 +46,30 @@ class TestRandomCropOp(OpTest): self.assertIn(True, is_equal) +class TestRandomCropOpError(unittest.TestCase): + def test_errors(self): + with fluid.program_guard(fluid.Program()): + + def test_x_type(): + input_data = np.random.random(2, 3, 256, 256).astype("float32") + fluid.layers.random_crop(input_data) + + self.assertRaises(TypeError, test_x_type) + + def test_x_dtype(): + x2 = fluid.layers.data( + name='x2', shape=[None, 3, 256, 256], dtype='float16') + fluid.layers.random_crop(x2) + + self.assertRaises(TypeError, test_x_dtype) + + def test_shape_type(): + x3 = fluid.layers.data( + name='x3', shape=[None, 3, 256, 256], dtype='float32') + fluid.layers.random_crop(x3, shape=1) + + self.assertRaises(TypeError, test_shape_type) + + if __name__ == "__main__": unittest.main() -- GitLab