提交 33c8607e 编写于 作者: D dengkaipeng

fix doc. test=develop

上级 00e822d2
...@@ -328,7 +328,7 @@ paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=Non ...@@ -328,7 +328,7 @@ paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=Non
paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '032d0f4b7d8f6235ee5d91e473344f0e')) paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '032d0f4b7d8f6235ee5d91e473344f0e'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0e5ac2507723a0b5adec473f9556799b')) paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0e5ac2507723a0b5adec473f9556799b'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '991e934c3e09abf0edec7c9c978b4691')) paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '991e934c3e09abf0edec7c9c978b4691'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '991e934c3e09abf0edec7c9c978b4691')) paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '170091cef6ebfcba6e54c55b496d0021'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '397e9e02b451d99c56e20f268fa03f2e')) paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '397e9e02b451d99c56e20f268fa03f2e'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0')) paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d')) paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d'))
......
...@@ -83,7 +83,7 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -83,7 +83,7 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("ImgSize", AddInput("ImgSize",
"The image size tensor of YoloBox operator, " "The image size tensor of YoloBox operator, "
"This is a 2-D tensor with shape of [N, 2]. This tensor holds " "This is a 2-D tensor with shape of [N, 2]. This tensor holds "
"height and width of each input image using for resize output " "height and width of each input image used for resizing output "
"box in input image scale."); "box in input image scale.");
AddOutput("Boxes", AddOutput("Boxes",
"The output tensor of detection boxes of YoloBox operator, " "The output tensor of detection boxes of YoloBox operator, "
...@@ -117,9 +117,9 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -117,9 +117,9 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
The output of previous network is in shape [N, C, H, W], while H and W The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict should be the same, H and W specify the grid size, each grid point predict
given number boxes, this given number, which following will be represented as S, given number boxes, this given number, which following will be represented as S,
is specified by the number of anchors, In the second dimension(the channel is specified by the number of anchors. In the second dimension(the channel
dimension), C should be equal to S * (class_num + 5), class_num is the object dimension), C should be equal to S * (5 + class_num), class_num is the object
category number of source dataset(such as 80 in coco dataset), so in the category number of source dataset(such as 80 in coco dataset), so the
second(channel) dimension, apart from 4 box location coordinates x, y, w, h, second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
also includes confidence score of the box and class one-hot key of each anchor also includes confidence score of the box and class one-hot key of each anchor
box. box.
...@@ -143,10 +143,10 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -143,10 +143,10 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
in the equation above, :math:`c_x, c_y` is the left top corner of current grid in the equation above, :math:`c_x, c_y` is the left top corner of current grid
and :math:`p_w, p_h` is specified by anchors. and :math:`p_w, p_h` is specified by anchors.
The logistic regression value of the 5rd channel of each anchor prediction boxes The logistic regression value of the 5th channel of each anchor prediction boxes
represent the confidence score of each prediction box, and the logistic represents the confidence score of each prediction box, and the logistic
regression value of the last :attr:`class_num` channels of each anchor prediction regression value of the last :attr:`class_num` channels of each anchor prediction
boxes represent the classifcation scores. Boxes with confidence scores less than boxes represents the classifcation scores. Boxes with confidence scores less than
:attr:`conf_thresh` should be ignored, and box final scores is the product of :attr:`conf_thresh` should be ignored, and box final scores is the product of
confidence scores and classification scores. confidence scores and classification scores.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册