Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
33185000
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
33185000
编写于
12月 24, 2021
作者:
zhouweiwei2014
提交者:
GitHub
12月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add new API/OP:paddle.Tensor.exponential_ (#38256)
* add new API/OP:paddle.Tensor.exponential_ * fix CI
上级
c396ee65
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
684 addition
and
3 deletion
+684
-3
paddle/fluid/operators/distribution_helper.h
paddle/fluid/operators/distribution_helper.h
+197
-0
paddle/fluid/operators/exponential_op.cc
paddle/fluid/operators/exponential_op.cc
+137
-0
paddle/fluid/operators/exponential_op.cu
paddle/fluid/operators/exponential_op.cu
+47
-0
paddle/fluid/operators/exponential_op.h
paddle/fluid/operators/exponential_op.h
+42
-0
python/paddle/fluid/tests/unittests/test_exponential_op.py
python/paddle/fluid/tests/unittests/test_exponential_op.py
+210
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+2
-0
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+49
-3
未找到文件。
paddle/fluid/operators/distribution_helper.h
0 → 100644
浏览文件 @
33185000
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef __NVCC__
#include <curand_kernel.h>
#endif
#ifdef __HIPCC__
#include <hiprand_kernel.h>
#endif
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
distribution
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
struct
exponential_transform
{
explicit
exponential_transform
(
T
lambda
)
:
lambda_
(
lambda
)
{}
HOSTDEVICE
inline
T
operator
()(
T
val
)
const
{
#if defined(__NVCC__) || defined(__HIPCC__)
if
(
std
::
is_same
<
T
,
double
>::
value
)
{
return
static_cast
<
T
>
(
-
1.0
)
/
lambda_
*
log
(
val
);
}
else
{
return
static_cast
<
T
>
(
-
1.0
)
/
lambda_
*
__logf
(
val
);
}
#else
return
static_cast
<
T
>
(
-
1.0
)
/
lambda_
*
std
::
log
(
static_cast
<
T
>
(
1.0
)
-
val
);
#endif
}
private:
T
lambda_
;
};
#if defined(__NVCC__) || defined(__HIPCC__)
template
<
typename
T
>
struct
uniform_distribution
;
template
<
typename
T
>
struct
normal_distribution
;
#if defined(__NVCC__)
template
<
>
struct
uniform_distribution
<
float
>
{
__device__
inline
float4
operator
()(
curandStatePhilox4_32_10_t
*
state
)
const
{
return
curand_uniform4
(
state
);
}
static
constexpr
int
kReturnsCount
=
4
;
};
template
<
>
struct
uniform_distribution
<
double
>
{
__device__
inline
double2
operator
()(
curandStatePhilox4_32_10_t
*
state
)
const
{
return
curand_uniform2_double
(
state
);
}
static
constexpr
int
kReturnsCount
=
2
;
};
template
<
>
struct
normal_distribution
<
float
>
{
__device__
inline
float4
operator
()(
curandStatePhilox4_32_10_t
*
state
)
const
{
return
curand_normal4
(
state
);
}
static
constexpr
int
kReturnsCount
=
4
;
};
template
<
>
struct
normal_distribution
<
double
>
{
__device__
inline
double2
operator
()(
curandStatePhilox4_32_10_t
*
state
)
const
{
return
curand_normal2_double
(
state
);
}
static
constexpr
int
kReturnsCount
=
2
;
};
#else
template
<
>
struct
uniform_distribution
<
float
>
{
__device__
inline
float4
operator
()(
hiprandStatePhilox4_32_10_t
*
state
)
const
{
return
hiprand_uniform4
(
state
);
}
static
constexpr
int
kReturnsCount
=
4
;
};
template
<
>
struct
uniform_distribution
<
double
>
{
__device__
inline
double2
operator
()(
hiprandStatePhilox4_32_10_t
*
state
)
const
{
return
hiprand_uniform2_double
(
state
);
}
static
constexpr
int
kReturnsCount
=
2
;
};
template
<
>
struct
normal_distribution
<
float
>
{
__device__
inline
float4
operator
()(
hiprandStatePhilox4_32_10_t
*
state
)
const
{
return
hiprand_normal4
(
state
);
}
static
constexpr
int
kReturnsCount
=
4
;
};
template
<
>
struct
normal_distribution
<
double
>
{
__device__
inline
double2
operator
()(
hiprandStatePhilox4_32_10_t
*
state
)
const
{
return
hiprand_normal2_double
(
state
);
}
static
constexpr
int
kReturnsCount
=
2
;
};
#endif
template
<
typename
T
,
typename
DistOp
,
typename
TransformOp
>
__global__
void
DistributionKernel
(
size_t
size
,
uint64_t
seed
,
uint64_t
offset
,
DistOp
dist
,
TransformOp
trans
,
T
*
out_data
)
{
size_t
idx
=
static_cast
<
size_t
>
(
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
);
int32_t
returns_count
=
DistOp
::
kReturnsCount
;
#if defined(__NVCC__)
curandStatePhilox4_32_10_t
state
;
curand_init
(
seed
,
idx
,
offset
,
&
state
);
#else
hiprandStatePhilox4_32_10_t
state
;
hiprand_init
(
seed
,
idx
,
offset
,
&
state
);
#endif
size_t
total_thread
=
gridDim
.
x
*
blockDim
.
x
;
for
(
size_t
i
=
idx
;
i
<
size
;
i
+=
total_thread
*
returns_count
)
{
auto
random_tuple
=
dist
(
&
state
);
for
(
size_t
j
=
0
;
j
<
returns_count
;
j
++
)
{
size_t
index
=
i
+
j
*
total_thread
;
if
(
index
<
size
)
{
auto
random
=
static_cast
<
T
>
((
&
random_tuple
.
x
)[
j
]);
out_data
[
index
]
=
trans
(
random
);
}
}
}
}
template
<
typename
T
,
typename
DistOp
,
typename
TransformOp
>
void
distribution_and_transform
(
const
platform
::
CUDADeviceContext
&
dev_ctx
,
Tensor
*
out
,
DistOp
dist
,
TransformOp
trans
)
{
T
*
out_data
=
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
auto
size
=
out
->
numel
();
int64_t
device_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
dev_ctx
.
GetPlace
()).
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
size_t
block_size
=
256
;
size_t
expect_grid_size
=
(
size
+
block_size
-
1
)
/
block_size
;
const
auto
&
prop
=
platform
::
GetDeviceProperties
(
device_id
);
size_t
max_grid_size
=
(
prop
.
maxThreadsPerMultiProcessor
/
block_size
)
*
prop
.
multiProcessorCount
;
size_t
grid_size
=
expect_grid_size
>
max_grid_size
?
max_grid_size
:
expect_grid_size
;
size_t
total_thread
=
block_size
*
grid_size
;
size_t
curand4_loop_times
=
(
size
+
4
*
total_thread
-
1
)
/
(
4
*
total_thread
);
// 'increment' shoulde be multiple of 4
uint64_t
increment
=
curand4_loop_times
*
4
;
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
increment
);
uint64_t
seed
=
seed_offset
.
first
;
uint64_t
offset
=
seed_offset
.
second
;
DistributionKernel
<
T
,
DistOp
,
TransformOp
><<<
grid_size
,
block_size
,
0
,
dev_ctx
.
stream
()
>>>
(
size
,
seed
,
offset
,
dist
,
trans
,
out_data
);
}
#endif
}
// namespace distribution
}
// namespace paddle
paddle/fluid/operators/exponential_op.cc
0 → 100644
浏览文件 @
33185000
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/exponential_op.h"
namespace
paddle
{
namespace
operators
{
class
ExponentialOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"ExponentialOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"ExponentialOp"
);
auto
dim
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
"Out"
,
dim
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
};
class
ExponentialOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddComment
(
R"DOC(
This operator fills the input tensor with random values sampled from a
exponential distribution.
)DOC"
);
AddInput
(
"X"
,
"The input tensor."
);
AddOutput
(
"Out"
,
"The output tensor of exponential OP."
);
AddAttr
<
float
>
(
"lambda"
,
"lambd parameter of exponential distribution. [default 1.0]."
)
.
SetDefault
(
1.0
f
);
}
};
class
ExponentialOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
GetInputOutputWithSameType
()
const
override
{
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>
m
{{
"X"
,
/*->*/
"Out"
}};
return
m
;
}
};
template
<
typename
T
>
class
ExponentialKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
lambda
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"lambda"
));
int64_t
size
=
out
->
numel
();
auto
gen
=
framework
::
DefaultCPUGenerator
();
auto
engine
=
gen
->
GetCPUEngine
();
std
::
uniform_real_distribution
<
T
>
uniform
(
0.0
,
1.0
);
distribution
::
exponential_transform
<
T
>
trans
(
lambda
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
out_data
[
i
]
=
trans
(
uniform
(
*
engine
));
}
}
};
class
ExponentialGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out_Grad"
,
"ExponentialGradOp"
);
auto
dout_dim
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dout_dim
);
}
};
template
<
typename
T
>
class
ExponentialGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
retv
)
const
override
{
retv
->
SetType
(
"exponential_grad"
);
retv
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
retv
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
retv
->
SetAttrMap
(
this
->
Attrs
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
DECLARE_INPLACE_OP_INFERER
(
ExponentialInferer
,
{
"X"
,
"Out"
});
DECLARE_INPLACE_OP_INFERER
(
ExponentialGradInferer
,
{
paddle
::
framework
::
GradVarName
(
"Out"
),
paddle
::
framework
::
GradVarName
(
"X"
)});
REGISTER_OPERATOR
(
exponential
,
ops
::
ExponentialOp
,
ops
::
ExponentialOpMaker
,
ops
::
ExponentialOpInferVarType
,
ops
::
ExponentialGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
ExponentialGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
ExponentialInferer
);
REGISTER_OPERATOR
(
exponential_grad
,
ops
::
ExponentialGradOp
,
ExponentialGradInferer
);
REGISTER_OP_CPU_KERNEL
(
exponential
,
ops
::
ExponentialKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
ExponentialKernel
<
plat
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
exponential_grad
,
ops
::
ExponentialGradKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
ExponentialGradKernel
<
plat
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/exponential_op.cu
0 → 100644
浏览文件 @
33185000
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/exponential_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ExponentialKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
Tensor
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
&
dev_cxt
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
T
lambda
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"lambda"
));
distribution
::
uniform_distribution
<
T
>
dist
;
distribution
::
exponential_transform
<
T
>
trans
(
lambda
);
distribution
::
distribution_and_transform
<
T
>
(
dev_cxt
,
out
,
dist
,
trans
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
exponential
,
ops
::
ExponentialKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ExponentialKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
exponential_grad
,
ops
::
ExponentialGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ExponentialGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/exponential_op.h
0 → 100644
浏览文件 @
33185000
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/distribution_helper.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
ExponentialKernel
;
template
<
typename
DeviceContext
,
typename
T
>
class
ExponentialGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
functor
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
functor
(
dev_ctx
,
dx
,
static_cast
<
T
>
(
0
));
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_exponential_op.py
0 → 100644
浏览文件 @
33185000
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
numpy
as
np
from
op_test
import
OpTest
paddle
.
enable_static
()
class
TestExponentialOp1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"exponential"
self
.
config
()
self
.
attrs
=
{
"lambda"
:
self
.
lam
}
self
.
inputs
=
{
'X'
:
np
.
empty
([
1024
,
1024
],
dtype
=
self
.
dtype
)}
self
.
outputs
=
{
'Out'
:
np
.
ones
([
1024
,
1024
],
dtype
=
self
.
dtype
)}
def
config
(
self
):
self
.
lam
=
0.5
self
.
dtype
=
"float64"
def
test_check_output
(
self
):
self
.
check_output_customized
(
self
.
verify_output
)
def
verify_output
(
self
,
outs
):
hist1
,
_
=
np
.
histogram
(
outs
[
0
],
range
=
(
0
,
5
))
hist1
=
hist1
.
astype
(
"float32"
)
hist1
=
hist1
/
float
(
outs
[
0
].
size
)
data_np
=
np
.
random
.
exponential
(
1.
/
self
.
lam
,
[
1024
,
1024
])
hist2
,
_
=
np
.
histogram
(
data_np
,
range
=
(
0
,
5
))
hist2
=
hist2
.
astype
(
"float32"
)
hist2
=
hist2
/
float
(
data_np
.
size
)
self
.
assertTrue
(
np
.
allclose
(
hist1
,
hist2
,
rtol
=
0.02
),
"actual: {}, expected: {}"
.
format
(
hist1
,
hist2
))
def
test_check_grad_normal
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
user_defined_grads
=
[
np
.
zeros
(
[
1024
,
1024
],
dtype
=
self
.
dtype
)],
user_defined_grad_outputs
=
[
np
.
random
.
rand
(
1024
,
1024
).
astype
(
self
.
dtype
)
])
class
TestExponentialOp2
(
TestExponentialOp1
):
def
config
(
self
):
self
.
lam
=
0.25
self
.
dtype
=
"float32"
class
TestExponentialAPI
(
unittest
.
TestCase
):
def
test_static
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
x_np
=
np
.
full
([
10
,
10
],
-
1.
)
x
=
paddle
.
static
.
data
(
name
=
"X"
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
x
.
exponential_
(
1.0
)
exe
=
paddle
.
static
.
Executor
()
out
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
x_np
},
fetch_list
=
[
x
])
self
.
assertTrue
(
np
.
min
(
out
)
>=
0
)
def
test_dygraph
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
full
([
10
,
10
],
-
1.
,
dtype
=
'float32'
)
x
.
exponential_
(
0.5
)
self
.
assertTrue
(
np
.
min
(
x
.
numpy
())
>=
0
)
paddle
.
enable_static
()
# Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
def
test_fixed_random_number
(
self
):
if
not
paddle
.
is_compiled_with_cuda
():
return
# Note(zhouwei): The Number of threads is determined by
# 'multiProcessorCount * maxThreadsPerMultiProcessor'. So, different
# GPU have different number of threads, which result in different
# random value. Only test on V100 GPU here.
if
not
"V100"
in
paddle
.
device
.
cuda
.
get_device_name
():
return
print
(
"Test Fixed Random number on V100 GPU------>"
)
paddle
.
disable_static
()
paddle
.
set_device
(
'gpu'
)
paddle
.
seed
(
2021
)
x
=
paddle
.
empty
([
64
,
3
,
1024
,
1024
],
dtype
=
"float32"
)
x
.
exponential_
(
1.0
)
x_np
=
x
.
numpy
()
expect
=
[
0.80073667
,
0.2249291
,
0.07734892
,
1.25392
,
0.14013891
,
0.45736602
,
1.9735607
,
0.30490234
,
0.57100505
,
0.8115938
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
0
,
0
,
0
,
0
:
10
],
expect
))
expect
=
[
1.4296371e+00
,
9.5411777e-01
,
5.2575850e-01
,
2.4805880e-01
,
1.2322118e-04
,
8.4604341e-01
,
2.1111444e-01
,
1.4143821e+00
,
2.8194717e-01
,
1.1360573e+00
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
16
,
1
,
300
,
200
:
210
],
expect
))
expect
=
[
1.3448033
,
0.35146526
,
1.7380928
,
0.32012638
,
0.10396296
,
0.51344526
,
0.15308502
,
0.18712929
,
0.03888268
,
0.20771872
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
32
,
1
,
600
,
500
:
510
],
expect
))
expect
=
[
0.5107464
,
0.20970327
,
2.1986802
,
1.580056
,
0.31036147
,
0.43966478
,
0.9056133
,
0.30119267
,
1.4797124
,
1.4319834
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
48
,
2
,
900
,
800
:
810
],
expect
))
expect
=
[
3.4640615
,
1.1019983
,
0.41195083
,
0.22681557
,
0.291846
,
0.53617656
,
1.5791925
,
2.4645927
,
0.04094889
,
0.9057725
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
63
,
2
,
1023
,
1000
:
1010
],
expect
))
x
=
paddle
.
empty
([
10
,
10
],
dtype
=
"float32"
)
x
.
exponential_
(
3.0
)
x_np
=
x
.
numpy
()
expect
=
[
0.02831675
,
0.1691551
,
0.6798956
,
0.69347525
,
0.0243443
,
0.22180498
,
0.30574575
,
0.9839696
,
0.2834912
,
0.59420055
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
5
,
0
:
10
],
expect
))
x
=
paddle
.
empty
([
16
,
2
,
1024
,
768
],
dtype
=
"float64"
)
x
.
exponential_
(
0.25
)
x_np
=
x
.
numpy
()
expect
=
[
10.0541229
,
12.67860643
,
1.09850734
,
7.35289643
,
2.65471225
,
3.86217432
,
2.97902086
,
2.92744479
,
2.67927152
,
0.19667352
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
0
,
0
,
0
,
100
:
110
],
expect
))
expect
=
[
0.68328125
,
3.1454553
,
0.92158376
,
1.95842188
,
1.05296941
,
12.93242051
,
5.20255978
,
3.3588624
,
1.57377174
,
5.73194183
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
4
,
0
,
300
,
190
:
200
],
expect
))
expect
=
[
1.37973974
,
3.45036798
,
7.94625406
,
1.62610973
,
0.31032122
,
4.13596493
,
1.98494535
,
1.13207041
,
8.30592769
,
2.81460147
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
8
,
1
,
600
,
300
:
310
],
expect
))
expect
=
[
2.27710811
,
12.25003028
,
2.96409124
,
4.72405788
,
0.67917249
,
4.35856718
,
0.46870976
,
2.31120149
,
9.61595826
,
4.64446271
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
12
,
1
,
900
,
500
:
510
],
expect
))
expect
=
[
0.95883744
,
1.57316361
,
15.22524512
,
20.49559882
,
13.70008548
,
3.29430143
,
3.90390424
,
0.9146657
,
0.80972249
,
0.33376219
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
15
,
1
,
1023
,
750
:
760
],
expect
))
x
=
paddle
.
empty
([
512
,
768
],
dtype
=
"float64"
)
x
.
exponential_
(
0.3
)
x_np
=
x
.
numpy
()
expect
=
[
8.79266704
,
4.79596009
,
2.75480243
,
6.04670011
,
0.35379556
,
0.76864868
,
3.17428251
,
0.26556859
,
12.22485885
,
10.51690383
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
0
,
200
:
210
],
expect
))
expect
=
[
5.6341126
,
0.52243418
,
5.36410796
,
6.83672002
,
11.9243311
,
5.85985566
,
5.75169548
,
0.13877972
,
6.1348385
,
3.82436519
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
300
,
400
:
410
],
expect
))
expect
=
[
4.94883581
,
0.56345306
,
0.85841585
,
1.92287801
,
6.10036656
,
1.19524847
,
3.64735434
,
5.19618716
,
2.57467974
,
3.49152791
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
500
,
700
:
710
],
expect
))
x
=
paddle
.
empty
([
10
,
10
],
dtype
=
"float64"
)
x
.
exponential_
(
4.0
)
x_np
=
x
.
numpy
()
expect
=
[
0.15713826
,
0.56395964
,
0.0680941
,
0.00316643
,
0.27046853
,
0.19852724
,
0.12776634
,
0.09642974
,
0.51977551
,
1.33739699
]
self
.
assertTrue
(
np
.
allclose
(
x_np
[
5
,
0
:
10
],
expect
))
paddle
.
enable_static
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
33185000
...
...
@@ -227,6 +227,7 @@ from .random import randint # noqa: F401
from
.random
import
randint_like
# noqa: F401
from
.random
import
randperm
# noqa: F401
from
.random
import
poisson
# noqa: F401
from
.random
import
exponential_
# noqa: F401
from
.search
import
argmax
# noqa: F401
from
.search
import
argmin
# noqa: F401
from
.search
import
argsort
# noqa: F401
...
...
@@ -453,6 +454,7 @@ tensor_method_func = [ #noqa
'angle'
,
'moveaxis'
,
'repeat_interleave'
,
'exponential_'
,
]
#this list used in math_op_patch.py for magic_method bind
...
...
python/paddle/tensor/random.py
浏览文件 @
33185000
...
...
@@ -100,13 +100,13 @@ def poisson(x, name=None):
.. code-block:: python
import paddle
paddle.set_device('
g
pu')
paddle.set_device('
c
pu')
paddle.seed(2021)
x = paddle.uniform([2,3], min=1.0, max=5.0)
out = paddle.poisson(x)
# [[
0., 5., 1
.],
# [4.,
3., 0.]])
# [[
2., 1., 4
.],
# [4.,
5., 1.]]
"""
...
...
@@ -980,3 +980,49 @@ def rand(shape, dtype=None, name=None):
"""
return
uniform
(
shape
,
dtype
,
min
=
0.0
,
max
=
1.0
,
name
=
name
)
def
exponential_
(
x
,
lam
=
1.0
,
name
=
None
):
"""
This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.
``lam`` is :math:`\lambda` parameter of Exponential Distribution.
.. math::
f(x) = \lambda e^{-\lambda x}
Args:
x(Tensor): Input tensor. The data type should be float32, float64.
lam(float): :math:`\lambda` parameter of Exponential Distribution.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: Input Tensor ``x``.
Examples:
.. code-block:: python
import paddle
paddle.set_device('cpu')
paddle.seed(100)
x = paddle.empty([2,3])
x.exponential_()
# [[0.80643415, 0.23211166, 0.01169797],
# [0.72520673, 0.45208144, 0.30234432]]
"""
if
in_dygraph_mode
():
return
_C_ops
.
exponential_
(
x
,
"lambda"
,
lam
)
check_variable_and_dtype
(
x
,
"x"
,
[
"float32"
,
"float64"
],
"exponential"
)
helper
=
LayerHelper
(
"exponential"
,
**
locals
())
helper
.
append_op
(
type
=
'exponential'
,
inputs
=
{
"X"
:
x
},
outputs
=
{
'Out'
:
x
},
attrs
=
{
"lambda"
:
lam
})
return
x
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录