Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
31ddaae2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
31ddaae2
编写于
6月 13, 2022
作者:
W
WangXi
提交者:
GitHub
6月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fused_attention fused_feedforward api support Model Tensor Parallel (#42985)
上级
360b8383
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
371 addition
and
574 deletion
+371
-574
python/paddle/fluid/tests/unittests/static_model_parallel_fused_attention.py
.../tests/unittests/static_model_parallel_fused_attention.py
+29
-174
python/paddle/fluid/tests/unittests/static_model_parallel_fused_feedforward.py
...ests/unittests/static_model_parallel_fused_feedforward.py
+25
-262
python/paddle/fluid/tests/unittests/test_fused_attention_op_api.py
...ddle/fluid/tests/unittests/test_fused_attention_op_api.py
+128
-62
python/paddle/incubate/nn/functional/fused_transformer.py
python/paddle/incubate/nn/functional/fused_transformer.py
+6
-2
python/paddle/incubate/nn/layer/fused_transformer.py
python/paddle/incubate/nn/layer/fused_transformer.py
+183
-74
未找到文件。
python/paddle/fluid/tests/unittests/static_model_parallel_fused_attention.py
浏览文件 @
31ddaae2
...
...
@@ -20,156 +20,11 @@ import paddle
import
paddle.fluid
as
fluid
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.distributed.fleet
as
fleet
import
paddle.incubate.nn.functional
as
incubate_f
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
,
check_dtype
from
paddle.fluid.dygraph.layers
import
Layer
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid
import
core
from
paddle.nn.initializer
import
Constant
from
paddle.incubate.nn
import
FusedMultiHeadAttention
paddle
.
enable_static
()
def
_set_var_distributed
(
var
):
if
var
is
None
:
return
var
.
is_distributed
=
True
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
class
ParallelFusedMultiHeadAttention
(
Layer
):
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout_rate
=
0.5
,
attn_dropout_rate
=
0.5
,
kdim
=
None
,
vdim
=
None
,
normalize_before
=
False
,
need_weights
=
False
,
qkv_weight_attr
=
None
,
qkv_bias_attr
=
None
,
linear_weight_attr
=
None
,
linear_bias_attr
=
None
,
pre_ln_scale_attr
=
None
,
pre_ln_bias_attr
=
None
,
ln_scale_attr
=
None
,
ln_bias_attr
=
None
,
epsilon
=
1e-5
,
nranks
=
1
,
ring_id
=-
1
,
name
=
None
):
super
(
ParallelFusedMultiHeadAttention
,
self
).
__init__
()
assert
embed_dim
>
0
,
(
"Expected embed_dim to be greater than 0, "
"but received {}"
.
format
(
embed_dim
))
assert
num_heads
>
0
,
(
"Expected nhead to be greater than 0, "
"but received {}"
.
format
(
num_heads
))
self
.
normalize_before
=
normalize_before
self
.
_dtype
=
self
.
_helper
.
get_default_dtype
()
self
.
_epsilon
=
epsilon
self
.
_ring_id
=
ring_id
self
.
embed_dim
=
embed_dim
self
.
num_heads
=
num_heads
self
.
head_dim
=
embed_dim
//
num_heads
self
.
kdim
=
kdim
self
.
vdim
=
vdim
self
.
need_weights
=
need_weights
assert
self
.
head_dim
*
num_heads
==
embed_dim
,
"embed_dim must be divisible by num_heads"
assert
need_weights
==
False
,
"Only support need_weight is False now."
# tensor model parallel
assert
num_heads
%
nranks
==
0
num_heads
=
num_heads
//
nranks
self
.
qkv_weight
=
self
.
create_parameter
(
shape
=
[
3
,
num_heads
,
self
.
head_dim
,
embed_dim
],
attr
=
qkv_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
qkv_bias
=
self
.
create_parameter
(
shape
=
[
3
,
num_heads
,
self
.
head_dim
],
attr
=
qkv_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
linear_weight
=
self
.
create_parameter
(
shape
=
[
num_heads
*
self
.
head_dim
,
embed_dim
],
attr
=
linear_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
linear_bias
=
self
.
create_parameter
(
shape
=
[
embed_dim
],
attr
=
linear_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
# tensor model parallel
if
nranks
>
1
:
assert
ring_id
!=
-
1
# column parallel
_set_var_distributed
(
self
.
qkv_weight
)
_set_var_distributed
(
self
.
qkv_bias
)
# row parallel
_set_var_distributed
(
self
.
linear_weight
)
if
normalize_before
:
self
.
pre_ln_scale
=
self
.
create_parameter
(
attr
=
pre_ln_scale_attr
,
shape
=
[
embed_dim
],
default_initializer
=
Constant
(
value
=
1.0
))
self
.
pre_ln_bias
=
self
.
create_parameter
(
attr
=
pre_ln_bias_attr
,
shape
=
[
embed_dim
],
is_bias
=
True
)
self
.
ln_scale
=
None
self
.
ln_bias
=
None
else
:
self
.
pre_ln_scale
=
None
self
.
pre_ln_bias
=
None
self
.
ln_scale
=
self
.
create_parameter
(
attr
=
ln_scale_attr
,
shape
=
[
embed_dim
],
default_initializer
=
Constant
(
value
=
1.0
))
self
.
ln_bias
=
self
.
create_parameter
(
attr
=
ln_bias_attr
,
shape
=
[
embed_dim
],
is_bias
=
True
)
self
.
dropout_rate
=
dropout_rate
self
.
attn_dropout_rate
=
attn_dropout_rate
self
.
name
=
name
def
forward
(
self
,
query
,
key
=
None
,
value
=
None
,
attn_mask
=
None
,
cache
=
None
):
out
=
incubate_f
.
fused_multi_head_attention
(
x
=
query
,
qkv_weight
=
self
.
qkv_weight
,
linear_weight
=
self
.
linear_weight
,
pre_layer_norm
=
self
.
normalize_before
,
pre_ln_scale
=
self
.
pre_ln_scale
,
pre_ln_bias
=
self
.
pre_ln_bias
,
ln_scale
=
self
.
ln_scale
,
ln_bias
=
self
.
ln_bias
,
pre_ln_epsilon
=
self
.
_epsilon
,
qkv_bias
=
self
.
qkv_bias
,
linear_bias
=
self
.
linear_bias
,
attn_mask
=
attn_mask
,
dropout_rate
=
self
.
dropout_rate
,
attn_dropout_rate
=
self
.
attn_dropout_rate
,
ln_epsilon
=
self
.
_epsilon
,
training
=
self
.
training
,
ring_id
=
self
.
_ring_id
,
name
=
self
.
name
)
return
out
def
get_param_attr
(
weight
,
bias
):
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
weight
))
...
...
@@ -208,40 +63,40 @@ def create_model(data, rank):
qkv_w_attr
,
qkv_b_attr
=
get_param_attr
(
col_qkv_w
,
col_qkv_b
)
linear_w_attr
,
linear_b_attr
=
get_param_attr
(
row_linear_w
,
linear_b
)
attn
=
Parallel
FusedMultiHeadAttention
(
hidden
,
n_head
,
dropout_rate
=
0.0
,
attn_dropout_rate
=
0.0
,
normalize_before
=
False
,
qkv_weight_attr
=
qkv_w_attr
,
qkv_bias_attr
=
qkv_b_attr
,
linear_weight_attr
=
linear_w_attr
,
linear_bias_attr
=
linear_b_attr
,
pre_ln_scale_attr
=
pre_ln_w_attr
,
pre_ln_bias_attr
=
pre_ln_b_attr
,
ln_scale_attr
=
pre_ln_w_attr
,
ln_bias_attr
=
pre_ln_b_attr
,
nranks
=
MODEL_PARALLEL_SIZE
,
ring_id
=
0
)
attn
=
FusedMultiHeadAttention
(
hidden
,
n_head
,
dropout_rate
=
0.0
,
attn_dropout_rate
=
0.0
,
normalize_before
=
False
,
qkv_weight_attr
=
qkv_w_attr
,
qkv_bias_attr
=
qkv_b_attr
,
linear_weight_attr
=
linear_w_attr
,
linear_bias_attr
=
linear_b_attr
,
pre_ln_scale_attr
=
pre_ln_w_attr
,
pre_ln_bias_attr
=
pre_ln_b_attr
,
ln_scale_attr
=
pre_ln_w_attr
,
ln_bias_attr
=
pre_ln_b_attr
,
nranks
=
MODEL_PARALLEL_SIZE
,
ring_id
=
0
)
result
=
attn
(
data
)
else
:
pre_ln_w_attr
,
pre_ln_b_attr
=
get_param_attr
(
pre_ln_w
,
pre_ln_b
)
qkv_w_attr
,
qkv_b_attr
=
get_param_attr
(
qkv_w
,
qkv_b
)
linear_w_attr
,
linear_b_attr
=
get_param_attr
(
linear_w
,
linear_b
)
attn
=
Parallel
FusedMultiHeadAttention
(
hidden
,
n_head
,
dropout_rate
=
0.0
,
attn_dropout_rate
=
0.0
,
normalize_before
=
False
,
qkv_weight_attr
=
qkv_w_attr
,
qkv_bias_attr
=
qkv_b_attr
,
linear_weight_attr
=
linear_w_attr
,
linear_bias_attr
=
linear_b_attr
,
pre_ln_scale_attr
=
pre_ln_w_attr
,
pre_ln_bias_attr
=
pre_ln_b_attr
,
ln_scale_attr
=
pre_ln_w_attr
,
ln_bias_attr
=
pre_ln_b_attr
)
attn
=
FusedMultiHeadAttention
(
hidden
,
n_head
,
dropout_rate
=
0.0
,
attn_dropout_rate
=
0.0
,
normalize_before
=
False
,
qkv_weight_attr
=
qkv_w_attr
,
qkv_bias_attr
=
qkv_b_attr
,
linear_weight_attr
=
linear_w_attr
,
linear_bias_attr
=
linear_b_attr
,
pre_ln_scale_attr
=
pre_ln_w_attr
,
pre_ln_bias_attr
=
pre_ln_b_attr
,
ln_scale_attr
=
pre_ln_w_attr
,
ln_bias_attr
=
pre_ln_b_attr
)
result
=
attn
(
data
)
predict
=
paddle
.
sum
(
result
)
...
...
python/paddle/fluid/tests/unittests/static_model_parallel_fused_feedforward.py
浏览文件 @
31ddaae2
...
...
@@ -20,11 +20,7 @@ import paddle
import
paddle.fluid
as
fluid
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
,
check_dtype
from
paddle.fluid.dygraph.layers
import
Layer
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.nn.initializer
import
Constant
from
paddle.incubate.nn
import
FusedFeedForward
paddle
.
enable_static
()
...
...
@@ -34,239 +30,6 @@ IN_SIZE = 2 * MODEL_PARALLEL_SIZE
OUT_SIZE
=
2
*
MODEL_PARALLEL_SIZE
def
fused_feedforward
(
x
,
linear1_weight
,
linear2_weight
,
linear1_bias
=
None
,
linear2_bias
=
None
,
ln1_scale
=
None
,
ln1_bias
=
None
,
ln2_scale
=
None
,
ln2_bias
=
None
,
dropout1_rate
=
0.5
,
dropout2_rate
=
0.5
,
activation
=
"relu"
,
ln1_epsilon
=
1e-5
,
ln2_epsilon
=
1e-5
,
pre_layer_norm
=
False
,
training
=
True
,
mode
=
'upscale_in_train'
,
ring_id
=-
1
,
name
=
None
):
seed
=
None
if
mode
not
in
(
'downscale_in_infer'
,
'upscale_in_train'
):
raise
ValueError
(
"mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
)
mode
=
'downgrade_in_infer'
if
mode
==
'downscale_in_infer'
else
mode
#semantic transfer
helper
=
LayerHelper
(
"fused_feedforward"
)
dtype
=
x
.
dtype
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'fused_feedforward'
)
check_dtype
(
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
'fused_feedforward'
)
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
dropout1_mask
=
helper
.
create_variable_for_type_inference
(
'uint8'
,
stop_gradient
=
True
)
dropout2_mask
=
helper
.
create_variable_for_type_inference
(
'uint8'
,
stop_gradient
=
True
)
ln1_mean
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
ln1_variance
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
ln2_mean
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
ln2_variance
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
linear1_out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
ln1_out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
dropout1_out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
dropout2_out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
if
(
seed
is
None
or
seed
==
0
)
and
helper
.
main_program
.
random_seed
!=
0
:
seed
=
helper
.
main_program
.
random_seed
helper
.
append_op
(
type
=
'fused_feedforward'
,
inputs
=
{
'X'
:
x
,
'Linear1Weight'
:
linear1_weight
,
'Linear1Bias'
:
linear1_bias
,
'Linear2Weight'
:
linear2_weight
,
'Linear2Bias'
:
linear2_bias
,
'Ln1Scale'
:
ln1_scale
,
'Ln1Bias'
:
ln1_bias
,
'Ln2Scale'
:
ln2_scale
,
'Ln2Bias'
:
ln2_bias
,
},
outputs
=
{
'Out'
:
out
,
'Dropout1Mask'
:
dropout1_mask
,
'Dropout2Mask'
:
dropout2_mask
,
'Ln1Mean'
:
ln1_mean
,
'Ln1Variance'
:
ln1_variance
,
'Ln2Mean'
:
ln2_mean
,
'Ln2Variance'
:
ln2_variance
,
'Linear1Out'
:
linear1_out
,
'Ln1Out'
:
ln1_out
,
'Dropout1Out'
:
dropout1_out
,
'Dropout2Out'
:
dropout2_out
,
},
attrs
=
{
'dropout1_rate'
:
dropout1_rate
,
'dropout2_rate'
:
dropout2_rate
,
'act_method'
:
activation
,
'pre_layer_norm'
:
pre_layer_norm
,
'ln1_epsilon'
:
ln1_epsilon
,
'ln2_epsilon'
:
ln2_epsilon
,
'dropout1_is_test'
:
not
training
,
'dropout2_is_test'
:
not
training
,
'dropout1_fix_seed'
:
seed
is
not
None
,
'dropout2_fix_seed'
:
seed
is
not
None
,
'dropout1_seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout2_seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout1_implementation'
:
mode
,
'dropout2_implementation'
:
mode
,
'ring_id'
:
ring_id
,
})
return
out
def
_set_var_distributed
(
var
):
if
var
is
None
:
return
var
.
is_distributed
=
True
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
class
ParallelFusedFeedForward
(
Layer
):
def
__init__
(
self
,
d_model
,
dim_feedforward
,
dropout_rate
=
0.1
,
epsilon
=
1e-05
,
activation
=
"relu"
,
act_dropout_rate
=
None
,
normalize_before
=
False
,
linear1_weight_attr
=
None
,
linear1_bias_attr
=
None
,
linear2_weight_attr
=
None
,
linear2_bias_attr
=
None
,
ln1_scale_attr
=
None
,
ln1_bias_attr
=
None
,
ln2_scale_attr
=
None
,
ln2_bias_attr
=
None
,
nranks
=
1
,
ring_id
=-
1
,
name
=
None
):
super
(
ParallelFusedFeedForward
,
self
).
__init__
()
assert
d_model
>
0
,
(
"Expected d_model to be greater than 0, but received {}"
.
format
(
d_model
))
assert
dim_feedforward
>
0
,
(
"Expected dim_feedforward to be greater than 0, but received {}"
.
format
(
dim_feedforward
))
self
.
_dtype
=
self
.
_helper
.
get_default_dtype
()
self
.
_d_model
=
d_model
assert
dim_feedforward
%
nranks
==
0
dim_feedforward
=
dim_feedforward
//
nranks
self
.
_dim_feedforward
=
dim_feedforward
self
.
_dropout_rate
=
dropout_rate
self
.
_act_dropout_rate
=
dropout_rate
if
act_dropout_rate
is
None
else
act_dropout_rate
self
.
_act_method
=
activation
self
.
_normalize_before
=
normalize_before
self
.
_epsilon
=
epsilon
self
.
_ring_id
=
ring_id
self
.
_linear1_weight
=
self
.
create_parameter
(
shape
=
[
d_model
,
dim_feedforward
],
attr
=
linear1_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_linear1_bias
=
self
.
create_parameter
(
shape
=
[
dim_feedforward
],
attr
=
linear1_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
_linear2_weight
=
self
.
create_parameter
(
shape
=
[
dim_feedforward
,
d_model
],
attr
=
linear2_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_linear2_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
linear2_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
if
nranks
>
1
:
assert
ring_id
!=
-
1
# column parallel
_set_var_distributed
(
self
.
_linear1_weight
)
_set_var_distributed
(
self
.
_linear1_bias
)
_set_var_distributed
(
self
.
_linear2_weight
)
if
normalize_before
:
self
.
_ln1_scale
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln1_scale_attr
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
self
.
_ln1_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln1_bias_attr
,
is_bias
=
True
)
self
.
_ln2_scale
=
None
self
.
_ln2_bias
=
None
else
:
self
.
_ln1_bias
=
None
self
.
_ln2_bias
=
None
self
.
_ln2_scale
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln2_scale_attr
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
self
.
_ln2_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln2_bias_attr
,
is_bias
=
True
)
self
.
name
=
name
def
forward
(
self
,
src
,
cache
=
None
):
out
=
fused_feedforward
(
src
,
self
.
_linear1_weight
,
self
.
_linear2_weight
,
self
.
_linear1_bias
,
self
.
_linear2_bias
,
self
.
_ln1_scale
,
self
.
_ln1_bias
,
self
.
_ln2_scale
,
self
.
_ln2_bias
,
dropout1_rate
=
self
.
_act_dropout_rate
,
dropout2_rate
=
self
.
_dropout_rate
,
activation
=
self
.
_act_method
,
ln1_epsilon
=
self
.
_epsilon
,
ln2_epsilon
=
self
.
_epsilon
,
pre_layer_norm
=
self
.
_normalize_before
,
training
=
self
.
training
,
ring_id
=
self
.
_ring_id
,
name
=
self
.
name
)
return
out
def
get_param_attr
(
weight
,
bias
):
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
weight
))
...
...
@@ -295,19 +58,19 @@ def create_model(data, rank):
w0_attr
,
b0_attr
=
get_param_attr
(
col_w0
,
col_b0
)
w1_attr
,
b1_attr
=
get_param_attr
(
row_w1
,
b1
)
ffn
=
Parallel
FusedFeedForward
(
IN_SIZE
,
OUT_SIZE
,
dropout_rate
=
0.0
,
activation
=
'gelu'
,
normalize_before
=
True
,
linear1_weight_attr
=
w0_attr
,
linear1_bias_attr
=
b0_attr
,
linear2_weight_attr
=
w1_attr
,
linear2_bias_attr
=
b1_attr
,
ln1_scale_attr
=
ln_w_attr
,
ln1_bias_attr
=
ln_b_attr
,
nranks
=
MODEL_PARALLEL_SIZE
,
ring_id
=
0
)
ffn
=
FusedFeedForward
(
IN_SIZE
,
OUT_SIZE
,
dropout_rate
=
0.0
,
activation
=
'gelu'
,
normalize_before
=
True
,
linear1_weight_attr
=
w0_attr
,
linear1_bias_attr
=
b0_attr
,
linear2_weight_attr
=
w1_attr
,
linear2_bias_attr
=
b1_attr
,
ln1_scale_attr
=
ln_w_attr
,
ln1_bias_attr
=
ln_b_attr
,
nranks
=
MODEL_PARALLEL_SIZE
,
ring_id
=
0
)
#ffn.eval()
result
=
ffn
(
data
)
else
:
...
...
@@ -315,17 +78,17 @@ def create_model(data, rank):
w0_attr
,
b0_attr
=
get_param_attr
(
w0
,
b0
)
w1_attr
,
b1_attr
=
get_param_attr
(
w1
,
b1
)
ffn
=
Parallel
FusedFeedForward
(
IN_SIZE
,
OUT_SIZE
,
dropout_rate
=
0.0
,
activation
=
'gelu'
,
normalize_before
=
True
,
linear1_weight_attr
=
w0_attr
,
linear1_bias_attr
=
b0_attr
,
linear2_weight_attr
=
w1_attr
,
linear2_bias_attr
=
b1_attr
,
ln1_scale_attr
=
ln_w_attr
,
ln1_bias_attr
=
ln_b_attr
)
ffn
=
FusedFeedForward
(
IN_SIZE
,
OUT_SIZE
,
dropout_rate
=
0.0
,
activation
=
'gelu'
,
normalize_before
=
True
,
linear1_weight_attr
=
w0_attr
,
linear1_bias_attr
=
b0_attr
,
linear2_weight_attr
=
w1_attr
,
linear2_bias_attr
=
b1_attr
,
ln1_scale_attr
=
ln_w_attr
,
ln1_bias_attr
=
ln_b_attr
)
#ffn.eval()
result
=
ffn
(
data
)
...
...
python/paddle/fluid/tests/unittests/test_fused_attention_op_api.py
浏览文件 @
31ddaae2
...
...
@@ -83,7 +83,7 @@ def compute_reference(pre_layer_norm, query, attn_mask, ln_scale, ln_bias,
if
ln_bias
is
None
:
has_bias
=
False
if
(
pre_layer_norm
)
:
if
pre_layer_norm
:
ln_out
=
layer_norm
(
query
,
True
,
has_bias
,
ln_scale
,
ln_bias
)
num_head
=
qkv_weight
.
shape
[
1
]
...
...
@@ -97,7 +97,7 @@ def compute_reference(pre_layer_norm, query, attn_mask, ln_scale, ln_bias,
if
qkv_bias
is
not
None
:
qkv_bias
=
qkv_bias
.
reshape
(
qkv_bias
.
shape
[
0
]
*
qkv_bias
.
shape
[
1
]
*
qkv_bias
.
shape
[
2
])
if
(
pre_layer_norm
)
:
if
pre_layer_norm
:
ln_out
=
ln_out
.
reshape
(
batch_size
*
seq_len
,
embed_dim
)
qkv
=
fc
(
ln_out
,
qkv_weight
)
if
qkv_bias
is
not
None
:
...
...
@@ -239,12 +239,12 @@ class TestFusedAttentionAPI(unittest.TestCase):
attn_mask_tensor
=
paddle
.
to_tensor
(
self
.
attn_mask
)
else
:
attn_mask_tensor
=
None
fused_attn
=
FusedMultiHeadAttention
(
self
.
embed_dim
,
self
.
num_heads
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
self
.
kdi
m
,
self
.
vdim
,
self
.
pre_layer_norm
,
self
.
need_weight
,
self
.
weight
_attr
,
self
.
bias_attr
)
fused_attn
=
FusedMultiHeadAttention
(
self
.
embed_dim
,
self
.
num_heads
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
self
.
kdim
,
self
.
vdim
,
self
.
pre_layer_nor
m
,
self
.
need_weight
,
self
.
weight_attr
,
self
.
bias_attr
,
self
.
weight_attr
,
self
.
bias_attr
,
self
.
weight_attr
,
self
.
bias
_attr
,
self
.
weight_attr
,
self
.
bias_attr
)
if
self
.
bias_attr
is
not
False
:
qkv_bias
=
np
.
random
.
random
(
fused_attn
.
qkv_bias
.
shape
).
astype
(
'float32'
)
...
...
@@ -260,13 +260,19 @@ class TestFusedAttentionAPI(unittest.TestCase):
if
self
.
bias_attr
is
not
False
:
fused_attn_qkv_bias
=
fused_attn
.
qkv_bias
.
numpy
()
fused_attn_linear_bias
=
fused_attn
.
linear_bias
.
numpy
()
fused_attn_pre_ln_bias
=
fused_attn
.
pre_ln_bias
.
numpy
()
fused_attn_ln_bias
=
fused_attn
.
ln_bias
.
numpy
()
if
self
.
pre_layer_norm
:
fused_attn_pre_ln_bias
=
fused_attn
.
pre_ln_bias
.
numpy
()
fused_attn_ln_bias
=
None
else
:
fused_attn_pre_ln_bias
=
None
fused_attn_ln_bias
=
fused_attn
.
ln_bias
.
numpy
()
ref_out
=
compute_reference
(
self
.
pre_layer_norm
,
self
.
query
,
self
.
attn_mask
,
fused_attn
.
pre_ln_scale
.
numpy
(),
fused_attn_pre_ln_bias
,
fused_attn
.
ln_scale
.
numpy
(),
fused_attn_ln_bias
,
fused_attn
.
pre_ln_scale
.
numpy
()
if
self
.
pre_layer_norm
else
None
,
fused_attn_pre_ln_bias
,
fused_attn
.
ln_scale
.
numpy
()
if
not
self
.
pre_layer_norm
else
None
,
fused_attn_ln_bias
,
fused_attn
.
qkv_weight
.
numpy
(),
fused_attn_qkv_bias
,
fused_attn
.
linear_weight
.
numpy
(),
fused_attn_linear_bias
)
np
.
testing
.
assert_allclose
(
ref_out
,
...
...
@@ -275,12 +281,12 @@ class TestFusedAttentionAPI(unittest.TestCase):
atol
=
self
.
atol
)
def
run_static
(
self
):
fused_attn
=
FusedMultiHeadAttention
(
self
.
embed_dim
,
self
.
num_heads
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
self
.
kdi
m
,
self
.
vdim
,
self
.
pre_layer_norm
,
self
.
need_weight
,
self
.
weight
_attr
,
self
.
bias_attr
)
fused_attn
=
FusedMultiHeadAttention
(
self
.
embed_dim
,
self
.
num_heads
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
self
.
kdim
,
self
.
vdim
,
self
.
pre_layer_nor
m
,
self
.
need_weight
,
self
.
weight_attr
,
self
.
bias_attr
,
self
.
weight_attr
,
self
.
bias_attr
,
self
.
weight_attr
,
self
.
bias
_attr
,
self
.
weight_attr
,
self
.
bias_attr
)
x
=
paddle
.
static
.
data
(
name
=
'X'
,
...
...
@@ -304,58 +310,118 @@ class TestFusedAttentionAPI(unittest.TestCase):
qkv_bias
=
None
linear_bias
=
None
ln_scale
=
None
ln_2_scale
=
None
ln_bias
=
None
ln_2_bias
=
None
if
self
.
has_attn_mask
:
if
self
.
bias_attr
is
False
:
out
,
qkv_weight
,
out_linear_weight
,
ln_scale
,
ln_2_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
ln_scale
])
if
self
.
pre_layer_norm
:
out
,
qkv_weight
,
out_linear_weight
,
ln_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
pre_ln_scale
,
])
else
:
out
,
qkv_weight
,
out_linear_weight
,
ln_2_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
ln_scale
])
else
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
,
ln_2_scale
,
ln_2_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
pre_ln_bias
,
fused_attn
.
ln_scale
,
fused_attn
.
ln_bias
])
if
self
.
pre_layer_norm
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
pre_ln_bias
,
])
else
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_2_scale
,
ln_2_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
ln_scale
,
fused_attn
.
ln_bias
])
else
:
if
self
.
bias_attr
is
False
:
out
,
qkv_weight
,
out_linear_weight
,
ln_scale
,
ln_2_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
ln_scale
])
if
self
.
pre_layer_norm
:
out
,
qkv_weight
,
out_linear_weight
,
ln_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
pre_ln_scale
,
])
else
:
out
,
qkv_weight
,
out_linear_weight
,
ln_2_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
ln_scale
])
else
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
,
ln_2_scale
,
ln_2_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
pre_ln_bias
,
fused_attn
.
ln_scale
,
fused_attn
.
ln_bias
])
if
self
.
pre_layer_norm
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
pre_ln_bias
,
])
else
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_2_scale
,
ln_2_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
ln_scale
,
fused_attn
.
ln_bias
])
return
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
,
ln_2_scale
,
ln_2_bias
def
test_static_api
(
self
):
...
...
python/paddle/incubate/nn/functional/fused_transformer.py
浏览文件 @
31ddaae2
...
...
@@ -45,6 +45,7 @@ def fused_feedforward(x,
pre_layer_norm
=
False
,
training
=
True
,
mode
=
'upscale_in_train'
,
ring_id
=-
1
,
name
=
None
):
r
"""
This is a fusion operator to compute feed forward layer in transformer model architecture.
...
...
@@ -88,6 +89,7 @@ def fused_feedforward(x,
- train: out = input * mask
- inference: out = input * (1.0 - p)
ring_id (int, optional): For distributed forward in tensor model parallel, only support NCCL. Default is -1, means not using tensor parallel.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
...
...
@@ -132,7 +134,8 @@ def fused_feedforward(x,
"dropout1_fix_seed"
,
seed
is
not
None
,
"dropout2_fix_seed"
,
seed
is
not
None
,
"dropout1_seed"
,
seed
if
seed
is
not
None
else
0
,
"dropout2_seed"
,
seed
if
seed
is
not
None
else
0
,
'dropout1_implementation'
,
mode
,
'dropout2_implementation'
,
mode
)
'dropout1_implementation'
,
mode
,
'dropout2_implementation'
,
mode
,
'ring_id'
,
ring_id
)
return
out
helper
=
LayerHelper
(
"fused_feedforward"
)
...
...
@@ -206,7 +209,8 @@ def fused_feedforward(x,
'dropout1_seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout2_seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout1_implementation'
:
mode
,
'dropout2_implementation'
:
mode
'dropout2_implementation'
:
mode
,
'ring_id'
:
ring_id
,
})
return
out
...
...
python/paddle/incubate/nn/layer/fused_transformer.py
浏览文件 @
31ddaae2
...
...
@@ -101,12 +101,12 @@ class FusedBiasDropoutResidualLayerNorm(Layer):
Applies fused_bias_dropout_residual_layer_norm operation.
Parameters:
x (Tensor): The input tensor. It is a tensor with shape
`[batch_size, seq_len, embed_dim]`. The data type should be
float32 or float64.
residual (Tensor, optional): The residual tensor. It is a tensor
with shape `[batch_size, value_length, vdim]`. The data type
should be float32 or float64.
x (Tensor): The input tensor. It is a tensor with shape
`[batch_size, seq_len, embed_dim]`. The data type should be
float32 or float64.
residual (Tensor, optional): The residual tensor. It is a tensor
with shape `[batch_size, value_length, vdim]`. The data type
should be float32 or float64.
Returns:
Tensor|tuple: It is a tensor that has the same shape and data type
\
...
...
@@ -158,15 +158,39 @@ class FusedMultiHeadAttention(Layer):
(True) or post_layer_norm architecture (False). Default False.
need_weights (bool, optional): Indicate whether to return the attention
weights. Now, only False is supported. Default False.
weight_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :code:`ParamAttr`.
bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
If it is set to False, this layer will not have trainable bias parameter.
See usage for details in :code:`ParamAttr`.
qkv_weight_attr(ParamAttr, optional): To specify the weight parameter property
for QKV projection computation. Default: None, which means the default weight
parameter property is used. See usage for details in :code:`ParamAttr`.
qkv_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
for QKV projection computation. The `False` value means the corresponding layer
would not have trainable bias parameter. Default: None, which means the
default bias parameter property is used. See usage for details in :code:`ParamAttr`.
linear_weight_attr(ParamAttr, optional): To specify the weight parameter property
for linear projection computation. Default: None, which means the default weight
parameter property is used. See usage for details in :code:`ParamAttr`.
linear_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
for linear projection computation. The `False` value means the corresponding layer would
not have trainable bias parameter. Default: None, which means the default bias
parameter property is used. See usage for details in :code:`ParamAttr`.
pre_ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
for pre_layer_norm computation. Otherwise, all layers both use it as
`attr` to create parameters. Default: None, which means the default weight
parameter property is used. See usage for details in :code:`ParamAttr`.
pre_ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
for pre_layer_norm computation. The `False` value means the corresponding layer would
not have trainable bias parameter. Default: None, which means the default bias
parameter property is used. See usage for details in :code:`ParamAttr`.
ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
for post_layer_norm computation. Default: None, which means the default weight
parameter property is used. See usage for details in :code:`ParamAttr`.
ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
for post_layer_norm computation. The `False` value means the corresponding layer would
not have trainable bias parameter. Default: None, which means the default bias
parameter property is used. See usage for details in :code:`ParamAttr`.
epsilon (float, optional): The small value added to the variance to prevent
division by zero. Default: 1e-05.
nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
Examples:
...
...
@@ -191,9 +215,17 @@ class FusedMultiHeadAttention(Layer):
vdim
=
None
,
normalize_before
=
False
,
need_weights
=
False
,
weight_attr
=
None
,
bias_attr
=
None
,
qkv_weight_attr
=
None
,
qkv_bias_attr
=
None
,
linear_weight_attr
=
None
,
linear_bias_attr
=
None
,
pre_ln_scale_attr
=
None
,
pre_ln_bias_attr
=
None
,
ln_scale_attr
=
None
,
ln_bias_attr
=
None
,
epsilon
=
1e-5
,
nranks
=
1
,
ring_id
=-
1
,
name
=
None
):
super
(
FusedMultiHeadAttention
,
self
).
__init__
()
...
...
@@ -204,9 +236,8 @@ class FusedMultiHeadAttention(Layer):
self
.
normalize_before
=
normalize_before
self
.
_dtype
=
self
.
_helper
.
get_default_dtype
()
self
.
_weight_attr
=
weight_attr
self
.
_bias_attr
=
bias_attr
self
.
_epsilon
=
epsilon
self
.
_ring_id
=
ring_id
self
.
embed_dim
=
embed_dim
self
.
num_heads
=
num_heads
...
...
@@ -215,41 +246,61 @@ class FusedMultiHeadAttention(Layer):
self
.
vdim
=
vdim
self
.
need_weights
=
need_weights
assert
self
.
head_dim
*
num_heads
==
embed_dim
,
"embed_dim must be divisible by num_heads"
assert
need_weights
==
False
,
"Only support need_weight is False now."
assert
need_weights
is
False
,
"Only support need_weight is False now."
# tensor model parallel
assert
num_heads
%
nranks
==
0
num_heads
=
num_heads
//
nranks
self
.
qkv_weight
=
self
.
create_parameter
(
shape
=
[
3
,
num_heads
,
self
.
head_dim
,
embed_dim
],
attr
=
self
.
_weight_attr
,
attr
=
qkv
_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
qkv_bias
=
self
.
create_parameter
(
shape
=
[
3
,
num_heads
,
self
.
head_dim
],
attr
=
self
.
_bias_attr
,
attr
=
qkv
_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
linear_weight
=
self
.
create_parameter
(
shape
=
[
embed_dim
,
embed_dim
],
attr
=
self
.
_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
linear_weight
=
self
.
create_parameter
(
shape
=
[
num_heads
*
self
.
head_dim
,
embed_dim
],
attr
=
linear_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
linear_bias
=
self
.
create_parameter
(
shape
=
[
embed_dim
],
attr
=
self
.
_bias_attr
,
attr
=
linear
_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
pre_ln_scale
=
self
.
create_parameter
(
attr
=
self
.
_weight_attr
,
shape
=
[
embed_dim
],
default_initializer
=
Constant
(
value
=
1.0
))
self
.
pre_ln_bias
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
# tensor model parallel
if
nranks
>
1
:
assert
ring_id
!=
-
1
# column parallel
_set_var_distributed
(
self
.
qkv_weight
)
_set_var_distributed
(
self
.
qkv_bias
)
# row parallel
_set_var_distributed
(
self
.
linear_weight
)
if
normalize_before
:
self
.
pre_ln_scale
=
self
.
create_parameter
(
attr
=
pre_ln_scale_attr
,
shape
=
[
embed_dim
],
default_initializer
=
Constant
(
value
=
1.0
))
self
.
pre_ln_bias
=
self
.
create_parameter
(
attr
=
pre_ln_bias_attr
,
shape
=
[
embed_dim
],
is_bias
=
True
)
self
.
ln_scale
=
None
self
.
ln_bias
=
None
else
:
self
.
pre_ln_scale
=
None
self
.
pre_ln_bias
=
None
self
.
ln_scale
=
self
.
create_parameter
(
attr
=
ln_scale_attr
,
shape
=
[
embed_dim
],
default_initializer
=
Constant
(
value
=
1.0
))
self
.
ln_bias
=
self
.
create_parameter
(
attr
=
ln_bias_attr
,
shape
=
[
embed_dim
],
is_bias
=
True
)
self
.
ln_scale
=
self
.
create_parameter
(
attr
=
self
.
_weight_attr
,
shape
=
[
embed_dim
],
default_initializer
=
Constant
(
value
=
1.0
))
self
.
ln_bias
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
[
embed_dim
],
is_bias
=
True
)
self
.
dropout_rate
=
dropout_rate
self
.
attn_dropout_rate
=
attn_dropout_rate
...
...
@@ -294,8 +345,6 @@ class FusedMultiHeadAttention(Layer):
# Support bool or int mask
attn_mask
=
_convert_attention_mask
(
attn_mask
,
query
.
dtype
)
assert
cache
==
None
,
"Only support cache is None now."
out
=
incubate_f
.
fused_multi_head_attention
(
x
=
query
,
qkv_weight
=
self
.
qkv_weight
,
...
...
@@ -308,11 +357,13 @@ class FusedMultiHeadAttention(Layer):
pre_ln_epsilon
=
self
.
_epsilon
,
qkv_bias
=
self
.
qkv_bias
,
linear_bias
=
self
.
linear_bias
,
cache_kv
=
cache
,
attn_mask
=
attn_mask
,
dropout_rate
=
self
.
dropout_rate
,
attn_dropout_rate
=
self
.
attn_dropout_rate
,
ln_epsilon
=
self
.
_epsilon
,
training
=
self
.
training
,
ring_id
=
self
.
_ring_id
,
name
=
self
.
name
)
return
out
...
...
@@ -338,14 +389,38 @@ class FusedFeedForward(Layer):
If None, use the value of `dropout_rate`. Default None
normalize_before (bool, optional): Indicate whether to put layer normalization
into, preprocessing or postprocessing. Default False
weight_attr (ParamAttr, optional): The attribute for the learnable weight of this layer.
The default value is None and the weight will be initialized to zero. For detailed
information, please refer to paddle.ParamAttr.
bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias of thi layer.
If it is set to False, no bias will be added to the output. If it is set to None or one
kind of ParamAttr, a bias parameter will be created according to ParamAttr. For detailed
information, please refer to paddle.ParamAttr. The default value is None and the bias
will be initialized to zero.
linear1_weight_attr(ParamAttr, optional): To specify the weight parameter property
for FFN first linear. Default: None, which means the default weight
parameter property is used. See usage for details in :code:`ParamAttr`.
linear1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
for FFN first linear. The `False` value means the corresponding layer would
not have trainable bias parameter. Default: None, which means the default bias
parameter property is used. See usage for details in :code:`ParamAttr`.
linear2_weight_attr(ParamAttr, optional): To specify the weight parameter property
for FFN second linear. Default: None, which means the default weight
parameter property is used. See usage for details in :code:`ParamAttr`.
linear2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
for FFN second linear. The `False` value means the corresponding layer would
not have trainable bias parameter. Default: None, which means the default bias
parameter property is used. See usage for details in :code:`ParamAttr`.
ln1_scale_attr(ParamAttr, optional): To specify the weight parameter property
for FFN pre_layer_norm. Default: None, which means the default weight
parameter property is used. See usage for details in :code:`ParamAttr`.
ln1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
for FFN pre_layer_norm. The `False` value means the corresponding layer would
not have trainable bias parameter. Default: None, which means the default bias
parameter property is used. See usage for details in :code:`ParamAttr`.
ln2_scale_attr(ParamAttr, optional): To specify the weight parameter property
for FFN post_layer_norm. Default: None, which means the default weight
parameter property is used. See usage for details in :code:`ParamAttr`.
ln2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
for FFN layer_norm. The `False` value means the corresponding layer would
not have trainable bias parameter. Default: None, which means the default bias
parameter property is used. See usage for details in :code:`ParamAttr`.
nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
name (str, optional): The default value is None. Normally there is no need for user to set
this property. For more information, please refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
...
...
@@ -369,8 +444,16 @@ class FusedFeedForward(Layer):
activation
=
"relu"
,
act_dropout_rate
=
None
,
normalize_before
=
False
,
weight_attr
=
None
,
bias_attr
=
None
,
linear1_weight_attr
=
None
,
linear1_bias_attr
=
None
,
linear2_weight_attr
=
None
,
linear2_bias_attr
=
None
,
ln1_scale_attr
=
None
,
ln1_bias_attr
=
None
,
ln2_scale_attr
=
None
,
ln2_bias_attr
=
None
,
nranks
=
1
,
ring_id
=-
1
,
name
=
None
):
super
(
FusedFeedForward
,
self
).
__init__
()
...
...
@@ -383,51 +466,68 @@ class FusedFeedForward(Layer):
self
.
_dtype
=
self
.
_helper
.
get_default_dtype
()
self
.
_d_model
=
d_model
assert
dim_feedforward
%
nranks
==
0
dim_feedforward
=
dim_feedforward
//
nranks
self
.
_dim_feedforward
=
dim_feedforward
self
.
_dropout_rate
=
dropout_rate
self
.
_act_dropout_rate
=
dropout_rate
if
act_dropout_rate
is
None
else
act_dropout_rate
self
.
_act_method
=
activation
self
.
_normalize_before
=
normalize_before
self
.
_epsilon
=
epsilon
self
.
_ring_id
=
ring_id
self
.
_linear1_weight
=
self
.
create_parameter
(
shape
=
[
d_model
,
dim_feedforward
],
attr
=
weight_attr
,
attr
=
linear1_
weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_linear1_bias
=
self
.
create_parameter
(
shape
=
[
dim_feedforward
],
attr
=
bias_attr
,
attr
=
linear1_
bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
_linear2_weight
=
self
.
create_parameter
(
shape
=
[
dim_feedforward
,
d_model
],
attr
=
weight_attr
,
attr
=
linear2_
weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_linear2_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
bias_attr
,
attr
=
linear2_
bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
_ln1_scale
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
None
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
self
.
_ln1_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
None
,
is_bias
=
True
)
self
.
_ln2_scale
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
None
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
self
.
_ln2_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
None
,
is_bias
=
True
)
if
nranks
>
1
:
assert
ring_id
!=
-
1
# column parallel
_set_var_distributed
(
self
.
_linear1_weight
)
_set_var_distributed
(
self
.
_linear1_bias
)
_set_var_distributed
(
self
.
_linear2_weight
)
if
normalize_before
:
self
.
_ln1_scale
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln1_scale_attr
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
self
.
_ln1_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln1_bias_attr
,
is_bias
=
True
)
self
.
_ln2_scale
=
None
self
.
_ln2_bias
=
None
else
:
self
.
_ln1_scale
=
None
self
.
_ln1_bias
=
None
self
.
_ln2_scale
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln2_scale_attr
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
self
.
_ln2_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln2_bias_attr
,
is_bias
=
True
)
self
.
name
=
name
def
forward
(
self
,
src
,
cache
=
None
):
...
...
@@ -448,6 +548,7 @@ class FusedFeedForward(Layer):
ln2_epsilon
=
self
.
_epsilon
,
pre_layer_norm
=
self
.
_normalize_before
,
training
=
self
.
training
,
ring_id
=
self
.
_ring_id
,
name
=
self
.
name
)
return
out
...
...
@@ -553,8 +654,14 @@ class FusedTransformerEncoderLayer(Layer):
dropout_rate
=
dropout_rate
,
attn_dropout_rate
=
attn_dropout_rate
,
normalize_before
=
self
.
normalize_before
,
weight_attr
=
weight_attrs
[
0
],
bias_attr
=
bias_attrs
[
0
])
qkv_weight_attr
=
weight_attrs
[
0
],
qkv_bias_attr
=
bias_attrs
[
0
],
linear_weight_attr
=
weight_attrs
[
0
],
linear_bias_attr
=
bias_attrs
[
0
],
pre_ln_scale_attr
=
weight_attrs
[
0
],
pre_ln_bias_attr
=
bias_attrs
[
0
],
ln_scale_attr
=
weight_attrs
[
0
],
ln_bias_attr
=
bias_attrs
[
0
])
self
.
ffn
=
FusedFeedForward
(
d_model
,
dim_feedforward
,
...
...
@@ -562,8 +669,10 @@ class FusedTransformerEncoderLayer(Layer):
activation
=
activation
,
act_dropout_rate
=
act_dropout_rate
,
normalize_before
=
self
.
normalize_before
,
weight_attr
=
weight_attrs
[
1
],
bias_attr
=
bias_attrs
[
1
])
linear1_weight_attr
=
weight_attrs
[
1
],
linear1_bias_attr
=
bias_attrs
[
1
],
linear2_weight_attr
=
weight_attrs
[
1
],
linear2_bias_attr
=
bias_attrs
[
1
])
def
forward
(
self
,
src
,
src_mask
=
None
,
cache
=
None
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录