diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc index 1aa33768c80c2b60de88a5545bdc9f5a425a1dcb..c277bd7cb69bba899296efe64107ee538c4aa847 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_builder.cc +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc @@ -55,7 +55,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( const ProgramDesc &program) const { auto graph = new SSAGraph(); SSAGraph &result = *graph; - std::unordered_set<std::string> og_has_bc; + std::unordered_set<std::string> og_has_been_broadcast; result.vars_.resize(places_.size()); bool is_forwarding = true; @@ -123,11 +123,15 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( if (!is_forwarding) { auto var_names = op->OutputArgumentNames(); + // Currently, we assume that once gradient is generated, it can be + // broadcast, and each gradient is only broadcast once. But there are no + // other cases, for example, we need to adjust the gradient according to + // the input when we get the gradient, which is not considered at present. for (auto &og : var_names) { if (grad_names_.count(og) != 0 && - og_has_bc.count(og) == 0) { // is param grad - // Insert NCCL AllReduce Op - og_has_bc.insert(og); + og_has_been_broadcast.count(og) == 0) { // is param grad + // Insert NCCL AllReduce Op + og_has_been_broadcast.insert(og); #ifdef PADDLE_WITH_CUDA result.ops_.emplace_back( new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));