Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2ef18675
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2ef18675
编写于
11月 10, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into poolmaxpool_with_mask
上级
ba2e5de6
e5d810b9
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
125 addition
and
75 deletion
+125
-75
paddle/operators/sequence_concat_op.cc
paddle/operators/sequence_concat_op.cc
+21
-17
paddle/operators/sequence_concat_op.h
paddle/operators/sequence_concat_op.h
+40
-23
python/paddle/v2/framework/tests/op_test.py
python/paddle/v2/framework/tests/op_test.py
+10
-5
python/paddle/v2/framework/tests/test_seq_concat_op.py
python/paddle/v2/framework/tests/test_seq_concat_op.py
+54
-30
未找到文件。
paddle/operators/sequence_concat_op.cc
浏览文件 @
2ef18675
...
...
@@ -68,12 +68,9 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
"The level should be less than the level number of inputs."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
Sequence Concat Operator.
The sequence_concat operator concatenates multiple LoDTensors.
It
supports a sequence (LoD Tensor with level number is 1)
It
only supports sequence (LoD Tensor with level number is 1)
or a nested sequence (LoD tensor with level number is 2) as its input.
The following examples explain how the operator works:
- Case1:
If the axis is other than 0(here, axis is 1 and level is 1),
each input should have the same LoD information and the LoD
...
...
@@ -86,20 +83,27 @@ The following examples explain how the operator works:
- Case2:
If the axis is 0(here, leve is 0), the inputs are concatenated along
time steps, the LoD information of the output need to re-compute.
The LoD information of level-1 should be same.
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5
,3,4)
LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9
,3,4)
LoD(x1) = {{0,2,4}, {0,1,3,5,7}}; Dims(x1) = (7
,3,4)
LoD(Out) = {{0,2,4}, {0,2,5,8,11}}; Dims(Out) = (11
,3,4)
- Case3:
If the axis is 0(here, level is 1).
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5
,3,4)
LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9
,3,4)
LoD(x1) = {{0,3,4}, {0,1,3,5,7}}; Dims(x1) = (7
,3,4)
LoD(Out) = {{0,5,8}, {0,1,2,3,5,7,8,9,11}}; Dims(Out) = (11
,3,4)
NOTE: The levels of all the inputs should be the same.
- Case4:
If the LoD number is 1, axis is 0, level is 0
LoD(x0) = {{0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,1,3,5,7}}; Dims(x1) = (7,3,4)
LoD(Out) = {{0,2,5,8,11}}; Dims(Out) = (11,3,4)
NOTE: The levels of all the inputs should be the same.
)DOC"
);
}
};
...
...
paddle/operators/sequence_concat_op.h
浏览文件 @
2ef18675
...
...
@@ -24,28 +24,38 @@ using LoDTensor = framework::LoDTensor;
using
LoD
=
framework
::
LoD
;
template
<
typename
T
>
LoD
concatLoD
(
const
std
::
vector
<
const
T
*>
ins
,
const
size_t
axis
,
const
size_t
level
)
{
LoD
ConcatLoD
(
const
std
::
vector
<
const
T
*>
ins
,
const
size_t
level
)
{
auto
out_lod
=
ins
[
0
]
->
lod
();
auto
numLevels
=
ins
[
0
]
->
NumLevels
();
const
size_t
n
=
ins
.
size
();
if
(
axis
==
0UL
)
{
const
size_t
level_idx
=
ins
[
0
]
->
NumLevels
()
-
1
-
level
;
for
(
size_t
i
=
1
;
i
<
n
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
ins
[
i
]
->
lod
()[
0
].
size
();
++
j
)
{
out_lod
[
0
][
j
]
+=
ins
[
i
]
->
lod
()[
0
][
j
];
for
(
size_t
j
=
0
;
j
<
ins
[
i
]
->
lod
()[
level_idx
].
size
();
++
j
)
{
out_lod
[
level_idx
][
j
]
+=
ins
[
i
]
->
lod
()[
level_idx
][
j
];
}
}
if
(
ins
[
0
]
->
NumLevels
()
==
2
)
{
for
(
size_t
j
=
1
;
j
<
ins
[
i
]
->
lod
()[
1
].
size
();
++
j
)
{
if
(
level
==
0UL
)
{
out_lod
[
1
].
push_back
(
out_lod
[
1
].
back
()
+
ins
[
i
]
->
lod
()[
1
][
j
]
-
ins
[
i
]
->
lod
()[
1
][
j
-
1
]);
}
else
if
(
level
==
1UL
)
{
out_lod
[
1
][
j
]
+=
ins
[
1
]
->
lod
()[
1
][
j
];
for
(
size_t
i
=
level_idx
;
i
<
numLevels
-
1
;
++
i
)
{
size_t
lod_len
=
1
;
for
(
size_t
j
=
0
;
j
<
n
;
++
j
)
{
lod_len
+=
ins
[
j
]
->
lod
()[
i
+
1
].
size
()
-
1
;
}
out_lod
[
i
+
1
].
clear
();
out_lod
[
i
+
1
].
resize
(
lod_len
);
size_t
idx
=
1
;
for
(
size_t
j
=
0
;
j
<
ins
[
0
]
->
lod
()[
i
].
size
()
-
1
;
++
j
)
{
for
(
size_t
k
=
0
;
k
<
n
;
++
k
)
{
for
(
size_t
m
=
ins
[
k
]
->
lod
()[
i
][
j
];
m
<
ins
[
k
]
->
lod
()[
i
][
j
+
1
];
++
m
)
{
out_lod
[
i
+
1
][
idx
]
=
out_lod
[
i
+
1
][
idx
-
1
]
+
ins
[
k
]
->
lod
()[
i
+
1
][
m
+
1
]
-
ins
[
k
]
->
lod
()[
i
+
1
][
m
];
idx
++
;
}
}
}
}
return
out_lod
;
}
...
...
@@ -82,18 +92,21 @@ class SequenceConcatOpKernel : public framework::OpKernel<T> {
"should be greater than the specify level"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_lod
=
concatLoD
<
LoDTensor
>
(
ins
,
axis
,
level
);
auto
out_lod
=
ins
[
0
]
->
lod
();
if
(
axis
==
0
)
{
out_lod
=
ConcatLoD
<
LoDTensor
>
(
ins
,
level
);
}
out
->
set_lod
(
out_lod
);
auto
out_lod_level
=
out_lod
[
level
];
const
size_t
level_idx
=
out_lod
.
size
()
-
level
-
1
;
auto
out_lod_level
=
framework
::
ToAbsOffset
(
out_lod
)[
level_idx
];
for
(
size_t
i
=
0
;
i
<
out_lod_level
.
size
()
-
1
;
++
i
)
{
Tensor
out_t
=
out
->
Slice
(
static_cast
<
int
>
(
out_lod_level
[
i
]),
static_cast
<
int
>
(
out_lod_level
[
i
+
1
]));
auto
out_stride
=
framework
::
stride
(
out_t
.
dims
());
size_t
offset
=
0
;
for
(
size_t
j
=
0
;
j
<
n
;
++
j
)
{
auto
in_lod_level
=
ins
[
j
]
->
lod
()[
level
];
auto
in_lod_level
=
framework
::
ToAbsOffset
(
ins
[
j
]
->
lod
())[
level_idx
];
auto
in_stride
=
framework
::
stride
(
ins
[
j
]
->
dims
());
Tensor
in_t
=
ins
[
j
]
->
Slice
(
static_cast
<
int
>
(
in_lod_level
[
i
]),
static_cast
<
int
>
(
in_lod_level
[
i
+
1
]));
...
...
@@ -124,9 +137,12 @@ class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
x_grads
[
i
]
->
set_lod
(
ins
[
i
]
->
lod
());
x_grads
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
auto
out_lod
=
concatLoD
<
LoDTensor
>
(
ins
,
axis
,
level
);
auto
out_lod_level
=
out_lod
[
level
];
auto
out_lod
=
ins
[
0
]
->
lod
();
if
(
axis
==
0UL
)
{
out_lod
=
ConcatLoD
<
LoDTensor
>
(
ins
,
level
);
}
const
size_t
level_idx
=
out_lod
.
size
()
-
level
-
1
;
auto
out_lod_level
=
framework
::
ToAbsOffset
(
out_lod
)[
level_idx
];
for
(
size_t
i
=
0
;
i
<
out_lod_level
.
size
()
-
1
;
++
i
)
{
Tensor
out_grad_t
=
...
...
@@ -136,7 +152,8 @@ class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
size_t
offset
=
0
;
for
(
size_t
j
=
0
;
j
<
n
;
++
j
)
{
auto
x_grad_lod_level
=
x_grads
[
j
]
->
lod
()[
level
];
auto
x_grad_lod_level
=
framework
::
ToAbsOffset
(
x_grads
[
j
]
->
lod
())[
level_idx
];
auto
x_grad_stride
=
framework
::
stride
(
x_grads
[
j
]
->
dims
());
Tensor
x_grad_t
=
x_grads
[
j
]
->
Slice
(
static_cast
<
int
>
(
x_grad_lod_level
[
i
]),
...
...
python/paddle/v2/framework/tests/op_test.py
浏览文件 @
2ef18675
...
...
@@ -215,6 +215,10 @@ class OpTest(unittest.TestCase):
if
isinstance
(
input_vars
[
var_name
],
list
):
for
name
,
np_value
in
self
.
inputs
[
var_name
]:
tensor
=
core
.
LoDTensor
()
if
isinstance
(
np_value
,
tuple
):
tensor
.
set
(
np_value
[
0
],
place
)
tensor
.
set_lod
(
np_value
[
1
])
else
:
tensor
.
set
(
np_value
,
place
)
feed_map
[
name
]
=
tensor
else
:
...
...
@@ -236,7 +240,6 @@ class OpTest(unittest.TestCase):
inputs
=
append_input_output
(
block
,
op_proto
,
self
.
inputs
,
True
)
outputs
=
append_input_output
(
block
,
op_proto
,
self
.
outputs
,
False
)
op
=
block
.
append_op
(
type
=
self
.
op_type
,
inputs
=
inputs
,
...
...
@@ -397,9 +400,11 @@ class OpTest(unittest.TestCase):
if
not
isinstance
(
item
[
0
],
basestring
):
item
=
[[
param_name
]
+
list
(
item
)]
if
len
(
item
)
==
2
:
if
isinstance
(
item
[
1
],
tuple
):
var
[
i
]
=
[
item
[
0
],
item
[
1
][
0
],
item
[
1
][
1
]]
else
:
# only set var name and value, set lod to None
var
[
i
]
=
list
(
item
)
+
[
None
]
var_descs
=
[(
block
.
create_var
(
name
=
name
,
shape
=
each
.
shape
,
dtype
=
each
.
dtype
),
each
,
lod
)
for
name
,
each
,
lod
in
var
]
...
...
python/paddle/v2/framework/tests/test_seq_concat_op.py
浏览文件 @
2ef18675
...
...
@@ -4,7 +4,33 @@ import sys
from
op_test
import
OpTest
class
TestConcatOp
(
OpTest
):
def
to_abs_lod
(
lod
):
if
len
(
lod
)
==
0
or
len
(
lod
)
==
1
:
return
lod
import
copy
new_lod
=
copy
.
deepcopy
(
lod
)
for
idx
,
val
in
enumerate
(
lod
[
0
]):
new_lod
[
0
][
idx
]
=
lod
[
1
][
val
]
return
new_lod
def
seq_concat
(
inputs
,
level
):
lod0
=
inputs
[
'X'
][
0
][
1
][
1
]
lod1
=
inputs
[
'X'
][
1
][
1
][
1
]
x0
=
inputs
[
'X'
][
0
][
1
][
0
]
x1
=
inputs
[
'X'
][
1
][
1
][
0
]
level_idx
=
len
(
lod0
)
-
level
-
1
outs
=
[]
for
i
in
range
(
len
(
lod0
[
level_idx
])
-
1
):
sub_x0
=
x0
[
to_abs_lod
(
lod0
)[
level_idx
][
i
]:
to_abs_lod
(
lod0
)[
level_idx
][
i
+
1
],
:]
sub_x1
=
x1
[
to_abs_lod
(
lod1
)[
level_idx
][
i
]:
to_abs_lod
(
lod1
)[
level_idx
][
i
+
1
],
:]
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
0
))
return
np
.
concatenate
(
outs
,
axis
=
0
)
class
TestSeqConcatOp
(
OpTest
):
def
set_data
(
self
):
# two level, batch size is 3
x0
=
np
.
random
.
random
((
4
,
6
,
3
)).
astype
(
'float32'
)
...
...
@@ -15,13 +41,7 @@ class TestConcatOp(OpTest):
level
=
1
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
outs
=
[]
for
i
in
range
(
4
):
sub_x0
=
x0
[
lod0
[
level
][
i
]:
lod0
[
level
][
i
+
1
],
:]
sub_x1
=
x1
[
lod1
[
level
][
i
]:
lod1
[
level
][
i
+
1
],
:]
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
axis
))
self
.
outputs
=
{
'Out'
:
np
.
concatenate
(
outs
,
axis
=
0
)}
self
.
outputs
=
{
'Out'
:
(
np
.
concatenate
([
x0
,
x1
],
axis
=
1
),
lod0
)}
def
setUp
(
self
):
self
.
op_type
=
"sequence_concat"
...
...
@@ -34,46 +54,50 @@ class TestConcatOp(OpTest):
self
.
check_grad
([
'x0'
],
'Out'
)
class
Test
ConcatOpDiffLod
(
Test
ConcatOp
):
class
Test
SeqConcatOpLevelZeroNestedSequence
(
TestSeq
ConcatOp
):
def
set_data
(
self
):
# two level, batch size is 3
x0
=
np
.
random
.
random
((
4
,
6
,
3
)).
astype
(
'float32'
)
lod0
=
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
x1
=
np
.
random
.
random
((
5
,
6
,
3
)).
astype
(
'float32'
)
lod1
=
[[
0
,
3
,
5
],
[
0
,
1
,
2
,
3
,
5
]]
x1
=
np
.
random
.
random
((
7
,
6
,
3
)).
astype
(
'float32'
)
lod1
=
[[
0
,
2
,
4
],
[
0
,
1
,
3
,
5
,
7
]]
axis
=
0
level
=
1
level
=
0
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
outs
=
[]
for
i
in
range
(
4
):
sub_x0
=
x0
[
lod0
[
level
][
i
]:
lod0
[
level
][
i
+
1
],
:]
sub_x1
=
x1
[
lod1
[
level
][
i
]:
lod1
[
level
][
i
+
1
],
:]
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
axis
))
out_lod
=
[[
0
,
2
,
4
],
[
0
,
2
,
5
,
8
,
11
]]
self
.
outputs
=
{
'Out'
:
(
seq_concat
(
self
.
inputs
,
level
),
out_lod
)}
self
.
outputs
=
{
'Out'
:
np
.
concatenate
(
outs
,
axis
=
0
)}
class
TestSeqConcatOplevelOneNestedSequence
(
TestSeqConcatOp
):
def
set_data
(
self
):
# two level, batch size is 3
x0
=
np
.
random
.
random
((
4
,
6
,
3
)).
astype
(
'float32'
)
lod0
=
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
x1
=
np
.
random
.
random
((
7
,
6
,
3
)).
astype
(
'float32'
)
lod1
=
[[
0
,
3
,
4
],
[
0
,
1
,
3
,
5
,
7
]]
axis
=
0
level
=
1
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
out_lod
=
[[
0
,
5
,
8
],
[
0
,
1
,
2
,
3
,
5
,
7
,
8
,
9
,
11
]]
self
.
outputs
=
{
'Out'
:
(
seq_concat
(
self
.
inputs
,
level
),
out_lod
)}
class
Test
ConcatOpLevelZero
(
Test
ConcatOp
):
class
Test
SeqConcatOpLevelZeroSequence
(
TestSeq
ConcatOp
):
def
set_data
(
self
):
# two level, batch size is 3
x0
=
np
.
random
.
random
((
4
,
3
,
4
)).
astype
(
'float32'
)
lod0
=
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
x1
=
np
.
random
.
random
((
5
,
3
,
4
)).
astype
(
'float32'
)
lod1
=
[[
0
,
3
,
5
],
[
0
,
1
,
3
,
4
,
5
]]
lod0
=
[[
0
,
1
,
2
,
3
,
4
]]
x1
=
np
.
random
.
random
((
7
,
3
,
4
)).
astype
(
'float32'
)
lod1
=
[[
0
,
1
,
3
,
5
,
7
]]
axis
=
0
level
=
0
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
outs
=
[]
for
i
in
range
(
2
):
sub_x0
=
x0
[
lod0
[
level
][
i
]:
lod0
[
level
][
i
+
1
],
:]
sub_x1
=
x1
[
lod1
[
level
][
i
]:
lod1
[
level
][
i
+
1
],
:]
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
axis
))
self
.
outputs
=
{
'Out'
:
np
.
concatenate
(
outs
,
axis
=
0
)}
out_lod
=
[[
0
,
2
,
5
,
8
,
11
]]
self
.
outputs
=
{
'Out'
:
(
seq_concat
(
self
.
inputs
,
level
),
out_lod
)}
if
__name__
==
'__main__'
:
sys
.
exit
(
0
)
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录