提交 2ef18675 编写于 作者: X xzl

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into poolmaxpool_with_mask

......@@ -68,12 +68,9 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
"The level should be less than the level number of inputs.")
.SetDefault(0);
AddComment(R"DOC(
Sequence Concat Operator.
The sequence_concat operator concatenates multiple LoDTensors.
It supports a sequence (LoD Tensor with level number is 1)
It only supports sequence (LoD Tensor with level number is 1)
or a nested sequence (LoD tensor with level number is 2) as its input.
The following examples explain how the operator works:
- Case1:
If the axis is other than 0(here, axis is 1 and level is 1),
each input should have the same LoD information and the LoD
......@@ -86,20 +83,27 @@ The following examples explain how the operator works:
- Case2:
If the axis is 0(here, leve is 0), the inputs are concatenated along
time steps, the LoD information of the output need to re-compute.
The LoD information of level-1 should be same.
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4)
LoD(x1) = {{0,2,4}, {0,1,3,5,7}}; Dims(x1) = (7,3,4)
LoD(Out) = {{0,2,4}, {0,2,5,8,11}}; Dims(Out) = (11,3,4)
- Case3:
If the axis is 0(here, level is 1).
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4)
LoD(x1) = {{0,3,4}, {0,1,3,5,7}}; Dims(x1) = (7,3,4)
LoD(Out) = {{0,5,8}, {0,1,2,3,5,7,8,9,11}}; Dims(Out) = (11,3,4)
NOTE: The levels of all the inputs should be the same.
- Case4:
If the LoD number is 1, axis is 0, level is 0
LoD(x0) = {{0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,1,3,5,7}}; Dims(x1) = (7,3,4)
LoD(Out) = {{0,2,5,8,11}}; Dims(Out) = (11,3,4)
NOTE: The levels of all the inputs should be the same.
)DOC");
}
};
......
......@@ -24,28 +24,38 @@ using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
template <typename T>
LoD concatLoD(const std::vector<const T*> ins, const size_t axis,
const size_t level) {
LoD ConcatLoD(const std::vector<const T*> ins, const size_t level) {
auto out_lod = ins[0]->lod();
auto numLevels = ins[0]->NumLevels();
const size_t n = ins.size();
if (axis == 0UL) {
const size_t level_idx = ins[0]->NumLevels() - 1 - level;
for (size_t i = 1; i < n; ++i) {
for (size_t j = 0; j < ins[i]->lod()[0].size(); ++j) {
out_lod[0][j] += ins[i]->lod()[0][j];
for (size_t j = 0; j < ins[i]->lod()[level_idx].size(); ++j) {
out_lod[level_idx][j] += ins[i]->lod()[level_idx][j];
}
}
if (ins[0]->NumLevels() == 2) {
for (size_t j = 1; j < ins[i]->lod()[1].size(); ++j) {
if (level == 0UL) {
out_lod[1].push_back(out_lod[1].back() + ins[i]->lod()[1][j] -
ins[i]->lod()[1][j - 1]);
} else if (level == 1UL) {
out_lod[1][j] += ins[1]->lod()[1][j];
for (size_t i = level_idx; i < numLevels - 1; ++i) {
size_t lod_len = 1;
for (size_t j = 0; j < n; ++j) {
lod_len += ins[j]->lod()[i + 1].size() - 1;
}
out_lod[i + 1].clear();
out_lod[i + 1].resize(lod_len);
size_t idx = 1;
for (size_t j = 0; j < ins[0]->lod()[i].size() - 1; ++j) {
for (size_t k = 0; k < n; ++k) {
for (size_t m = ins[k]->lod()[i][j]; m < ins[k]->lod()[i][j + 1]; ++m) {
out_lod[i + 1][idx] = out_lod[i + 1][idx - 1] +
ins[k]->lod()[i + 1][m + 1] -
ins[k]->lod()[i + 1][m];
idx++;
}
}
}
}
return out_lod;
}
......@@ -82,18 +92,21 @@ class SequenceConcatOpKernel : public framework::OpKernel<T> {
"should be greater than the specify level");
out->mutable_data<T>(ctx.GetPlace());
auto out_lod = concatLoD<LoDTensor>(ins, axis, level);
auto out_lod = ins[0]->lod();
if (axis == 0) {
out_lod = ConcatLoD<LoDTensor>(ins, level);
}
out->set_lod(out_lod);
auto out_lod_level = out_lod[level];
const size_t level_idx = out_lod.size() - level - 1;
auto out_lod_level = framework::ToAbsOffset(out_lod)[level_idx];
for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
Tensor out_t = out->Slice(static_cast<int>(out_lod_level[i]),
static_cast<int>(out_lod_level[i + 1]));
auto out_stride = framework::stride(out_t.dims());
size_t offset = 0;
for (size_t j = 0; j < n; ++j) {
auto in_lod_level = ins[j]->lod()[level];
auto in_lod_level = framework::ToAbsOffset(ins[j]->lod())[level_idx];
auto in_stride = framework::stride(ins[j]->dims());
Tensor in_t = ins[j]->Slice(static_cast<int>(in_lod_level[i]),
static_cast<int>(in_lod_level[i + 1]));
......@@ -124,9 +137,12 @@ class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
x_grads[i]->set_lod(ins[i]->lod());
x_grads[i]->mutable_data<T>(ctx.GetPlace());
}
auto out_lod = concatLoD<LoDTensor>(ins, axis, level);
auto out_lod_level = out_lod[level];
auto out_lod = ins[0]->lod();
if (axis == 0UL) {
out_lod = ConcatLoD<LoDTensor>(ins, level);
}
const size_t level_idx = out_lod.size() - level - 1;
auto out_lod_level = framework::ToAbsOffset(out_lod)[level_idx];
for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
Tensor out_grad_t =
......@@ -136,7 +152,8 @@ class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
size_t offset = 0;
for (size_t j = 0; j < n; ++j) {
auto x_grad_lod_level = x_grads[j]->lod()[level];
auto x_grad_lod_level =
framework::ToAbsOffset(x_grads[j]->lod())[level_idx];
auto x_grad_stride = framework::stride(x_grads[j]->dims());
Tensor x_grad_t =
x_grads[j]->Slice(static_cast<int>(x_grad_lod_level[i]),
......
......@@ -215,6 +215,10 @@ class OpTest(unittest.TestCase):
if isinstance(input_vars[var_name], list):
for name, np_value in self.inputs[var_name]:
tensor = core.LoDTensor()
if isinstance(np_value, tuple):
tensor.set(np_value[0], place)
tensor.set_lod(np_value[1])
else:
tensor.set(np_value, place)
feed_map[name] = tensor
else:
......@@ -236,7 +240,6 @@ class OpTest(unittest.TestCase):
inputs = append_input_output(block, op_proto, self.inputs, True)
outputs = append_input_output(block, op_proto, self.outputs, False)
op = block.append_op(
type=self.op_type,
inputs=inputs,
......@@ -397,9 +400,11 @@ class OpTest(unittest.TestCase):
if not isinstance(item[0], basestring):
item = [[param_name] + list(item)]
if len(item) == 2:
if isinstance(item[1], tuple):
var[i] = [item[0], item[1][0], item[1][1]]
else:
# only set var name and value, set lod to None
var[i] = list(item) + [None]
var_descs = [(block.create_var(
name=name, shape=each.shape, dtype=each.dtype), each, lod)
for name, each, lod in var]
......
......@@ -4,7 +4,33 @@ import sys
from op_test import OpTest
class TestConcatOp(OpTest):
def to_abs_lod(lod):
if len(lod) == 0 or len(lod) == 1:
return lod
import copy
new_lod = copy.deepcopy(lod)
for idx, val in enumerate(lod[0]):
new_lod[0][idx] = lod[1][val]
return new_lod
def seq_concat(inputs, level):
lod0 = inputs['X'][0][1][1]
lod1 = inputs['X'][1][1][1]
x0 = inputs['X'][0][1][0]
x1 = inputs['X'][1][1][0]
level_idx = len(lod0) - level - 1
outs = []
for i in range(len(lod0[level_idx]) - 1):
sub_x0 = x0[to_abs_lod(lod0)[level_idx][i]:to_abs_lod(lod0)[level_idx][
i + 1], :]
sub_x1 = x1[to_abs_lod(lod1)[level_idx][i]:to_abs_lod(lod1)[level_idx][
i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=0))
return np.concatenate(outs, axis=0)
class TestSeqConcatOp(OpTest):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
......@@ -15,13 +41,7 @@ class TestConcatOp(OpTest):
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
outs = []
for i in range(4):
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
self.outputs = {'Out': np.concatenate(outs, axis=0)}
self.outputs = {'Out': (np.concatenate([x0, x1], axis=1), lod0)}
def setUp(self):
self.op_type = "sequence_concat"
......@@ -34,46 +54,50 @@ class TestConcatOp(OpTest):
self.check_grad(['x0'], 'Out')
class TestConcatOpDiffLod(TestConcatOp):
class TestSeqConcatOpLevelZeroNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((5, 6, 3)).astype('float32')
lod1 = [[0, 3, 5], [0, 1, 2, 3, 5]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[0, 2, 4], [0, 1, 3, 5, 7]]
axis = 0
level = 1
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
outs = []
for i in range(4):
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
out_lod = [[0, 2, 4], [0, 2, 5, 8, 11]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
self.outputs = {'Out': np.concatenate(outs, axis=0)}
class TestSeqConcatOplevelOneNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[0, 3, 4], [0, 1, 3, 5, 7]]
axis = 0
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[0, 5, 8], [0, 1, 2, 3, 5, 7, 8, 9, 11]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
class TestConcatOpLevelZero(TestConcatOp):
class TestSeqConcatOpLevelZeroSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 3, 4)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((5, 3, 4)).astype('float32')
lod1 = [[0, 3, 5], [0, 1, 3, 4, 5]]
lod0 = [[0, 1, 2, 3, 4]]
x1 = np.random.random((7, 3, 4)).astype('float32')
lod1 = [[0, 1, 3, 5, 7]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
outs = []
for i in range(2):
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
self.outputs = {'Out': np.concatenate(outs, axis=0)}
out_lod = [[0, 2, 5, 8, 11]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
if __name__ == '__main__':
sys.exit(0)
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册