Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2db25f0d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2db25f0d
编写于
2月 11, 2022
作者:
F
fwenguang
提交者:
GitHub
2月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add pool2d pytest (#39454)
上级
02f06708
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
868 addition
and
0 deletion
+868
-0
python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
...on/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
+868
-0
未找到文件。
python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
0 → 100644
浏览文件 @
2db25f0d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
division
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
from
test_pool2d_op
import
pool2D_forward_naive
,
avg_pool2D_forward_naive
,
max_pool2D_forward_naive
class
TestPool2D_Op_Mixin
(
object
):
def
setUp
(
self
):
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
op_type
=
"pool2d"
self
.
init_data_type
()
self
.
init_test_case
()
self
.
padding_algorithm
=
"EXPLICIT"
self
.
init_paddings
()
self
.
init_global_pool
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
self
.
init_exclusive
()
self
.
init_adaptive
()
self
.
init_data_format
()
self
.
init_shape
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusive
,
self
.
adaptive
,
self
.
data_format
,
self
.
pool_type
,
self
.
padding_algorithm
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling_type'
:
self
.
pool_type
,
'global_pooling'
:
self
.
global_pool
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
self
.
data_format
,
'exclusive'
:
self
.
exclusive
,
'adaptive'
:
self
.
adaptive
,
"padding_algorithm"
:
self
.
padding_algorithm
,
}
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
if
self
.
pool_type
!=
"max"
:
self
.
check_grad_with_place
(
self
.
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.07
)
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
def
init_data_type
(
self
):
self
.
dtype
=
np
.
float32
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
True
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
False
def
init_exclusive
(
self
):
self
.
exclusive
=
True
# Not support adaptive pooling currently
def
init_adaptive
(
self
):
self
.
adaptive
=
False
class
TestPool2D_Op
(
TestPool2D_Op_Mixin
,
OpTest
):
pass
class
TestCase1
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
1
,
1
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3
(
TestPool2D_Op
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase4
(
TestCase1
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase5
(
TestCase2
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
def
create_test_fp16_class
(
parent
,
check_grad
=
True
):
class
TestFp16Case
(
parent
):
def
init_data_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
place
=
core
.
MLUPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
test_check_grad
(
self
):
place
=
core
.
MLUPlace
(
0
)
if
self
.
pool_type
!=
"max"
and
check_grad
:
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.07
)
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Fp16Op"
)
TestFp16Case
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestFp16Case
create_test_fp16_class
(
TestPool2D_Op
)
create_test_fp16_class
(
TestCase1
,
check_grad
=
False
)
create_test_fp16_class
(
TestCase2
)
create_test_fp16_class
(
TestCase3
)
create_test_fp16_class
(
TestCase4
)
create_test_fp16_class
(
TestCase5
)
#--------------------test pool2d use ceil mode--------------------
def
create_test_use_ceil_class
(
parent
):
class
TestPool2DUseCeilCase
(
parent
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"CeilModeCast"
)
TestPool2DUseCeilCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPool2DUseCeilCase
create_test_use_ceil_class
(
TestCase1
)
create_test_use_ceil_class
(
TestCase2
)
class
TestAvgInclude
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
#-------test pool2d with asymmetric padding-----
class
TestPool2D_AsyPadding
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase1_AsyPadding
(
TestCase1
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2_AsyPadding
(
TestCase2
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3_AsyPadding
(
TestCase3
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase4_AsyPadding
(
TestCase4
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase5_AsyPadding
((
TestCase5
)):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
2
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
create_test_use_ceil_class
(
TestCase1_AsyPadding
)
create_test_use_ceil_class
(
TestCase2_AsyPadding
)
class
TestAvgInclude_AsyPadding
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
#----------- test channel_last --------------
class
TestPool2D_channel_last
(
TestPool2D_Op
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
5
,
5
,
3
]
class
TestCase1_channel_last
(
TestCase1
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase2_channel_last
(
TestCase2
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase3_channel_last
(
TestCase3
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
5
,
5
,
3
]
class
TestCase4_channel_last
(
TestCase4
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase5_channel_last
(
TestCase5
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
create_test_use_ceil_class
(
TestCase1_channel_last
)
create_test_use_ceil_class
(
TestCase2_channel_last
)
class
TestCase5_Max
(
TestCase2
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
place
=
core
.
MLUPlace
(
0
)
if
self
.
pool_type
==
"max"
:
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
1.00
)
class
TestCase5_channel_last_Max
(
TestCase5_Max
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestAvgInclude_channel_last
(
TestCase2_channel_last
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
class
TestPool2D_AsyPadding_channel_last
(
TestPool2D_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
5
,
5
,
3
]
class
TestCase1_AsyPadding_channel_last
(
TestCase1_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase2_AsyPadding_channel_last
(
TestCase2_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase3_AsyPadding_channel_last
(
TestCase3_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
5
,
5
,
3
]
class
TestCase4_AsyPadding_channel_last
(
TestCase4_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase5_AsyPadding_channel_last
(
TestCase5_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
create_test_use_ceil_class
(
TestCase1_AsyPadding_channel_last
)
create_test_use_ceil_class
(
TestCase2_AsyPadding_channel_last
)
class
TestAvgInclude_AsyPadding_channel_last
(
TestAvgInclude_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
# test paddings: SAME VALID
def
create_test_padding_SAME_class
(
parent
):
class
TestPaddingSMAECase
(
parent
):
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
self
.
padding_algorithm
=
"SAME"
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"PaddingSAMEOp"
)
TestPaddingSMAECase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPaddingSMAECase
create_test_padding_SAME_class
(
TestPool2D_Op
)
create_test_padding_SAME_class
(
TestCase1
)
create_test_padding_SAME_class
(
TestCase2
)
create_test_padding_SAME_class
(
TestCase3
)
create_test_padding_SAME_class
(
TestCase4
)
create_test_padding_SAME_class
(
TestCase5
)
create_test_padding_SAME_class
(
TestPool2D_channel_last
)
create_test_padding_SAME_class
(
TestCase1_channel_last
)
create_test_padding_SAME_class
(
TestCase2_channel_last
)
create_test_padding_SAME_class
(
TestCase3_channel_last
)
create_test_padding_SAME_class
(
TestCase4_channel_last
)
create_test_padding_SAME_class
(
TestCase5_channel_last
)
def
create_test_padding_VALID_class
(
parent
):
class
TestPaddingVALIDCase
(
parent
):
def
init_paddings
(
self
):
self
.
paddings
=
[
1
,
1
]
self
.
padding_algorithm
=
"VALID"
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"PaddingVALIDOp"
)
TestPaddingVALIDCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPaddingVALIDCase
create_test_padding_VALID_class
(
TestPool2D_Op
)
create_test_padding_VALID_class
(
TestCase1
)
create_test_padding_VALID_class
(
TestCase2
)
create_test_padding_VALID_class
(
TestCase3
)
create_test_padding_VALID_class
(
TestCase4
)
create_test_padding_VALID_class
(
TestCase5
)
create_test_padding_VALID_class
(
TestPool2D_channel_last
)
create_test_padding_VALID_class
(
TestCase1_channel_last
)
create_test_padding_VALID_class
(
TestCase2_channel_last
)
create_test_padding_VALID_class
(
TestCase3_channel_last
)
create_test_padding_VALID_class
(
TestCase4_channel_last
)
create_test_padding_VALID_class
(
TestCase5_channel_last
)
class
TestCase1_strides
(
TestCase1
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
create_test_padding_SAME_class
(
TestCase1_strides
)
# ----- test API
class
TestPool2DAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
x_NHWC
=
np
.
random
.
random
([
2
,
5
,
5
,
3
]).
astype
(
"float32"
)
x_NCHW
=
np
.
random
.
random
([
2
,
3
,
5
,
5
]).
astype
(
"float32"
)
input_NHWC
=
fluid
.
layers
.
data
(
name
=
"input_NHWC"
,
shape
=
[
2
,
5
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
)
input_NCHW
=
fluid
.
layers
.
data
(
name
=
"input_NCHW"
,
shape
=
[
2
,
3
,
5
,
5
],
append_batch_size
=
False
,
dtype
=
"float32"
)
input_NHWC_negetive
=
fluid
.
layers
.
data
(
name
=
"input_NHWC_negetive"
,
shape
=
[
2
,
-
1
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
)
input_NCHW_negetive
=
fluid
.
layers
.
data
(
name
=
"input_NCHW_negetive"
,
shape
=
[
2
,
3
,
-
1
,
-
1
],
append_batch_size
=
False
,
dtype
=
"float32"
)
ksize
=
[
3
,
3
]
out_1
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
],
data_format
=
"NHWC"
)
out_2
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[[
0
,
0
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
data_format
=
"NHWC"
)
out_3
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[[
0
,
0
],
[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
data_format
=
"NCHW"
)
out_4
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
1
,
2
,
1
,
0
],
data_format
=
"NCHW"
)
# test VALID
out_5
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
"VALID"
,
data_format
=
"NCHW"
)
out_6
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALID"
,
data_format
=
"NHWC"
)
# test SAME
out_7
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
[
4
,
4
],
pool_type
=
"avg"
,
pool_padding
=
"SAME"
,
data_format
=
"NCHW"
)
out_8
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
[
4
,
4
],
pool_type
=
"max"
,
pool_padding
=
"SAME"
,
data_format
=
"NHWC"
)
# test negetive
out_9
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC_negetive
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
0
,
0
],
data_format
=
"NHWC"
)
assert
out_9
.
shape
==
(
2
,
-
1
,
3
,
3
)
out_10
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW_negetive
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
0
,
0
],
data_format
=
"NCHW"
)
assert
out_10
.
shape
==
(
2
,
3
,
-
1
,
-
1
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
MLUPlace
(
0
))
[
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
,
res_8
]
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input_NHWC"
:
x_NHWC
,
"input_NCHW"
:
x_NCHW
,
"input_NHWC_negetive"
:
x_NHWC
,
"input_NCHW_negetive"
:
x_NCHW
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
,
out_8
])
assert
np
.
allclose
(
res_1
,
pool2D_forward_naive
(
x
=
x_NHWC
,
ksize
=
ksize
,
pool_type
=
"max"
,
strides
=
[
1
,
1
],
paddings
=
[
1
,
1
],
data_format
=
"NHWC"
))
assert
np
.
allclose
(
res_2
,
pool2D_forward_naive
(
x
=
x_NHWC
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
1
,
1
,
1
,
1
],
data_format
=
"NHWC"
))
assert
np
.
allclose
(
res_3
,
pool2D_forward_naive
(
x
=
x_NCHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
1
,
1
,
1
,
1
],
data_format
=
"NCHW"
),
rtol
=
0.07
,
atol
=
1e-05
)
assert
np
.
allclose
(
res_4
,
pool2D_forward_naive
(
x
=
x_NCHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
1
,
2
,
1
,
0
],
data_format
=
"NCHW"
),
rtol
=
0.07
,
atol
=
1e-05
)
# VALID
assert
np
.
allclose
(
res_5
,
pool2D_forward_naive
(
x
=
x_NCHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
10
,
20
],
# any ele is ok
padding_algorithm
=
"VALID"
,
data_format
=
"NCHW"
),
rtol
=
0.07
,
atol
=
1e-05
)
assert
np
.
allclose
(
res_6
,
pool2D_forward_naive
(
x
=
x_NHWC
,
ksize
=
ksize
,
pool_type
=
"max"
,
strides
=
[
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"VALID"
,
data_format
=
"NHWC"
))
# SAME
assert
np
.
allclose
(
res_7
,
pool2D_forward_naive
(
x
=
x_NCHW
,
ksize
=
[
4
,
4
],
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"SAME"
,
data_format
=
"NCHW"
),
rtol
=
0.07
,
atol
=
1e-05
)
assert
np
.
allclose
(
res_8
,
pool2D_forward_naive
(
x
=
x_NHWC
,
ksize
=
[
4
,
4
],
pool_type
=
"max"
,
strides
=
[
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"SAME"
,
data_format
=
"NHWC"
))
class
TestPool2DAPI_Error
(
unittest
.
TestCase
):
def
test_api
(
self
):
input_NHWC
=
fluid
.
layers
.
data
(
name
=
"input_NHWC"
,
shape
=
[
2
,
5
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
)
ksize
=
[
3
,
3
]
# data_format value error
def
run_2
():
out_2
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
],
data_format
=
"NHWCC"
)
self
.
assertRaises
(
ValueError
,
run_2
)
# padding str value error
def
run_3
():
out_3
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALIDSAME"
,
data_format
=
"NHWC"
)
self
.
assertRaises
(
ValueError
,
run_3
)
# padding str valid and ceil_mode value error
def
run_4
():
out_4
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALID"
,
ceil_mode
=
True
,
data_format
=
"NHWC"
)
self
.
assertRaises
(
ValueError
,
run_4
)
# padding with 8 ele. value error
def
run_5
():
out_5
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
1
,
1
]],
data_format
=
"NHWC"
)
self
.
assertRaises
(
ValueError
,
run_5
)
class
TestDygraphPool2DAPIError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of Pool2D must be Variable.
data1
=
np
.
random
.
random
((
3
,
32
,
32
,
5
)).
astype
(
'float32'
)
pool2d
=
fluid
.
dygraph
.
Pool2D
(
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
1
,
global_pooling
=
False
)
self
.
assertRaises
(
TypeError
,
pool2d
,
data1
)
# the input dtype of mlu Pool2D must be float16 or float32
data2
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
3
,
32
,
32
,
5
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
pool2d
,
data2
)
def
test_data_format_error
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the data_format must be 'NCHW' or 'NHWC'
data1
=
np
.
random
.
random
((
3
,
32
,
32
,
5
)).
astype
(
'float32'
)
self
.
assertRaises
(
ValueError
,
fluid
.
dygraph
.
Pool2D
,
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
1
,
global_pooling
=
False
,
data_format
=
'NWHC'
)
class
TestDygraphPool2DAPI
(
unittest
.
TestCase
):
def
test_nhwc
(
self
):
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
3
,
32
,
32
,
5
)).
astype
(
'float32'
)
x
=
fluid
.
dygraph
.
to_variable
(
data
)
pool2d
=
fluid
.
dygraph
.
Pool2D
(
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
1
,
pool_padding
=
[
0
,
0
],
global_pooling
=
False
,
data_format
=
'NHWC'
)
out1
=
pool2d
(
x
)
out2
=
pool2D_forward_naive
(
data
,
[
2
,
2
],
[
1
,
1
],
paddings
=
[
0
,
0
],
pool_type
=
'max'
,
data_format
=
'NHWC'
)
self
.
assertTrue
(
np
.
allclose
(
out1
.
numpy
(),
out2
))
def
test_lower_case
(
self
):
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
3
,
32
,
32
,
5
)).
astype
(
'float32'
)
x
=
fluid
.
dygraph
.
to_variable
(
data
)
pool2d
=
fluid
.
dygraph
.
Pool2D
(
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
1
,
pool_padding
=
[
0
,
0
],
global_pooling
=
False
,
data_format
=
'nhwc'
)
out1
=
pool2d
(
x
)
out2
=
pool2D_forward_naive
(
data
,
[
2
,
2
],
[
1
,
1
],
paddings
=
[
0
,
0
],
pool_type
=
'max'
,
data_format
=
'NHWC'
)
self
.
assertTrue
(
np
.
allclose
(
out1
.
numpy
(),
out2
))
def
test_upper_case
(
self
):
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
3
,
32
,
32
,
5
)).
astype
(
'float32'
)
x
=
fluid
.
dygraph
.
to_variable
(
data
)
pool2d
=
fluid
.
dygraph
.
Pool2D
(
pool_size
=
2
,
pool_type
=
'MAX'
,
pool_stride
=
1
,
pool_padding
=
[
0
,
0
],
global_pooling
=
False
,
data_format
=
'nhwc'
)
out1
=
pool2d
(
x
)
out2
=
pool2D_forward_naive
(
data
,
[
2
,
2
],
[
1
,
1
],
paddings
=
[
0
,
0
],
pool_type
=
'max'
,
data_format
=
'NHWC'
)
self
.
assertTrue
(
np
.
allclose
(
out1
.
numpy
(),
out2
))
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录