From 2c44ee7e8033d6abef02ed492c07caa154402193 Mon Sep 17 00:00:00 2001 From: Jiabin Yang Date: Wed, 13 Oct 2021 13:37:55 +0800 Subject: [PATCH] [New Feature] Support triple grad in Paddle (#36187) * native commit for triple grad of sigmod * Updated unittests files * init functional jacobian api * Updated trible_test func * Updated gradient_checker & test_script * finish test with dtype float32 * add float64 test case * polish code * use atol=1e-5 with dtype float64 * fix for ci * set timeout for test_jacobian * fix dygraph grad to support high differential * polish API docstring * Updated gradient checker and some related files * fix double grad strip error for high differential * fix double grad strip error for high differential * Add Sigmoid triple grad tests * fix dygraph double grad dtype error when calling for high differential senario * Updated triple grad teses func * Use np.random to initialize ddx * Updated triple_grad_check func * add todo for gradient checker and refine some comments * remove additional code * add test for warnging in backward.py * format python code Co-authored-by: veyron95 Co-authored-by: levi131 --- paddle/fluid/operators/activation_op.cc | 107 +++++++++++++- paddle/fluid/operators/activation_op.cu | 9 ++ paddle/fluid/operators/activation_op.h | 133 ++++++++++++++++-- python/paddle/fluid/backward.py | 9 +- .../fluid/tests/unittests/gradient_checker.py | 117 ++++++++++++++- .../unittests/test_activation_nn_grad.py | 22 +++ ...test_backward_infer_var_data_type_shape.py | 40 ++++++ 7 files changed, 417 insertions(+), 20 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/test_backward_infer_var_data_type_shape.py diff --git a/paddle/fluid/operators/activation_op.cc b/paddle/fluid/operators/activation_op.cc index 5a498e617a..ac98e49b1c 100644 --- a/paddle/fluid/operators/activation_op.cc +++ b/paddle/fluid/operators/activation_op.cc @@ -77,12 +77,12 @@ class ActivationGradOpMaker : public framework::SingleGradOpMaker { FLAGS_use_mkldnn || (op->HasAttr("use_mkldnn") && BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) { - op->SetInput("X", this->Input("X")); + op->SetInput("X", this->Input("X")); // x } if (static_cast(kDepValue) & static_cast(ActBwdOpFwdDeps::kDepOut)) { - op->SetInput("Out", this->Output("Out")); + op->SetInput("Out", this->Output("Out")); // out } } }; @@ -767,6 +767,10 @@ class ActivationOpDoubleGrad : public framework::OperatorWithKernel { ctx->ShareDim("Out", "DDOut"); ctx->ShareLoD("Out", "DDOut"); } + if (ctx->HasOutput("DOutNew")) { + ctx->ShareDim("Out", "DOutNew"); + ctx->ShareLoD("Out", "DOutNew"); + } } } @@ -804,6 +808,45 @@ class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel { } }; +template +class ActivationOpTripleGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + if (static_cast(kDepValue) & static_cast(kDepX)) { + if (ctx->HasOutput("DX")) { + ctx->ShareDim("X", "DX"); + ctx->ShareLoD("X", "DX"); + } + if (ctx->HasOutput("DDOut")) { + ctx->ShareDim("X", "DDOut"); + ctx->ShareLoD("X", "DDOut"); + } + } + if (static_cast(kDepValue) & static_cast(kDepOut)) { + if (ctx->HasOutput("D_DOut")) { + ctx->ShareDim("Out", "D_DOut"); + ctx->ShareLoD("Out", "D_DOut"); + } + if (ctx->HasOutput("D_OutNew")) { + ctx->ShareDim("Out", "D_OutNew"); + ctx->ShareLoD("Out", "D_OutNew"); + } + if (ctx->HasOutput("D_DDx")) { + ctx->ShareDim("DDX", "D_DDx"); + ctx->ShareLoD("DDX", "D_DDx"); + } + } + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return GetKernelType(ctx, *this, "DDX"); + } +}; + template class SigmoidDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { @@ -825,6 +868,36 @@ class SigmoidDoubleGradMaker } }; +template +class SigmoidTripleGradMaker + : public ::paddle::framework::SingleGradOpMaker { + public: + using ::paddle::framework::SingleGradOpMaker::SingleGradOpMaker; + + protected: + void Apply(GradOpPtr op) const override { + op->SetType("sigmoid_triple_grad"); + // Out, DDX, DOut, D_DDOut, D_DOut_New // input + // D_OutNew, D_DOut, D_DDx // output + // input1: Out + op->SetInput("Out", this->Input("Out")); + // input2: ddx + op->SetInput("DDX", this->Input("DDX")); + // input3: dout + op->SetInput("DOut", this->Input("DOut")); + // input4: d_ddout + op->SetInput("D_DDOut", this->OutputGrad("DDOut")); + // input5: d_dout_new + op->SetInput("D_DOut_New", this->OutputGrad("DOutNew")); + op->SetAttrMap(this->Attrs()); + + // output: d_dOut, d_OutNew, d_ddx + op->SetOutput("D_OutNew", this->InputGrad("Out")); + op->SetOutput("D_DOut", this->InputGrad("DOut")); + op->SetOutput("D_DDx", this->InputGrad("DDX")); + } +}; + template class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { public: @@ -995,10 +1068,12 @@ class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker { }; DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer, - {framework::GradVarName("Out"), - framework::GradVarName("X")}); + {framework::GradVarName("Out"), // dout + framework::GradVarName("X")}); // dx DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer, {"DDX", "DDOut"}); +DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer, + {"DDX", "D_DOut"}); template class PowGradOpMaker : public framework::SingleGradOpMaker { @@ -1121,13 +1196,21 @@ REGISTER_OPERATOR( REGISTER_OPERATOR(sigmoid_grad, ops::ActivationOpGrad, ops::ActivationGradOpInplaceInferer, ops::SigmoidDoubleGradMaker, - ops::SigmoidDoubleGradMaker) + ops::SigmoidDoubleGradMaker); // 3. Register Sigmoid DoubleGrad Operator REGISTER_OPERATOR( sigmoid_grad_grad, - ops::ActivationOpDoubleGrad::FwdDeps()>, - ops::ActivationDoubleGradOpInplaceInferer); + ops::ActivationOpDoubleGrad::FwdDeps()>, + ops::ActivationDoubleGradOpInplaceInferer, + ops::SigmoidTripleGradMaker, + ops::SigmoidTripleGradMaker); + +// 4. Register Sigmoid TripleGrad Operator +REGISTER_OPERATOR(sigmoid_triple_grad, + ops::ActivationOpTripleGrad< + ops::SigmoidTripleGradFunctor::FwdDeps()>, + ops::ActivationTripleGradOpInplaceInferer); // Register Sigmoid/GradSigmoid Kernels REGISTER_ACTIVATION_CPU_KERNEL(sigmoid, Sigmoid, SigmoidFunctor, @@ -1143,6 +1226,16 @@ REGISTER_OP_CPU_KERNEL( ops::SigmoidDoubleGradKernel>); +// Register TripleGrad Kernel +REGISTER_OP_CPU_KERNEL( + sigmoid_triple_grad, + ops::SigmoidTripleGradKernel>, + ops::SigmoidTripleGradKernel>, + ops::SigmoidTripleGradKernel>); + /* ========================================================================== */ /* ========================== tanh register ============================= */ diff --git a/paddle/fluid/operators/activation_op.cu b/paddle/fluid/operators/activation_op.cu index 72f10bf19e..f330f2d7e8 100644 --- a/paddle/fluid/operators/activation_op.cu +++ b/paddle/fluid/operators/activation_op.cu @@ -1398,6 +1398,15 @@ REGISTER_OP_CUDA_KERNEL( ops::SigmoidGradGradFunctor>, ops::SigmoidDoubleGradKernel>); + +REGISTER_OP_CUDA_KERNEL( + sigmoid_triple_grad, + ops::SigmoidTripleGradKernel>, + ops::SigmoidTripleGradKernel>, + ops::SigmoidTripleGradKernel>); /* ========================================================================== */ /* =========================== tanh register ============================ */ diff --git a/paddle/fluid/operators/activation_op.h b/paddle/fluid/operators/activation_op.h index 57ea97f746..4f26cb095c 100644 --- a/paddle/fluid/operators/activation_op.h +++ b/paddle/fluid/operators/activation_op.h @@ -24,12 +24,13 @@ limitations under the License. */ #define _USE_MATH_DEFINES #endif +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/float16.h" - #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" #endif @@ -282,19 +283,77 @@ struct SigmoidGradGradFunctor : public BaseActivationFunctor { auto dout = framework::EigenVector::Flatten( GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidGradGrad")); auto dout_new = framework::EigenVector::Flatten( - GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "SquareGradGrad")); + GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "SigmoidGradGrad")); dout_new.device(*d) = (static_cast(1) - static_cast(2) * out) * dout * ddx; } if (ddOut) { auto ddout = framework::EigenVector::Flatten( - GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SquareGradGrad")); + GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SigmoidGradGrad")); ddout.device(*d) = (static_cast(1) - out) * out * ddx; } } static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; } }; +/* + Out + DOut D_Dout + DDx -> SigmoidTripleGrad -> D_DDx + D_DDout d_OutNew + D_Dout_new + + D_Dout = (1-2*Out)*DDx*D_Dout_new + D_DDx = (1-Out)*Out*D_DDout + (1-2*Out)*DOut*D_Dout_new + D_OutNew = (DDx-2*Out*DDx)*D_DDout - 2*DOut*DDx*D_Dout_new + + Out, DDX, DOut, D_DDOut, D_DOut_New // input + D_OutNew, D_DOut, D_DDx // output +*/ +template +struct SigmoidTripleGradFunctor : public BaseActivationFunctor { + template + void operator()(const Device& dev, const framework::Tensor* Out, + const framework::Tensor* ddX, const framework::Tensor* dOut, + const framework::Tensor* d_DDOut, + const framework::Tensor* d_dOut_New, + framework::Tensor* d_d_Out, framework::Tensor* d_Out_New, + framework::Tensor* d_DDx) const { + auto* d = dev.eigen_device(); + auto ddx = framework::EigenVector::Flatten( + GET_DATA_SAFELY(ddX, "Input", "DDX", "SigmoidTripleGrad")); + auto out = framework::EigenVector::Flatten( + GET_DATA_SAFELY(Out, "Input", "Out", "SigmoidTripleGrad")); + auto dout = framework::EigenVector::Flatten( + GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidTripleGrad")); + auto d_ddOut = framework::EigenVector::Flatten( + GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "SigmoidTripleGrad")); + auto d_dOutNew = framework::EigenVector::Flatten(GET_DATA_SAFELY( + d_dOut_New, "Input", "D_DOut_New", "SigmoidTripleGrad")); + + if (d_Out_New) { + auto d_OutNew = framework::EigenVector::Flatten(GET_DATA_SAFELY( + d_Out_New, "Output", "D_OutNew", "SigmoidTripleGrad")); + d_OutNew.device(*d) = (ddx - static_cast(2) * out * ddx) * d_ddOut - + static_cast(2) * dout * ddx * d_dOutNew; + } + if (d_d_Out) { + auto d_dOut = framework::EigenVector::Flatten( + GET_DATA_SAFELY(d_d_Out, "Output", "D_DOut", "SigmoidTripleGrad")); + d_dOut.device(*d) = + (static_cast(1) - static_cast(2) * out) * ddx * d_dOutNew; + } + if (d_DDx) { + auto d_ddx = framework::EigenVector::Flatten( + GET_DATA_SAFELY(d_DDx, "Output", "D_DDx", "SigmoidTripleGrad")); + d_ddx.device(*d) = + (static_cast(1) - out) * out * d_ddOut + + (static_cast(1) - static_cast(2) * out) * dout * d_dOutNew; + } + } + static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; } +}; + // silu(x) = x / (1 + exp(-x)) template struct SiluFunctor : public BaseActivationFunctor { @@ -465,13 +524,13 @@ struct TanhGradGradFunctor : public BaseActivationFunctor { auto dout = framework::EigenVector::Flatten( GET_DATA_SAFELY(dOut, "Input", "DOut", "TanhGradGrad")); auto dout_new = framework::EigenVector::Flatten( - GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "SquareGradGrad")); + GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "TanhGradGrad")); dout_new.device(*d) = static_cast(-1) * dout * static_cast(2) * out * ddx; } if (ddOut) { auto ddout = framework::EigenVector::Flatten( - GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SquareGradGrad")); + GET_DATA_SAFELY(ddOut, "Output", "DDOut", "TanhGradGrad")); ddout.device(*d) = (static_cast(1) - out * out) * ddx; } } @@ -1856,7 +1915,6 @@ class SigmoidDoubleGradKernel framework::Tensor *dOutNew, *ddOut; Out = ddX = dOut = nullptr; dOutNew = ddOut = nullptr; - // extract ddx(input) and out(input) ddX = ctx.Input("DDX"); Out = ctx.Input("Out"); @@ -1868,20 +1926,15 @@ class SigmoidDoubleGradKernel Out, platform::errors::NotFound( "Cannot get input Variable Out, variable name = %s", ctx.InputName("Out"))); - // set output ddout ddOut = ctx.Output("DDOut"); - // extract dOut(intput) dOut = ctx.Input("DOut"); PADDLE_ENFORCE_NOT_NULL( dOut, platform::errors::NotFound( "Cannot get input Variable dOut, variable name = %s", ctx.InputName("DOut"))); - - // set output dout_new dOutNew = ctx.Output("DOutNew"); - if (dOutNew) dOutNew->mutable_data(Out->dims(), ctx.GetPlace()); if (ddOut) ddOut->mutable_data(Out->dims(), ctx.GetPlace()); auto& place = ctx.template device_context(); @@ -1890,6 +1943,64 @@ class SigmoidDoubleGradKernel } }; +// Out, DDX, DOut, D_DDOut, D_DOut_New // input +// D_OutNew, D_DOut, D_DDx // output +template +class SigmoidTripleGradKernel + : public framework::OpKernel { + public: + using T = typename Functor::ELEMENT_TYPE; + void Compute(const framework::ExecutionContext& ctx) const override { + const framework::Tensor *Out, *ddX, *dOut, *d_ddOut, *d_dOutNew; + framework::Tensor *d_OutNew, *d_dOut, *d_ddx; + Out = ddX = dOut = d_ddOut = d_dOutNew = nullptr; + d_OutNew = d_dOut = d_ddx = nullptr; + + // extract ddx(input), out(input), dOut(input), d_ddOut(input), + // d_dOutNew(input) + ddX = ctx.Input("DDX"); + Out = ctx.Input("Out"); + dOut = ctx.Input("DOut"); + d_ddOut = ctx.Input("D_DDOut"); + d_dOutNew = ctx.Input("D_DOut_New"); + + PADDLE_ENFORCE_NOT_NULL( + ddX, platform::errors::NotFound( + "Cannot get input Variable ddX, variable name = %s", + ctx.InputName("DDX"))); + PADDLE_ENFORCE_NOT_NULL( + Out, platform::errors::NotFound( + "Cannot get input Variable Out, variable name = %s", + ctx.InputName("Out"))); + PADDLE_ENFORCE_NOT_NULL( + dOut, platform::errors::NotFound( + "Cannot get input Variable dOut, variable name = %s", + ctx.InputName("DOut"))); + PADDLE_ENFORCE_NOT_NULL( + d_ddOut, platform::errors::NotFound( + "Cannot get input Variable d_ddOut, variable name = %s", + ctx.InputName("D_DDOut"))); + PADDLE_ENFORCE_NOT_NULL( + d_dOutNew, + platform::errors::NotFound( + "Cannot get input Variable d_dOutNew, variable name = %s", + ctx.InputName("D_DOutNew"))); + + // set output d_OutNew、d_dOut、d_ddx + d_dOut = ctx.Output("D_DOut"); + d_OutNew = ctx.Output("D_OutNew"); + d_ddx = ctx.Output("D_DDx"); + + if (d_dOut) d_dOut->mutable_data(Out->dims(), ctx.GetPlace()); + if (d_OutNew) d_OutNew->mutable_data(Out->dims(), ctx.GetPlace()); + if (d_ddx) d_ddx->mutable_data(ddX->dims(), ctx.GetPlace()); + auto& place = ctx.template device_context(); + Functor functor; + functor(place, Out, ddX, dOut, d_ddOut, d_dOutNew, // input + d_dOut, d_OutNew, d_ddx); // output + } +}; + template class TanhDoubleGradKernel : public framework::OpKernel { diff --git a/python/paddle/fluid/backward.py b/python/paddle/fluid/backward.py index 7aa3c888f2..7ab060be6d 100755 --- a/python/paddle/fluid/backward.py +++ b/python/paddle/fluid/backward.py @@ -27,6 +27,7 @@ from . import unique_name from . import log_helper import paddle.fluid from .data_feeder import check_type +import warnings __all__ = [ 'append_backward', 'gradients', @@ -371,6 +372,10 @@ def _infer_var_data_type_shape_(grad_var_name, block): grad_var.set_dtype(fwd_var.dtype()) grad_var.set_shape(fwd_var.shape()) else: + # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype + warnings.warn( + "Set grad var: {} dtype to default FP32, since we can't find its related forward var". + format(grad_var_name)) grad_var.set_dtype(core.VarDesc.VarType.FP32) @@ -408,7 +413,9 @@ def _strip_grad_suffix_(name): """ name = cpt.to_text(name) pos = name.find(core.grad_var_suffix()) - return name[:pos] if pos != -1 else name + new_name = name[:pos] if pos != -1 else name + new_pos = name.rfind('grad/') + return new_name[new_pos + 5:] if new_pos != -1 else new_name def _append_grad_suffix_(name): diff --git a/python/paddle/fluid/tests/unittests/gradient_checker.py b/python/paddle/fluid/tests/unittests/gradient_checker.py index 633fea1710..01aa2fd9ef 100644 --- a/python/paddle/fluid/tests/unittests/gradient_checker.py +++ b/python/paddle/fluid/tests/unittests/gradient_checker.py @@ -309,7 +309,7 @@ def grad_check(x, _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope)) for i, (x_idx, - y_idx) in enumerate(product(* [range(len(x)), range(len(y))])): + y_idx) in enumerate(product(*[range(len(x)), range(len(y))])): a = analytical[y_idx][x_idx] n = numerical[x_idx][y_idx] if not np.allclose(a, n, rtol, atol): @@ -391,3 +391,118 @@ def double_grad_check(x, x_init += y_grads_init grad_check(x, target_grads, x_init, place, program, eps, atol, rtol) + + +# TODO(jiabin): We currently support only triple grad check here, extend this to support +# higher order differenciation later. + + +# check triple grad and two outputs of the triple Kernel +def triple_grad_check(x, + y, + x_init=None, + y_grads=None, + x_grads_grads=None, + place=None, + program=None, + eps=1e-6, + atol=1e-5, + rtol=1e-3, + raise_exception=True): + """ + Check triple gradients. This function will append backward to the + program before third order gradient check. + + Args: + x (Variable|list[Variable]): input variables to the program. + y (Variable|list[Variable]): output variables to the program. + x_init (numpy.array|list[numpy.array]|None): the init value for input x. + y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y. + x_grads_grads (numpy.array|list[numpy.array]|None): the gradients with respect to your input. + place (fluid.CPUPlace or fluid.CUDAPlace): the device. + program (Program|None): a Program with forward pass. + If None, use fluid.default_main_program(). + eps (float): perturbation for finite differences. + atol (float): absolute tolerance. + rtol (float): relative tolerance. + raise_exception (bool): whether to raise an exception if + the check fails. Default is True. + Returns: + True if all differences satisfy numpy.allclose condition. + """ + # check input arguments + x = _as_list(x) + for v in x: + v.stop_gradient = False + v.persistable = True + y = _as_list(y) + + if program is None: + program = fluid.default_main_program() + + if y_grads is None: + scope = fluid.executor.global_scope() + y_grads = [] + y_grads_init = [] + for yi in y: + dyi_name = _append_grad_suffix_(yi.name) + np_type = dtype_to_np_dtype(yi.dtype) + dy = program.global_block().create_var( + name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True) + dy.stop_gradient = False + v = np.random.random(size=yi.shape).astype(np_type) + set_var_in_scope(scope, place, dyi_name, v) + y_grads.append(dy) + y_grads_init.append(v) + else: + y_grads = _as_list(y_grads) + y_grads_init = [ + var_to_np_array_in_scope(scope, place, v.name) for v in y_grads + ] + + # append first order grads + target_grads = fluid.gradients(y, x, y_grads) + + if x_grads_grads is None: + scope = fluid.executor.global_scope() + x_grads_grads = [] + x_grads_grads_init = [] + for dxi in target_grads: + ddxi_name = _append_grad_suffix_(dxi.name) + np_type = dtype_to_np_dtype(dxi.dtype) + ddx = program.global_block().create_var( + name=ddxi_name, + shape=dxi.shape, + dtype=np_type, + persistable=True) + ddx.stop_gradient = False + v = np.random.random(size=dxi.shape).astype(np_type) + set_var_in_scope(scope, place, ddxi_name, v) + x_grads_grads.append(ddx) + x_grads_grads_init.append(v) + else: + x_grads_grads = _as_list(x_grads_grads) + x_grads_grads_init = [ + var_to_np_array_in_scope(scope, place, v.name) + for v in x_grads_grads + ] + # append second order grads + target_grads_grads = fluid.gradients(target_grads, x, x_grads_grads) + + x += y_grads + x_init = _as_list(x_init) + x_init += y_grads_init + + x += x_grads_grads + x_init += x_grads_grads_init + + # x <=> [x, dout, ddx] + grad_check( + x=x, + y=target_grads_grads, + x_init=x_init, + place=place, + program=program, + eps=eps, + atol=atol, + rtol=rtol) diff --git a/python/paddle/fluid/tests/unittests/test_activation_nn_grad.py b/python/paddle/fluid/tests/unittests/test_activation_nn_grad.py index 81b3e9bf34..8f3353d115 100644 --- a/python/paddle/fluid/tests/unittests/test_activation_nn_grad.py +++ b/python/paddle/fluid/tests/unittests/test_activation_nn_grad.py @@ -26,6 +26,28 @@ import gradient_checker from decorator_helper import prog_scope +class TestSigmoidTripleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + shape = [2, 3, 7, 9] + eps = 0.0005 + dtype = np.float64 + x = layers.data('x', shape, False, dtype=dtype) + x.persistable = True + y = layers.sigmoid(x) + x_arr = np.random.random(shape).astype(dtype) + x_arr[np.abs(x_arr) < 0.005] = 0.002 + gradient_checker.triple_grad_check( + [x], y, x_init=x_arr, place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + class TestSigmoidDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): diff --git a/python/paddle/fluid/tests/unittests/test_backward_infer_var_data_type_shape.py b/python/paddle/fluid/tests/unittests/test_backward_infer_var_data_type_shape.py new file mode 100644 index 0000000000..a0cd6fca57 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_backward_infer_var_data_type_shape.py @@ -0,0 +1,40 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +from decorator_helper import prog_scope +import unittest +import paddle.fluid as fluid +import numpy as np +import paddle +import warnings + + +class TestBackwardInferVarDataTypeShape(unittest.TestCase): + def test_backward_infer_var_data_type_shape(self): + paddle.enable_static() + program = fluid.default_main_program() + dy = program.global_block().create_var( + name="Tmp@GRAD", shape=[1, 1], dtype=np.float32, persistable=True) + # invoke warning + fluid.backward._infer_var_data_type_shape_("Tmp@GRAD", + program.global_block()) + res = False + with warnings.catch_warnings(): + res = True + self.assertTrue(res) + + +if __name__ == '__main__': + unittest.main() -- GitLab