Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2c182583
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2c182583
编写于
4月 18, 2021
作者:
Z
Zhang Zheng
提交者:
GitHub
4月 18, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Unify the implementation of elementwise operation of same dimensions (#32148)
上级
66d46221
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
222 addition
and
41 deletion
+222
-41
paddle/fluid/operators/elementwise/elementwise_add_op.cu
paddle/fluid/operators/elementwise/elementwise_add_op.cu
+17
-41
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
+205
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_add_op.cu
浏览文件 @
2c182583
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
#include "paddle/fluid/platform/float16.h"
...
...
@@ -23,54 +24,29 @@ namespace plat = paddle::platform;
namespace
paddle
{
namespace
operators
{
/*
input: an array;
return: the result of the math functor
1. For Unary Op, the length of input array is 1,
e.g. Relu: return args[0] > 0 ? args[0] : 0;
2. For Binary Op, the length of input array is 2,
e.g. Add: return args[0] + args[1];
*/
template
<
typename
T
>
struct
SameDimsElemwiseAdd
<
platform
::
CUDADeviceContext
,
T
,
typename
std
::
enable_if
<!
std
::
is_same
<
T
,
platform
::
float16
>::
value
&&
!
std
::
is_same
<
T
,
float
>::
value
>::
type
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
AddRangeFunctor
<
T
>
functor
(
x
->
data
<
T
>
(),
y
->
data
<
T
>
(),
z
->
data
<
T
>
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
platform
::
ForRange
<
platform
::
CUDADeviceContext
>
for_range
(
dev_ctx
,
x
->
numel
());
for_range
(
functor
);
}
struct
CudaAddFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
args
[])
const
{
return
args
[
0
]
+
args
[
1
];
}
};
template
<
typename
T
>
struct
SameDimsElemwiseAdd
<
platform
::
CUDADeviceContext
,
T
,
typename
std
::
enable_if
<
std
::
is_same
<
T
,
platform
::
float16
>::
value
||
std
::
is_same
<
T
,
float
>::
value
>::
type
>
{
struct
SameDimsElemwiseAdd
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
auto
size
=
x
->
numel
();
int
vec_size
=
sizeof
(
float4
)
/
sizeof
(
T
);
dim3
grid_size
=
dim3
(((
size
+
vec_size
-
1
)
/
vec_size
+
PADDLE_CUDA_THREAD_SIZE
-
1
)
/
PADDLE_CUDA_THREAD_SIZE
,
1
);
dim3
block_size
=
dim3
(
PADDLE_CUDA_THREAD_SIZE
,
1
);
if
(
std
::
is_same
<
T
,
float
>::
value
)
{
SameDimsElemwiseAddCUDAKernel
<<<
grid_size
,
block_size
,
0
,
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>()
.
stream
()
>>>
(
x
->
data
<
float
>
(),
y
->
data
<
float
>
(),
z
->
data
<
float
>
(),
size
);
}
else
{
const
half
*
x2
=
reinterpret_cast
<
const
half
*>
(
x
->
data
<
platform
::
float16
>
());
const
half
*
y2
=
reinterpret_cast
<
const
half
*>
(
y
->
data
<
platform
::
float16
>
());
half
*
z2
=
reinterpret_cast
<
half
*>
(
z
->
data
<
platform
::
float16
>
());
SameDimsElemwiseAddCUDAKernel
<<<
grid_size
,
block_size
,
0
,
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>()
.
stream
()
>>>
(
x2
,
y2
,
z2
,
size
);
}
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
z
};
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
>
(
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
ins
,
&
outs
,
CudaAddFunctor
<
T
>
());
}
};
...
...
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
0 → 100644
浏览文件 @
2c182583
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
paddle
{
namespace
operators
{
enum
ElementwiseType
{
kUnary
=
1
,
kBinary
=
2
};
template
<
typename
T
,
int
Size
>
struct
alignas
(
sizeof
(
T
)
*
Size
)
CudaAlignedVector
{
T
val
[
Size
];
};
template
<
typename
T
>
int
GetVectorizedSizeImpl
(
const
T
*
pointer
)
{
uint64_t
address
=
reinterpret_cast
<
uint64_t
>
(
pointer
);
constexpr
int
vec4
=
std
::
alignment_of
<
CudaAlignedVector
<
T
,
4
>>::
value
;
// NOLINT
constexpr
int
vec2
=
std
::
alignment_of
<
CudaAlignedVector
<
T
,
2
>>::
value
;
// NOLINT
if
(
address
%
vec4
==
0
)
{
return
4
;
}
else
if
(
address
%
vec2
==
0
)
{
return
2
;
}
return
1
;
}
template
<
typename
T
>
int
GetVectorizedSize
(
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
const
std
::
vector
<
framework
::
Tensor
*>
&
outs
)
{
int
vec_size
=
4
;
for
(
auto
iter
=
ins
.
begin
();
iter
!=
ins
.
end
();
++
iter
)
{
vec_size
=
std
::
min
<
int
>
(
vec_size
,
GetVectorizedSizeImpl
((
*
iter
)
->
data
<
T
>
()));
}
for
(
auto
iter
=
outs
.
begin
();
iter
!=
outs
.
end
();
++
iter
)
{
vec_size
=
std
::
min
<
int
>
(
vec_size
,
GetVectorizedSizeImpl
((
*
iter
)
->
data
<
T
>
()));
}
return
vec_size
;
}
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
T
>
struct
ElementwiseDataWrapper
{
T
*
out
;
const
T
*
in0
;
const
T
*
in1
;
__device__
ElementwiseDataWrapper
(
T
*
out
,
const
T
*
in0
,
const
T
*
in1
=
nullptr
)
:
out
(
out
),
in0
(
in0
),
in1
(
in1
)
{}
using
VecType
=
CudaAlignedVector
<
T
,
VecSize
>
;
inline
__device__
void
load_vector
(
VecType
args
[],
int
idx
)
{
const
VecType
*
x_vec
=
reinterpret_cast
<
const
VecType
*>
(
in0
);
args
[
0
]
=
x_vec
[
idx
];
if
(
ET
==
ElementwiseType
::
kBinary
)
{
const
VecType
*
y_vec
=
reinterpret_cast
<
const
VecType
*>
(
in1
);
args
[
1
]
=
y_vec
[
idx
];
}
}
inline
__device__
void
load_scalar
(
T
args
[],
int
idx
)
{
args
[
0
]
=
in0
[
idx
];
if
(
ET
==
ElementwiseType
::
kBinary
)
{
args
[
1
]
=
in1
[
idx
];
}
}
inline
__device__
void
store_vector
(
VecType
res
,
int
idx
)
{
VecType
*
out_vec
=
reinterpret_cast
<
VecType
*>
(
out
);
out_vec
[
idx
]
=
res
;
}
inline
__device__
void
store_scalar
(
T
res
,
int
idx
)
{
out
[
idx
]
=
res
;
}
};
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
T
,
typename
Functor
>
__device__
void
VectorizedKernelImpl
(
ElementwiseDataWrapper
<
ET
,
VecSize
,
T
>
data
,
int
size
,
Functor
func
,
int
tid
)
{
using
VecType
=
CudaAlignedVector
<
T
,
VecSize
>
;
VecType
ins_vec
[
ET
];
VecType
out_vec
;
T
*
ins_ptr
[
ET
];
T
*
out_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
ET
;
++
i
)
{
ins_ptr
[
i
]
=
reinterpret_cast
<
T
*>
(
&
(
ins_vec
[
i
]));
}
out_ptr
=
reinterpret_cast
<
T
*>
(
&
out_vec
);
// load
data
.
load_vector
(
ins_vec
,
tid
);
// compute
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
T
ins
[
ET
];
#pragma unroll
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
ins
[
j
]
=
ins_ptr
[
j
][
i
];
}
out_ptr
[
i
]
=
func
(
ins
);
}
// store
data
.
store_vector
(
out_vec
,
tid
);
}
template
<
ElementwiseType
ET
,
typename
T
,
typename
Functor
>
__device__
void
ScalarKernelImpl
(
ElementwiseDataWrapper
<
ET
,
1
,
T
>
data
,
int
size
,
Functor
func
,
int
start
,
int
remain
)
{
T
ins
[
ET
];
T
out
;
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
int
idx
=
start
+
i
;
// load
data
.
load_scalar
(
ins
,
idx
);
// compute
out
=
func
(
ins
);
// store
data
.
store_scalar
(
out
,
idx
);
}
}
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
T
,
typename
Functor
>
__global__
void
VectorizedKernel
(
const
T
*
__restrict__
in0
,
const
T
*
__restrict__
in1
,
T
*
out
,
int
size
,
Functor
func
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
remain
=
size
-
VecSize
*
tid
;
remain
=
remain
>
0
?
remain
:
0
;
if
(
remain
>=
VecSize
)
{
auto
data
=
ElementwiseDataWrapper
<
ET
,
VecSize
,
T
>
(
out
,
in0
,
in1
);
VectorizedKernelImpl
(
data
,
size
,
func
,
tid
);
}
else
{
auto
data
=
ElementwiseDataWrapper
<
ET
,
1
,
T
>
(
out
,
in0
,
in1
);
ScalarKernelImpl
(
data
,
size
,
func
,
tid
*
VecSize
,
remain
);
}
}
template
<
ElementwiseType
ET
,
typename
T
,
typename
Functor
>
__global__
void
ScalarKernel
(
const
T
*
__restrict__
in0
,
const
T
*
__restrict__
in1
,
T
*
out
,
int
size
,
Functor
func
)
{
auto
data
=
ElementwiseDataWrapper
<
ET
,
1
,
T
>
(
out
,
in0
,
in1
);
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
remain
=
tid
<
size
?
1
:
0
;
ScalarKernelImpl
(
data
,
size
,
func
,
tid
,
remain
);
}
template
<
ElementwiseType
ET
,
typename
T
,
typename
Functor
>
void
LaunchElementwiseCudaKernel
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
std
::
vector
<
framework
::
Tensor
*>
*
outs
,
Functor
func
)
{
// calculate the max vec_size for all ins and outs
auto
size
=
ins
[
0
]
->
numel
();
int
vec_size
=
GetVectorizedSize
<
T
>
(
ins
,
*
outs
);
int
block_size
=
PADDLE_CUDA_THREAD_SIZE
;
int
grid_size
=
((
size
+
vec_size
-
1
)
/
vec_size
+
block_size
-
1
)
/
block_size
;
const
T
*
in0
=
ins
[
0
]
->
data
<
T
>
();
const
T
*
in1
=
(
ET
==
ElementwiseType
::
kBinary
)
?
ins
[
1
]
->
data
<
T
>
()
:
nullptr
;
T
*
out
=
(
*
outs
)[
0
]
->
data
<
T
>
();
// cuda kernel
auto
stream
=
ctx
.
stream
();
switch
(
vec_size
)
{
case
4
:
VectorizedKernel
<
ET
,
4
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
in0
,
in1
,
out
,
size
,
func
);
break
;
case
2
:
VectorizedKernel
<
ET
,
2
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
in0
,
in1
,
out
,
size
,
func
);
break
;
case
1
:
ScalarKernel
<
ET
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
in0
,
in1
,
out
,
size
,
func
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unsupported vectorized size: %d !"
,
vec_size
));
break
;
}
}
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录