diff --git a/python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py b/python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py index 3c86a74612f0d89cfb8417f93515f03f797381ed..7cf5b96c01a93e4dd1e533309ac13a804ceaae1f 100644 --- a/python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py +++ b/python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py @@ -262,50 +262,6 @@ class TestPostTrainingQuantization(unittest.TestCase): ptq.save_quantized_model(self.int8_model) -class TestPostTrainingForResnet50(TestPostTrainingQuantization): - def download_model(self): - # resnet50 fp32 data - data_urls = [ - 'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz' - ] - data_md5s = ['4a5194524823d9b76da6e738e1367881'] - self.model_cache_folder = self.download_data(data_urls, data_md5s, - "resnet50_fp32") - self.model = "ResNet-50" - self.algo = "KL" - - def test_post_training_resnet50(self): - self.download_model() - - print("Start FP32 inference for {0} on {1} images ...".format( - self.model, self.infer_iterations * self.batch_size)) - (fp32_throughput, fp32_latency, - fp32_acc1) = self.run_program(self.model_cache_folder + "/model") - - print("Start INT8 post training quantization for {0} on {1} images ...". - format(self.model, self.sample_iterations * self.batch_size)) - self.generate_quantized_model( - self.model_cache_folder + "/model", algo=self.algo) - - print("Start INT8 inference for {0} on {1} images ...".format( - self.model, self.infer_iterations * self.batch_size)) - (int8_throughput, int8_latency, - int8_acc1) = self.run_program(self.int8_model) - - print( - "FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}". - format(self.model, self.batch_size, fp32_throughput, fp32_latency, - fp32_acc1)) - print( - "INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}". - format(self.model, self.batch_size, int8_throughput, int8_latency, - int8_acc1)) - sys.stdout.flush() - - delta_value = fp32_acc1 - int8_acc1 - self.assertLess(delta_value, 0.025) - - class TestPostTrainingForMobilenetv1(TestPostTrainingQuantization): def download_model(self): # mobilenetv1 fp32 data