Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2c05e37a
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2c05e37a
编写于
7月 24, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
hidden slice_vars in distribute transpile, hidden it to users
上级
438de1e0
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
80 addition
and
86 deletion
+80
-86
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+1
-0
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+48
-0
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+0
-64
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+31
-22
未找到文件。
python/paddle/fluid/framework.py
浏览文件 @
2c05e37a
...
...
@@ -1281,6 +1281,7 @@ class Program(object):
self
.
_seed
=
0
self
.
_current_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
self
.
_op_role_var
=
[]
self
.
_slice_vars_and_atts
=
[]
@
property
def
op_role
(
self
):
...
...
python/paddle/fluid/io.py
浏览文件 @
2c05e37a
...
...
@@ -369,6 +369,7 @@ def load_vars(executor,
load_vars
(
executor
,
dirname
=
dirname
,
main_program
=
main_program
,
vars
=
filter
(
predicate
,
main_program
.
list_vars
()),
filename
=
filename
)
else
:
...
...
@@ -401,6 +402,10 @@ def load_vars(executor,
outputs
=
{
"Out"
:
load_var_list
},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
filename
)})
if
main_program
.
_slice_vars_and_atts
:
_load_slice_up_vars
(
executor
,
dirname
,
main_program
.
_slice_vars_and_atts
)
executor
.
run
(
load_prog
)
...
...
@@ -888,3 +893,46 @@ def get_test_program(filelist, program=None, startup_program=None):
program
.
_sync_with_cpp
()
return
program
def
_load_slice_up_vars
(
executor
,
dirname
,
_slice_vars_and_atts
):
if
slice_vars
==
None
or
len
(
slice_vars
)
==
0
:
return
load_prog
=
Program
()
load_block
=
load_prog
.
global_block
()
for
var_tuple
in
slice_vars
:
orig_var
=
var_tuple
[
0
]
start
=
var_tuple
[
1
]
slice_var
=
var_tuple
[
2
]
end
=
start
+
reduce
(
lambda
x
,
y
:
x
*
y
,
slice_var
.
shape
)
clone_orig_var
=
load_block
.
create_var
(
name
=
orig_var
.
name
,
type
=
orig_var
.
type
,
shape
=
orig_var
.
shape
,
dtype
=
orig_var
.
dtype
,
persistable
=
True
)
clone_slice_var
=
load_block
.
create_var
(
name
=
slice_var
.
name
,
type
=
slice_var
.
type
,
shape
=
slice_var
.
shape
,
dtype
=
slice_var
.
dtype
,
persistable
=
True
)
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
clone_orig_var
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
clone_orig_var
.
name
)})
load_block
.
append_op
(
type
=
"slice"
,
inputs
=
{
'Input'
:
clone_orig_var
},
outputs
=
{
'Out'
:
clone_slice_var
},
attrs
=
{
'axes'
:
[
0
],
'starts'
:
[
start
],
'ends'
:
[
end
]})
executor
.
run
(
load_prog
)
python/paddle/fluid/trainer.py
浏览文件 @
2c05e37a
...
...
@@ -360,7 +360,6 @@ class Trainer(object):
self
.
train_program
=
t
.
get_pserver_program
(
current_endpoint
)
self
.
startup_program
=
t
.
get_startup_program
(
current_endpoint
,
self
.
train_program
)
self
.
slice_vars
=
t
.
get_slice_vars_and_atts
(
current_endpoint
)
elif
training_role
==
"TRAINER"
:
self
.
train_program
=
t
.
get_trainer_program
()
else
:
...
...
@@ -609,16 +608,6 @@ class Trainer(object):
# Pserver Load
else
:
# load slice_vars
if
self
.
slice_vars
!=
None
and
len
(
self
.
slice_vars
)
!=
0
:
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
checkpoint_cfg
.
pserver_id
,
is_trainer
=
False
,
load_slice_up_vars
=
self
.
slice_vars
)
# load lookup table
if
self
.
checkpoint_cfg
.
lookup_table_name
:
load_checkpoint
(
...
...
@@ -766,7 +755,6 @@ def load_checkpoint(executor,
is_trainer
=
True
,
load_models
=
False
,
load_trainer_args
=
None
,
load_slice_up_vars
=
None
,
load_lookup_table
=
None
):
"""
This function filters out all checkpoint variables from the give
...
...
@@ -827,18 +815,11 @@ def load_checkpoint(executor,
_load_persistable_vars
(
executor
,
checkpoint_dir
,
main_program
,
True
)
return
if
load_trainer_args
:
print
(
"checkpoint_dir: {}, role_id: {}, load_trainer_args: {}"
.
format
(
checkpoint_dir
,
role_id
,
load_trainer_args
))
trainer_args_ret
=
_load_trainer_args
(
checkpoint_dir
,
role_id
,
load_trainer_args
)
return
trainer_args_ret
# pserver load
else
:
if
load_slice_up_vars
:
_load_slice_up_vars
(
executor
,
checkpoint_dir
,
load_slice_up_vars
)
return
if
load_lookup_table
:
_load_lookup_table_vars
(
executor
,
checkpoint_dir
,
main_program
,
role_id
,
load_lookup_table
)
...
...
@@ -911,51 +892,6 @@ def _load_persistable_vars(executor, dirname, program, has_model_dir=False):
filename
=
None
)
def
_load_slice_up_vars
(
executor
,
dirname
,
slice_vars
):
if
slice_vars
==
None
or
len
(
slice_vars
)
==
0
:
return
dirname
=
_get_model_dir
(
dirname
)
load_prog
=
framework
.
Program
()
load_block
=
load_prog
.
global_block
()
for
var_tuple
in
slice_vars
:
orig_var
=
var_tuple
[
0
]
start
=
var_tuple
[
1
]
slice_var
=
var_tuple
[
2
]
end
=
start
+
reduce
(
lambda
x
,
y
:
x
*
y
,
slice_var
.
shape
)
clone_orig_var
=
load_block
.
create_var
(
name
=
orig_var
.
name
,
type
=
orig_var
.
type
,
shape
=
orig_var
.
shape
,
dtype
=
orig_var
.
dtype
,
persistable
=
True
)
clone_slice_var
=
load_block
.
create_var
(
name
=
slice_var
.
name
,
type
=
slice_var
.
type
,
shape
=
slice_var
.
shape
,
dtype
=
slice_var
.
dtype
,
persistable
=
True
)
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
clone_orig_var
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
clone_orig_var
.
name
)})
load_block
.
append_op
(
type
=
"slice"
,
inputs
=
{
'Input'
:
clone_orig_var
},
outputs
=
{
'Out'
:
clone_slice_var
},
attrs
=
{
'axes'
:
[
0
],
'starts'
:
[
start
],
'ends'
:
[
end
]})
executor
.
run
(
load_prog
)
def
_load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
"""
The parameter server will load lookup table's local file in
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
2c05e37a
...
...
@@ -525,6 +525,10 @@ class DistributeTranspiler(object):
outputs
=
{},
attrs
=
attrs
)
# add slice vars
slice_vars_and_atts
=
self
.
_get_slice_vars_and_atts
(
endpoint
)
pserver_program
.
_slice_vars_and_atts
=
slice_vars_and_atts
pserver_program
.
_sync_with_cpp
()
return
pserver_program
...
...
@@ -587,8 +591,35 @@ class DistributeTranspiler(object):
inputs
=
new_inputs
,
outputs
=
new_outputs
,
attrs
=
op
.
attrs
)
# add slice vars
slice_vars_and_atts
=
self
.
_get_slice_vars_and_atts
(
endpoint
)
s_prog
.
_slice_vars_and_atts
=
slice_vars_and_atts
return
s_prog
def
_get_slice_vars_and_atts
(
self
,
endpoint
):
slice_vars_and_atts
=
[]
block_suffix
=
".block"
for
param
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
suff_idx
=
param
.
name
.
find
(
block_suffix
)
if
suff_idx
<=
0
:
continue
orig_var_name
=
param
.
name
[:
suff_idx
]
block_idx
=
int
(
param
.
name
[
suff_idx
+
len
(
block_suffix
):])
orig_var
=
self
.
origin_program
.
global_block
().
vars
[
orig_var_name
]
skip_numel
=
0
slice_vars
=
self
.
param_var_mapping
[
orig_var_name
]
for
slice_var
in
slice_vars
[:
block_idx
]:
skip_numel
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
slice_var
.
shape
)
slice_vars_and_atts
.
append
([
orig_var
,
skip_numel
,
param
])
return
slice_vars_and_atts
# ====================== private transpiler functions =====================
def
_has_distributed_lookup_table
(
self
):
...
...
@@ -719,28 +750,6 @@ class DistributeTranspiler(object):
})
for
ep
in
self
.
pserver_endpoints
]
def
get_slice_vars_and_atts
(
self
,
endpoint
):
slice_vars_and_atts
=
[]
block_suffix
=
".block"
for
param
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
suff_idx
=
param
.
name
.
find
(
block_suffix
)
if
suff_idx
<=
0
:
continue
orig_var_name
=
param
.
name
[:
suff_idx
]
block_idx
=
int
(
param
.
name
[
suff_idx
+
len
(
block_suffix
):])
orig_var
=
self
.
origin_program
.
global_block
().
vars
[
orig_var_name
]
skip_numel
=
0
slice_vars
=
self
.
param_var_mapping
[
orig_var_name
]
for
slice_var
in
slice_vars
[:
block_idx
]:
skip_numel
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
slice_var
.
shape
)
slice_vars_and_atts
.
append
([
orig_var
,
skip_numel
,
param
])
return
slice_vars_and_atts
# transpiler function for dis lookup_table
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
pserver_endpoints
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录