未验证 提交 2bd0f3c7 编写于 作者: Z Zuza 提交者: GitHub

Quantize slice op (#37630)

* quantize slice op

* correct test

* fix code formatting
上级 c9a3c669
......@@ -1619,6 +1619,26 @@ PDNode *patterns::Reshape::operator()() {
return reshape_out;
}
PDNode *patterns::Slice::operator()() {
auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
auto slice_op = pattern->NewNode(slice_op_repr())->assert_is_op("slice");
auto slice_in = pattern->NewNode(slice_in_repr())
->AsInput()
->assert_is_op_input("slice", "Input");
auto slice_out = pattern->NewNode(slice_out_repr())
->AsOutput()
->assert_is_op_output("slice", "Out");
auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
prev_op->LinksTo({slice_in});
slice_op->LinksFrom({slice_in}).LinksTo({slice_out});
next_op->LinksFrom({slice_out});
return slice_out;
}
PDNode *patterns::Matmul::operator()() {
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
......@@ -2315,7 +2335,7 @@ PDNode *patterns::QuantizePlacement::operator()(
std::unordered_set<std::string>({"concat", "conv2d", "elementwise_add",
"fc", "matmul", "pool2d", "prior_box",
"reshape2", "transpose2", "fusion_gru",
"fusion_lstm", "multi_gru"});
"fusion_lstm", "multi_gru", "slice"});
if (!quantize_enabled_op_types.empty()) {
supported_op_types = quantize_enabled_op_types;
}
......
......@@ -980,6 +980,20 @@ struct Reshape : public PatternBase {
PATTERN_DECL_NODE(reshape_out);
PATTERN_DECL_NODE(next_op);
};
// Slice op
// Forward pass for slice.
// slice_out is a result of the operator.
struct Slice : public PatternBase {
Slice(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "slice") {}
PDNode* operator()();
PATTERN_DECL_NODE(prev_op);
PATTERN_DECL_NODE(slice_in);
PATTERN_DECL_NODE(slice_op);
PATTERN_DECL_NODE(slice_out);
PATTERN_DECL_NODE(next_op);
};
// Matmul op
// Forward pass for matmul.
......
......@@ -676,6 +676,57 @@ void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
PrettyLogDetail("--- quantized %d reshape ops", quantize_reshape_count);
}
void CPUQuantizePass::QuantizeSlice(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::Slice slice_pattern{pattern, name_scope_};
slice_pattern();
int quantize_slice_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize slice op";
GET_IR_NODE_FROM_SUBGRAPH(slice_op, slice_op, slice_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(slice_op->Op())) {
LogQuantizationDisabled(slice_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, slice_pattern);
GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, slice_pattern);
// skip if prev op and next op is not quantized
if (!IsOpDequantized(prev_op) && !IsOpQuantized(next_op)) {
return;
}
GET_IR_NODE_FROM_SUBGRAPH(slice_in, slice_in, slice_pattern);
GET_IR_NODE_FROM_SUBGRAPH(slice_out, slice_out, slice_pattern);
if (!AreScalesPresentForNodes({slice_out})) {
LogCannotQuantizeOp(slice_op);
return;
}
bool is_input_unsigned{false};
auto input_scale = GetScaleValueForNode(slice_out, &is_input_unsigned);
QuantizeInput(g, slice_op, slice_in, "Input", input_scale,
is_input_unsigned);
bool is_output_unsigned{false};
auto output_scale = GetScaleValueForNode(slice_out, &is_output_unsigned);
DequantizeOutput(g, slice_op, slice_out, "Out", output_scale,
is_output_unsigned);
++quantize_slice_count;
};
gpd(graph, handler);
AddStatis(quantize_slice_count);
PrettyLogDetail("--- quantized %d slice ops", quantize_slice_count);
}
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
......@@ -1024,6 +1075,7 @@ void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
QuantizeFusionGru(graph);
QuantizeMultiGru(graph);
QuantizeFusionLSTM(graph);
QuantizeSlice(graph);
}
} // namespace ir
......
......@@ -61,6 +61,7 @@ class CPUQuantizePass : public FusePassBase {
void QuantizeFusionGru(Graph* graph) const;
void QuantizeMultiGru(Graph* graph) const;
void QuantizeFusionLSTM(Graph* graph) const;
void QuantizeSlice(Graph* graph) const;
void QuantizeInput(Graph* g, Node* op, Node* input, std::string input_name,
double scale_to_one, bool is_input_unsigned,
......
......@@ -55,6 +55,10 @@ void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
op->SetInput("X", {inputs[0]});
op->SetOutput("Out", {outputs[0]});
op->SetAttr("mkldnn_data_type", mkldnn_data_type);
} else if (type == "slice") {
op->SetInput("Input", {inputs[0]});
op->SetOutput("Out", {outputs[0]});
op->SetAttr("mkldnn_data_type", mkldnn_data_type);
} else if (type == "dropout") {
op->SetInput("X", {inputs[0]});
op->SetOutput("Out", {outputs[0]});
......@@ -784,6 +788,113 @@ TEST(CpuQuantizePass, reshapeBetweenNonQuantizedOp) {
added_nodes_count, 2.0f * 127);
}
static const std::initializer_list<std::string> variable_names_slice = {
"a", "b", "c", "d"};
// a->Dequantize->b
// b->Slice->c
// c->Dropout->d
ProgramDesc BuildProgramDescSlice() {
ProgramDesc prog;
for (auto& v : variable_names_slice) {
prog.MutableBlock(0)->Var(v);
}
SetOp(&prog, "dequantize", "Dequantize1", {"a"}, {"b"}, true);
SetOp(&prog, "slice", "Slice", {"b"}, {"c"}, true, "int8");
SetOp(&prog, "dropout", "Dropout", {"c"}, {"d"}, true, "float32");
return prog;
}
// a->Transpose->b
// b->slice->c
// c->Dropout->d
ProgramDesc BuildProgramDescSliceBetweenNonQuantizedOp() {
ProgramDesc prog;
for (auto& v : variable_names_slice) {
prog.MutableBlock(0)->Var(v);
}
SetOp(&prog, "transpose2", "Transpose2", {"a"}, {"b"}, true, "float32");
SetOp(&prog, "slice", "Slice", {"b"}, {"c"}, true, "int8");
SetOp(&prog, "dropout", "Dropout", {"c"}, {"d"}, true, "float32");
return prog;
}
void MainTestSlice(const ProgramDesc& prog, int transpose_count,
int slice_count, int quant_count, int dequant_count,
int added_nodes_count, float scale) {
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
int original_nodes_num, current_nodes_num;
PreparePass(&graph, prog, variable_names_slice, &original_nodes_num,
&current_nodes_num);
float quant_scale = 1.0f;
float dequant_scale = 1.0f;
int quantize_nodes_count = 0;
int dequantize_nodes_count = 0;
int transpose_nodes_count = 0;
int slice_nodes_count = 0;
for (auto* node : graph->Nodes()) {
if (node->IsOp()) {
auto* op = node->Op();
if (op->Type() == "transpose2") {
transpose_nodes_count++;
} else if (op->Type() == "slice") {
slice_nodes_count++;
} else if (op->Type() == "quantize") {
quantize_nodes_count++;
quant_scale = BOOST_GET_CONST(float, op->GetAttr("Scale"));
EXPECT_EQ(quant_scale, scale) << "Scale for node '" + op->Type() + "'.";
} else if (op->Type() == "dequantize") {
dequantize_nodes_count++;
auto op_name = op->GetAttrIfExists<std::string>("name");
VLOG(3) << op_name << "\n";
if (op_name != "Dequantize1") {
dequant_scale = BOOST_GET_CONST(float, op->GetAttr("Scale"));
EXPECT_EQ(dequant_scale, scale)
<< "Scale for node '" + op->Type() + "'.";
}
}
}
}
EXPECT_EQ(transpose_nodes_count, transpose_count);
EXPECT_EQ(slice_nodes_count, slice_count);
EXPECT_EQ(quantize_nodes_count, quant_count);
EXPECT_EQ(dequantize_nodes_count, dequant_count);
EXPECT_EQ(original_nodes_num + added_nodes_count, current_nodes_num);
}
TEST(CpuQuantizePass, slice) {
// a->Dequantize->b
// b2->Quant->b3->slice->c1->Dequant->c2
// c2->Dropout->d
int slice_count = 1;
int transpose_count = 0;
int quant_count = 1;
int dequant_count = 2;
// 1 Quant + 1 IN + 1 DeQuant + 1 OUT
int added_nodes_count = 4;
MainTestSlice(BuildProgramDescSlice(), transpose_count, slice_count,
quant_count, dequant_count, added_nodes_count, 2.0f * 127);
}
TEST(CpuQuantizePass, sliceBetweenNonQuantizedOp) {
// a->Transpos2->b
// b->slice->c
// c->Dropout->d
int slice_count = 1;
int transpose_count = 1;
int quant_count = 0;
int dequant_count = 0;
// 0 Quant + 0 IN + 0 DeQuant + 0 OUT
int added_nodes_count = 0;
MainTestSlice(BuildProgramDescSliceBetweenNonQuantizedOp(), transpose_count,
slice_count, quant_count, dequant_count, added_nodes_count,
2.0f * 127);
}
static const std::initializer_list<std::string> variable_names_matmul = {
"a", "b", "c", "d", "e", "f"};
......
......@@ -134,6 +134,16 @@ void AnalysisPredictor::MkldnnQuantizer::CalculateScalesForOpOutputs(
scales_[var_name] = scales_[input_var_name];
}
compute_scale = false;
} else if (op->Type() == "slice") {
auto input_var_name = op->Input("Input")[0];
PADDLE_ENFORCE_NE(scales_.find(input_var_name), scales_.end(),
platform::errors::PreconditionNotMet(
"Input scales must be calculated before the "
"output scales to infer if output is unsigned."));
if (scales_.find(input_var_name) != scales_.end()) {
scales_[var_name] = scales_[input_var_name];
}
compute_scale = false;
} else if (op->Type() == "concat") {
// output of ops with unsigned input must be unsigned
is_unsigned = true;
......
......@@ -42,6 +42,9 @@ MkldnnQuantizerConfig::MkldnnQuantizerConfig() {
rules_["transpose2"]["X"] = ScaleAlgo::KL;
rules_["transpose2"]["Out"] = ScaleAlgo::NONE;
rules_["slice"]["Input"] = ScaleAlgo::KL;
rules_["slice"]["Out"] = ScaleAlgo::NONE;
rules_["fc"]["Input"] = ScaleAlgo::KL;
rules_["fc"]["W"] = ScaleAlgo::MAX_CH_T;
rules_["fc"]["Bias"] = ScaleAlgo::NONE;
......
......@@ -94,6 +94,17 @@ function(inference_analysis_api_test target install_dir filename)
ARGS --infer_model=${install_dir}/model --infer_data=${install_dir}/data.txt --refer_result=${install_dir}/result.txt)
endfunction()
function(inference_analysis_api_int8_test target install_dir filename)
inference_analysis_test(${target} SRCS ${filename}
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${install_dir}/model
--infer_data=${install_dir}/data.txt
--refer_result=${install_dir}/result.txt
--accuracy=0.8
--batch_size=5
--enable_int8=true)
endfunction()
function(inference_multiple_models_analysis_api_test target install_dir filename)
inference_analysis_test(${target} SRCS ${filename}
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
......@@ -284,13 +295,14 @@ set(PYRAMID_DNN_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/pyramid_dnn")
download_model_and_data_without_verify(${PYRAMID_DNN_INSTALL_DIR} "PyramidDNN_model.tar.gz" "PyramidDNN_data.txt.tar.gz")
inference_analysis_api_test(test_analyzer_pyramid_dnn ${PYRAMID_DNN_INSTALL_DIR} analyzer_pyramid_dnn_tester.cc)
#Ernie
# Ernie
set(ERNIE_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/Ernie")
download_model_and_data(${ERNIE_INSTALL_DIR} "Ernie_model.tar.gz" aa59192dd41ed377f9f168e3a1309fa6 "Ernie_data.txt.tar.gz" 5396e63548edad7ca561e7e26a9476d1)
download_result(${ERNIE_INSTALL_DIR} "Ernie_result.txt.tar.gz" 73beea65abda2edb61c1662cd3180c62)
inference_analysis_api_test(test_analyzer_ernie ${ERNIE_INSTALL_DIR} analyzer_ernie_tester.cc)
inference_analysis_api_int8_test(test_analyzer_ernie_int8 ${ERNIE_INSTALL_DIR} analyzer_ernie_int8_tester.cc)
#Ernie large
# Ernie large
set(ERNIE_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/Ernie_Large")
download_model_and_data(${ERNIE_INSTALL_DIR} "Ernie_large_model.tar.gz" af7715245ed32cc77374625d4c80f7ef "Ernie_large_data.txt.tar.gz" edb2113eec93783cad56ed76d47ba57f)
download_result(${ERNIE_INSTALL_DIR} "Ernie_large_result.txt.tar.gz" 1facda98eef1085dc9d435ebf3f23a73)
......@@ -730,6 +742,7 @@ set_tests_properties(test_analyzer_mobilenet_transpose PROPERTIES TIMEOUT 120)
set_tests_properties(test_analyzer_resnet50 PROPERTIES TIMEOUT 120)
set_tests_properties(test_analyzer_ner PROPERTIES TIMEOUT 120)
set_tests_properties(test_analyzer_ernie PROPERTIES TIMEOUT 120)
set_tests_properties(test_analyzer_ernie_int8 PROPERTIES TIMEOUT 120)
set_tests_properties(test_analyzer_googlenet PROPERTIES TIMEOUT 120)
set_tests_properties(test_analyzer_small_dam PROPERTIES TIMEOUT 120)
set_tests_properties(test_analyzer_transformer PROPERTIES TIMEOUT 120)
......
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/analyzer_ernie_tester.h"
namespace paddle {
namespace inference {
using paddle::PaddleTensor;
#ifdef PADDLE_WITH_MKLDNN
void SetInt8Config(AnalysisConfig *cfg,
std::vector<paddle::PaddleTensor> data) {
cfg->SetModel(FLAGS_infer_model);
cfg->EnableMKLDNN();
cfg->EnableMkldnnQuantizer();
auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(data);
cfg->mkldnn_quantizer_config()->SetWarmupData(warmup_data);
cfg->mkldnn_quantizer_config()->SetWarmupBatchSize(FLAGS_batch_size);
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
}
// Compare result of NativeConfig and AnalysisConfig
void compare_int8(bool use_mkldnn = false) {
std::vector<std::vector<PaddleTensor>> inputs;
LoadInputData(&inputs);
AnalysisConfig cfg;
SetInt8Config(&cfg, inputs[0]);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
}
TEST(Analyzer_ernie, compare_int8_mkldnn) {
compare_int8(true /* use_mkldnn */);
}
#endif
} // namespace inference
} // namespace paddle
......@@ -12,142 +12,16 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
#include "paddle/fluid/inference/tests/api/analyzer_ernie_tester.h"
namespace paddle {
namespace inference {
using paddle::PaddleTensor;
template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
(*ss) >> (*t);
}
template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
*t = ss->str();
}
// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
std::stringstream ss;
T t;
for (auto c : line) {
if (c != sep) {
ss << c;
} else {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
if (!ss.str().empty()) {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
std::vector<std::string> data;
Split(field, ':', &data);
if (data.size() < 2) return false;
std::string shape_str = data[0];
std::vector<int> shape;
Split(shape_str, ' ', &shape);
std::string mat_str = data[1];
std::vector<T> mat;
Split(mat_str, ' ', &mat);
tensor->shape = shape;
auto size =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
sizeof(T);
tensor->data.Resize(size);
std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
tensor->dtype = GetPaddleDType<T>();
return true;
}
// Parse input tensors from string
bool ParseLine(const std::string &line,
std::vector<paddle::PaddleTensor> *tensors) {
std::vector<std::string> fields;
Split(line, ';', &fields);
tensors->clear();
tensors->reserve(4);
int i = 0;
auto input_name = FLAGS_ernie_large ? "eval_placeholder_" : "placeholder_";
for (; i < 3; i++) {
paddle::PaddleTensor temp;
ParseTensor<int64_t>(fields[i], &temp);
temp.name = input_name + std::to_string(i);
tensors->push_back(temp);
}
// input_mask
paddle::PaddleTensor input_mask;
ParseTensor<float>(fields[i], &input_mask);
input_mask.name = input_name + std::to_string(i);
tensors->push_back(input_mask);
return true;
}
bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
if (FLAGS_infer_data.empty()) {
LOG(ERROR) << "please set input data path";
return false;
}
std::ifstream fin(FLAGS_infer_data);
std::string line;
int sample = 0;
// The unit-test dataset only have 10 samples, each sample have 5 feeds.
while (std::getline(fin, line)) {
std::vector<paddle::PaddleTensor> feed_data;
ParseLine(line, &feed_data);
inputs->push_back(std::move(feed_data));
sample++;
if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break;
}
LOG(INFO) << "number of samples: " << sample;
return true;
}
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false,
bool use_gpu = false) {
cfg->SetModel(FLAGS_infer_model);
if (use_mkldnn) {
cfg->EnableMKLDNN();
}
if (use_gpu) {
cfg->EnableUseGpu(100, 0);
} else {
cfg->DisableGpu();
}
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
}
void profile(bool use_mkldnn = false, bool use_gpu = false) {
AnalysisConfig config;
SetConfig(&config, use_mkldnn, use_gpu);
std::vector<std::vector<PaddleTensor>> outputs;
......@@ -189,11 +63,12 @@ TEST(Analyzer_Ernie, fuse_statis) {
// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
std::vector<std::vector<PaddleTensor>> inputs;
LoadInputData(&inputs);
AnalysisConfig cfg;
SetConfig(&cfg, use_mkldnn, false);
std::vector<std::vector<PaddleTensor>> inputs;
LoadInputData(&inputs);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
}
......
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
using paddle::PaddleTensor;
template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
(*ss) >> (*t);
}
template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
*t = ss->str();
}
// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
std::stringstream ss;
T t;
for (auto c : line) {
if (c != sep) {
ss << c;
} else {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
if (!ss.str().empty()) {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
std::vector<std::string> data;
Split(field, ':', &data);
if (data.size() < 2) return false;
std::string shape_str = data[0];
std::vector<int> shape;
Split(shape_str, ' ', &shape);
std::string mat_str = data[1];
std::vector<T> mat;
Split(mat_str, ' ', &mat);
tensor->shape = shape;
auto size =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
sizeof(T);
tensor->data.Resize(size);
std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
tensor->dtype = GetPaddleDType<T>();
return true;
}
// Parse input tensors from string
bool ParseLine(const std::string &line,
std::vector<paddle::PaddleTensor> *tensors) {
std::vector<std::string> fields;
Split(line, ';', &fields);
tensors->clear();
tensors->reserve(4);
int i = 0;
auto input_name = FLAGS_ernie_large ? "eval_placeholder_" : "placeholder_";
for (; i < 3; i++) {
paddle::PaddleTensor temp;
ParseTensor<int64_t>(fields[i], &temp);
temp.name = input_name + std::to_string(i);
tensors->push_back(temp);
}
// input_mask
paddle::PaddleTensor input_mask;
ParseTensor<float>(fields[i], &input_mask);
input_mask.name = input_name + std::to_string(i);
tensors->push_back(input_mask);
return true;
}
bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
if (FLAGS_infer_data.empty()) {
LOG(ERROR) << "please set input data path";
return false;
}
std::ifstream fin(FLAGS_infer_data);
std::string line;
int sample = 0;
// The unit-test dataset only have 10 samples, each sample have 5 feeds.
while (std::getline(fin, line)) {
std::vector<paddle::PaddleTensor> feed_data;
ParseLine(line, &feed_data);
inputs->push_back(std::move(feed_data));
sample++;
if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break;
}
LOG(INFO) << "number of samples: " << sample;
return true;
}
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false,
bool use_gpu = false) {
cfg->SetModel(FLAGS_infer_model);
if (use_mkldnn) {
cfg->EnableMKLDNN();
}
if (use_gpu) {
cfg->EnableUseGpu(100, 0);
} else {
cfg->DisableGpu();
}
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
}
} // namespace inference
} // namespace paddle
......@@ -227,6 +227,8 @@ class SliceGradMKLDNNKernel : public framework::OpKernel<T> {
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice, MKLDNN, paddle::platform::CPUPlace,
ops::SliceMKLDNNKernel<float>,
ops::SliceMKLDNNKernel<int8_t>,
ops::SliceMKLDNNKernel<uint8_t>,
ops::SliceMKLDNNKernel<paddle::platform::bfloat16>);
namespace ops = paddle::operators;
......
......@@ -244,7 +244,7 @@ class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
"mkldnn_data_type",
"(string, default \"float32\"). Data type of mkldnn kernel")
.SetDefault("float32")
.InEnum({"float32", "bfloat16"})
.InEnum({"float32", "int8", "bfloat16"})
.AsExtra();
AddComment(R"DOC(
Slice Operator.
......
......@@ -62,7 +62,9 @@ class Quant2Int8MkldnnPass(object):
self._ops_to_quantize = _ops_to_quantize
self._op_ids_to_skip = _op_ids_to_skip if _op_ids_to_skip is not None else set(
[-1])
self._scale_immutable_ops = ['transpose2', 'reshape2', 'pool2d']
self._scale_immutable_ops = [
'transpose2', 'reshape2', 'pool2d', 'slice'
]
self._scale_ops = ['scale']
self._conv_ops = ['conv2d', 'depthwise_conv2d']
self._pool_ops = ['pool2d']
......@@ -241,6 +243,9 @@ class Quant2Int8MkldnnPass(object):
waiting_for_scale = set()
for op in graph.all_op_nodes():
if op.name() in self._scale_immutable_ops:
if op.name() == 'slice':
input_name = op.input("Input")[0]
else:
input_name = op.input("X")[0]
output_name = op.output("Out")[0]
tensor_names = [input_name, output_name]
......
......@@ -253,7 +253,7 @@ if(LINUX AND WITH_MKLDNN)
set(FP32_ERNIE_MODEL_ARCHIVE "ernie_fp32_model.tar.gz")
set(FP32_ERNIE_MODEL_DIR "${QUANT_INSTALL_DIR}/Ernie_float")
download_quant_fp32_model(${FP32_ERNIE_MODEL_DIR} ${FP32_ERNIE_MODEL_ARCHIVE} 114f38804a3ef8c45e7259e68bbd838b)
set(QUANT2_ERNIE_OPS_TO_QUANTIZE "fc,reshape2,transpose2,matmul,elementwise_add")
set(QUANT2_ERNIE_OPS_TO_QUANTIZE "fc,reshape2,transpose2,matmul,elementwise_add,slice")
inference_quant2_int8_nlp_test(test_quant2_int8_ernie_mkldnn ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${FP32_ERNIE_MODEL_DIR}/ernie_fp32_model ${NLP_DATA_PATH} ${NLP_LABLES_PATH} ${QUANT2_ERNIE_OPS_TO_QUANTIZE})
# Quant2 GRU
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册