From 29b63f0aa1fc489f2b02937bd19acd4f9342dab5 Mon Sep 17 00:00:00 2001 From: juncaipeng <52520497+juncaipeng@users.noreply.github.com> Date: Wed, 20 Nov 2019 12:15:52 +0800 Subject: [PATCH] support set model_filename and params_filename in post_training_quantization, test=develop (#21213) * support set model_filename and params_filename in post_training_quantization, test=develop --- .../post_training_quantization.py | 80 +++++++++++++------ .../tests/test_post_training_quantization.py | 5 +- 2 files changed, 56 insertions(+), 29 deletions(-) diff --git a/python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py b/python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py index d0188b9b93..2dab0d9bfb 100644 --- a/python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py +++ b/python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py @@ -34,8 +34,10 @@ _logger = get_logger( class PostTrainingQuantization(object): def __init__(self, executor, - model_path, - data_reader, + sample_generator, + model_dir, + model_filename=None, + params_filename=None, batch_size=10, batch_nums=None, scope=None, @@ -51,13 +53,22 @@ class PostTrainingQuantization(object): Args: executor(fluid.Executor): The executor to load, run and save the quantized model. - model_path(str): The path of fp32 model that will be quantized. - data_reader(Reader): The data reader generates a sample every time, - and it provides calibrate data for DataLoader. - batch_size(int, optional): The batch size of DataLoader, default is 10. - batch_nums(int, optional): If set batch_nums, the number of calibrate - data is batch_size*batch_nums. If batch_nums=None, use all data - provided by data_reader as calibrate data. + sample_generator(Python Generator): The sample generator provides + calibrate data for DataLoader, and it only returns a sample every + time. + model_dir(str): The path of the fp32 model that will be quantized, + and the model and params files are under the path. + model_filename(str, optional): The name of file to load the inference + program. If it is None, the default filename '__model__' will + be used. Default is 'None'. + params_filename(str, optional): The name of file to load all parameters. + When all parameters were saved in a single binary file, set it + as the real filename. If parameters were saved in separate files, + set it as 'None'. Default is 'None'. + batch_size(int, optional): The batch size of DataLoader. Default is 10. + batch_nums(int, optional): If batch_nums is not None, the number of + calibrate data is batch_size*batch_nums. If batch_nums is None, use + all data provided by sample_generator as calibrate data. scope(fluid.Scope, optional): The scope of the program, use it to load and save variables. If scope=None, get scope by global_scope(). algo(str, optional): If algo=KL, use KL-divergenc method to @@ -79,18 +90,29 @@ class PostTrainingQuantization(object): from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization exe = fluid.Executor(fluid.CPUPlace()) - model_path = load_fp32_model_path - save_model_path = save_int8_path - data_reader = your_data_reader + model_dir = path/to/fp32_model_params + # set model_filename as None when the filename is __model__, + # otherwise set it as the real filename + model_filename = None + # set params_filename as None when all parameters were saved in + # separate files, otherwise set it as the real filename + params_filename = None + save_model_path = path/to/save_model_path + # prepare the sample generator according to the model, and the + # sample generator must return a simple every time. The reference + # document: https://www.paddlepaddle.org.cn/documentation/docs/zh + # /user_guides/howto/prepare_data/use_py_reader.html + sample_generator = your_sample_generator batch_size = 10 batch_nums = 10 algo = "KL" - quantizable_op_type = ["conv2d", \ - "depthwise_conv2d", "mul", "pool2d", "elementwise_add"] + quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"] ptq = PostTrainingQuantization( executor=exe, - model_path=model_path, - data_reader=data_reader, + sample_generator=sample_generator, + model_dir=model_dir, + model_filename=model_filename, + params_filename=params_filename, batch_size=batch_size, batch_nums=batch_nums, algo=algo, @@ -99,8 +121,10 @@ class PostTrainingQuantization(object): ptq.save_quantized_model(save_model_path) ''' self._executor = executor - self._model_path = model_path - self._data_reader = data_reader + self._sample_generator = sample_generator + self._model_dir = model_dir + self._model_filename = model_filename + self._params_filename = params_filename self._batch_size = batch_size self._batch_nums = batch_nums self._scope = global_scope() if scope == None else scope @@ -148,7 +172,8 @@ class PostTrainingQuantization(object): for data in self._data_loader(): self._executor.run(program=self._program, feed=data, - fetch_list=self._fetch_list) + fetch_list=self._fetch_list, + return_numpy=False) self._sample_data() if batch_id % 5 == 0: _logger.info("run batch: " + str(batch_id)) @@ -189,13 +214,16 @@ class PostTrainingQuantization(object): ''' # load model and set data loader [self._program, self._feed_list, self._fetch_list] = \ - io.load_inference_model(self._model_path, self._executor) + io.load_inference_model(dirname=self._model_dir, + executor=self._executor, + model_filename=self._model_filename, + params_filename=self._params_filename) feed_vars = [framework._get_var(str(var_name), self._program) \ for var_name in self._feed_list] self._data_loader = io.DataLoader.from_generator( feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True) self._data_loader.set_sample_generator( - self._data_reader, + self._sample_generator, batch_size=self._batch_size, drop_last=True, places=self._place) @@ -348,11 +376,11 @@ class PostTrainingQuantization(object): if op.type in self._quantizable_op_type: output_name_list = self._op_real_in_out_name[op.type][1] for output_name in output_name_list: - output_var_name = op.output(output_name)[0] - if output_var_name in self._quantized_var_scale_factor: - op._set_attr( - output_scale_name, - self._quantized_var_scale_factor[output_var_name]) + for output_var_name in op.output(output_name): + if output_var_name in self._quantized_var_scale_factor: + op._set_attr(output_scale_name, + self._quantized_var_scale_factor[ + output_var_name]) def _load_var_value(self, var_name): ''' diff --git a/python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py b/python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py index 7c473e491d..821b1e1166 100644 --- a/python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py +++ b/python/paddle/fluid/contrib/slim/tests/test_post_training_quantization.py @@ -256,9 +256,8 @@ class TestPostTrainingQuantization(unittest.TestCase): ptq = PostTrainingQuantization( executor=exe, - scope=scope, - model_path=model_path, - data_reader=val_reader, + sample_generator=val_reader, + model_dir=model_path, algo=algo, quantizable_op_type=quantizable_op_type, is_full_quantize=is_full_quantize) -- GitLab