From 28cb653145cd92092e47d1b4062add57b0a98901 Mon Sep 17 00:00:00 2001 From: Chen Weihang Date: Mon, 31 Aug 2020 21:08:02 +0800 Subject: [PATCH] Remove backend argument of init_parallel_env (#26773) * remove backend argument of init_parallel_env * remove keep name table in transformer * add cpu version check * add skip unittest for init_parallel_env * polish doc: remove func use & update example --- python/paddle/distributed/parallel.py | 70 ++++---- python/paddle/distributed/spawn.py | 10 +- python/paddle/fluid/dygraph/parallel.py | 158 +++++++++++------- .../test_spawn_and_init_parallel_env.py | 10 +- python/paddle/framework/__init__.py | 4 +- 5 files changed, 135 insertions(+), 117 deletions(-) diff --git a/python/paddle/distributed/parallel.py b/python/paddle/distributed/parallel.py index 0c80674721..d35bc09634 100644 --- a/python/paddle/distributed/parallel.py +++ b/python/paddle/distributed/parallel.py @@ -29,13 +29,13 @@ __all__ = ["init_parallel_env"] ParallelStrategy = core.ParallelStrategy -def init_parallel_env(backend='nccl'): +def init_parallel_env(): """ - Initialize parallel training environments in dynamic mode. + Initialize parallel training environment in dynamic graph mode. - Args: - backend(str, optional): The backend to communication between multiple devices. - Now only support ``nccl`` . Default value is ``nccl`` . + .. note:: + Now only supports initializing the GPU parallel training + environment and using NCCL for communication. Returns: None @@ -89,14 +89,12 @@ def init_parallel_env(backend='nccl'): dist.spawn(train) """ - # 1. input check - if not isinstance(backend, six.string_types): - raise TypeError("input `backend` type error, expected type is str, " - "but received type is %s." % type(backend)) - if cpt.to_text(backend) != 'nccl': - raise ValueError( - "backend `%s` is not supported, now only supports `nccl` backend." % - backend) + # 1. gpu check + if not core.is_compiled_with_cuda(): + raise NotImplementedError( + "Cannot initialize parallel environment in CPU-only version, now only " + "supports initializing the GPU parallel environment. Please recompile " + "or reinstall paddle with GPU support.") # 2. check env def _check_var_exists(var_name): @@ -112,30 +110,28 @@ def init_parallel_env(backend='nccl'): _check_var_exists("PADDLE_TRAINERS_NUM") _check_var_exists("PADDLE_TRAINER_ENDPOINTS") - # 3. init ParallelStrategy + # 3. init NCCL ParallelStrategy strategy = ParallelStrategy() - if cpt.to_text(backend) == 'nccl': - if parallel_helper._is_parallel_ctx_initialized(): - warnings.warn("The parallel environment has been initialized.") - strategy.nranks = ParallelEnv().world_size - strategy.local_rank = ParallelEnv().rank - strategy.trainer_endpoints = ParallelEnv().trainer_endpoints - strategy.current_endpoint = ParallelEnv().current_endpoint - if strategy.nranks < 2: - return - # NOTE(chenweihang): [ why config global place here? ] - # the dygraph mode will be set to default mode, - # users will not call `dygraph.guard` or `enable_dygraph` - # directly, if they want to switch default place, - # they need to call a function to change default place, - # here just set correctly place to users - place = core.CUDAPlace(ParallelEnv().device_id) - _set_expected_place(place) - - # init nccl context - parallel_helper._set_parallel_ctx( - core.NCCLParallelContext(strategy, place)) - parallel_helper._init_parallel_ctx() + if parallel_helper._is_parallel_ctx_initialized(): + warnings.warn("The parallel environment has been initialized.") + strategy.nranks = ParallelEnv().world_size + strategy.local_rank = ParallelEnv().rank + strategy.trainer_endpoints = ParallelEnv().trainer_endpoints + strategy.current_endpoint = ParallelEnv().current_endpoint + if strategy.nranks < 2: + return + # NOTE(chenweihang): [ why config global place here? ] + # the dygraph mode will be set to default mode, + # users will not call `dygraph.guard` or `enable_dygraph` + # directly, if they want to switch default place, + # they need to call a function to change default place, + # here just set correctly place to users + place = core.CUDAPlace(ParallelEnv().device_id) + _set_expected_place(place) + + # init nccl context + parallel_helper._set_parallel_ctx(core.NCCLParallelContext(strategy, place)) + parallel_helper._init_parallel_ctx() def get_rank(): @@ -163,7 +159,7 @@ def get_rank(): def get_world_size(): """ - The number of trainers (number of processes participating in current job). + Returns the number of trainers (number of processes participating in current job). Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1. diff --git a/python/paddle/distributed/spawn.py b/python/paddle/distributed/spawn.py index 1ca2ebaa8d..6f1dcd15df 100644 --- a/python/paddle/distributed/spawn.py +++ b/python/paddle/distributed/spawn.py @@ -236,8 +236,6 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options): func (function): The target function is called by spawned process. This function need to be able to pickled, so it must be defined at the top level of a module. - This function should be called as ``func(i, *args)``, ``i`` is - the process index and ``args`` contains other arguments as tuple. args (tuple, optional): Arguments passed to ``func``. nprocs (int, optional): Number of processed to start. Default: -1. when nprocs is -1, the available device will be obtained from @@ -246,8 +244,8 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options): variable CUDA_VISIBLE_DEVICES; If use CPU, the currently available CPU number is obtained from the environment variable CPU_NUM. For example, export CPU_NUM=4, if the environment variable is not set, - the executor will add the variable to the environment variable and - set its value to 1. + the spawn method will add default value to the environment variable + and set its value to 1. join (bool, optional): Perform a blocking join on all spawned processes. Default: True. daemon (bool, optional): The spawned processes' daemon flag. Default: False. @@ -266,8 +264,8 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options): such as 6170. Default: None; (5) selected_gpus (string): The training process will run on the selected_gpus, such as "0,1,2,3". Default: None; - (6) print_config: Print current parallel training config. Default: False; - (7) use_paddlecloud: Whether to use paddlecloud platform to run your + (6) print_config (bool): Print current parallel training config. Default: False; + (7) use_paddlecloud (bool): Whether to use paddlecloud platform to run your multi-process job. Default: False. Returns: diff --git a/python/paddle/fluid/dygraph/parallel.py b/python/paddle/fluid/dygraph/parallel.py index bd578e6ba9..6fbf3bfe76 100644 --- a/python/paddle/fluid/dygraph/parallel.py +++ b/python/paddle/fluid/dygraph/parallel.py @@ -349,38 +349,53 @@ class DataParallel(layers.Layer): Examples: .. code-block:: python - import numpy as np - import paddle.fluid as fluid - - place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id) - with fluid.dygraph.guard(place): - - # prepare the data parallel context - strategy = fluid.dygraph.prepare_context() - - linear = fluid.dygraph.Linear(1, 10, act="softmax") - adam = fluid.optimizer.AdamOptimizer( - learning_rate=0.001, parameter_list=linear.parameters()) - - # make the module become the data parallelism module - linear = fluid.dygraph.DataParallel(linear, strategy) - - x_data = np.random.random(size=[10, 1]).astype(np.float32) - data = fluid.dygraph.to_variable(x_data) - - hidden = linear(data) - avg_loss = fluid.layers.mean(hidden) - - # scale the loss according to the number of trainers. - avg_loss = linear.scale_loss(avg_loss) - - avg_loss.backward() - - # collect the gradients of trainers. - linear.apply_collective_grads() - - adam.minimize(avg_loss) - linear.clear_gradients() + import paddle + import paddle.nn as nn + import paddle.optimizer as opt + import paddle.distributed as dist + + class LinearNet(nn.Layer): + def __init__(self): + super(LinearNet, self).__init__() + self._linear1 = nn.Linear(10, 10) + self._linear2 = nn.Linear(10, 1) + + def forward(self, x): + return self._linear2(self._linear1(x)) + + def train(): + # 1. enable dynamic mode + paddle.disable_static() + + # 2. initialize parallel environment + dist.init_parallel_env() + + # 3. create data parallel layer & optimizer + layer = LinearNet() + dp_layer = paddle.DataParallel(layer) + + loss_fn = nn.MSELoss() + adam = opt.Adam( + learning_rate=0.001, parameters=dp_layer.parameters()) + + # 4. run layer + inputs = paddle.randn([10, 10], 'float32') + outputs = dp_layer(inputs) + labels = paddle.randn([10, 1], 'float32') + loss = loss_fn(outputs, labels) + + loss = dp_layer.scale_loss(loss) + loss.backward() + dp_layer.apply_collective_grads() + + adam.step() + adam.clear_grad() + + if __name__ == '__main__': + # 1. start by ``paddle.distributed.spawn`` (default) + dist.spawn(train, nprocs=2) + # 2. start by ``paddle.distributed.launch`` + # train() """ if not self._is_data_parallel_mode(): return loss @@ -438,38 +453,53 @@ class DataParallel(layers.Layer): Examples: .. code-block:: python - import numpy as np - import paddle.fluid as fluid - - place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id) - with fluid.dygraph.guard(place): - - # prepare the data parallel context - strategy = fluid.dygraph.prepare_context() - - linear = fluid.dygraph.Linear(1, 10, act="softmax") - adam = fluid.optimizer.AdamOptimizer( - learning_rate=0.001, parameter_list=linear.parameters()) - - # make the module become the data parallelism module - linear = fluid.dygraph.DataParallel(linear, strategy) - - x_data = np.random.random(size=[10, 1]).astype(np.float32) - data = fluid.dygraph.to_variable(x_data) - - hidden = linear(data) - avg_loss = fluid.layers.mean(hidden) - - # scale the loss according to the number of trainers. - avg_loss = linear.scale_loss(avg_loss) - - avg_loss.backward() - - # collect the gradients of trainers. - linear.apply_collective_grads() - - adam.minimize(avg_loss) - linear.clear_gradients() + import paddle + import paddle.nn as nn + import paddle.optimizer as opt + import paddle.distributed as dist + + class LinearNet(nn.Layer): + def __init__(self): + super(LinearNet, self).__init__() + self._linear1 = nn.Linear(10, 10) + self._linear2 = nn.Linear(10, 1) + + def forward(self, x): + return self._linear2(self._linear1(x)) + + def train(): + # 1. enable dynamic mode + paddle.disable_static() + + # 2. initialize parallel environment + dist.init_parallel_env() + + # 3. create data parallel layer & optimizer + layer = LinearNet() + dp_layer = paddle.DataParallel(layer) + + loss_fn = nn.MSELoss() + adam = opt.Adam( + learning_rate=0.001, parameters=dp_layer.parameters()) + + # 4. run layer + inputs = paddle.randn([10, 10], 'float32') + outputs = dp_layer(inputs) + labels = paddle.randn([10, 1], 'float32') + loss = loss_fn(outputs, labels) + + loss = dp_layer.scale_loss(loss) + loss.backward() + dp_layer.apply_collective_grads() + + adam.step() + adam.clear_grad() + + if __name__ == '__main__': + # 1. start by ``paddle.distributed.spawn`` (default) + dist.spawn(train, nprocs=2) + # 2. start by ``paddle.distributed.launch`` + # train() """ if not self._is_data_parallel_mode(): return diff --git a/python/paddle/fluid/tests/unittests/test_spawn_and_init_parallel_env.py b/python/paddle/fluid/tests/unittests/test_spawn_and_init_parallel_env.py index ca92bc7524..171d3788d8 100644 --- a/python/paddle/fluid/tests/unittests/test_spawn_and_init_parallel_env.py +++ b/python/paddle/fluid/tests/unittests/test_spawn_and_init_parallel_env.py @@ -30,15 +30,9 @@ from paddle.fluid.dygraph import parallel_helper # executed in the python3 sub-process. +@unittest.skipIf(not core.is_compiled_with_cuda(), + "core is not compiled with CUDA") class TestInitParallelEnv(unittest.TestCase): - def test_beckend_type_error(self): - with self.assertRaises(TypeError): - dist.init_parallel_env(backend=1) - - def test_backend_value_error(self): - with self.assertRaises(ValueError): - dist.init_parallel_env(backend="mpi") - def test_check_env_failed(self): os.environ['FLAGS_selected_gpus'] = '0' os.environ['PADDLE_TRAINER_ID'] = '0' diff --git a/python/paddle/framework/__init__.py b/python/paddle/framework/__init__.py index b2975283fb..af78887419 100644 --- a/python/paddle/framework/__init__.py +++ b/python/paddle/framework/__init__.py @@ -20,8 +20,8 @@ __all__ = [ ] __all__ += [ - 'grad', 'LayerList', 'load', 'save', 'prepare_context', 'to_variable', - 'no_grad', 'ParallelEnv', 'DataParallel' + 'grad', 'LayerList', 'load', 'save', 'to_variable', 'no_grad', + 'DataParallel' ] __all__ += [ -- GitLab