未验证 提交 28b4240b 编写于 作者: G Ghost Screaming 提交者: GitHub

Fix bug of reduce_sum op. (#46045)

* Fix bug of reduce_sum op. When input.numel() > INT32_MAX, its result
is wrong.

* Fix some problems.
1. Change fluid head files to phi files.
2. Delete useless code.
3. Fix code style problems.

* Fix some code style problems.

* Fix some code style problems.
上级 22530137
......@@ -13,11 +13,60 @@
// limitations under the License.
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include <limits>
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace phi {
template <typename T,
int EigenDimSize = 5,
int ReducedDimSize = 1,
bool ReduceAll = false>
void ReduceSumEigen(const KPDevice& dev_ctx,
const DenseTensor& x,
bool reduce_all,
const std::vector<int64_t>& dims,
DataType out_dtype,
DenseTensor* out,
std::vector<int>* reduce_dims) {
// Resize Input Tensor
auto new_x = x;
int added_dims = EigenDimSize - x.dims().size();
std::array<int64_t, EigenDimSize> new_x_dim;
new_x_dim.fill(1);
for (int i = 0; i < x.dims().size(); i++) {
new_x_dim[i + added_dims] = x.dims().at(i);
}
new_x.Resize(phi::DDim(new_x_dim.data(), new_x_dim.size()));
auto eigen_x_tensor = EigenTensor<T, EigenDimSize>::From(new_x);
// Create Out Tensor
dev_ctx.Alloc<T>(out);
auto origin_out_dims = out->dims();
constexpr int kReduceOutRank = ReduceAll ? 1 : EigenDimSize - ReducedDimSize;
// Resize Out Tensor
std::array<int64_t, kReduceOutRank> new_out_dim;
new_out_dim.fill(1);
for (int i = 0; i < out->dims().size(); i++) {
new_out_dim[i + added_dims] = out->dims().at(i);
}
out->Resize(phi::DDim(new_out_dim.data(), new_out_dim.size()));
auto eigen_out_tensor = EigenTensor<T, kReduceOutRank>::From(*out);
for (int i = 0; i < ReducedDimSize; i++) {
(*reduce_dims)[i] += added_dims;
}
auto eigen_reduce_dim =
EigenDim<ReducedDimSize>::From(phi::make_ddim(*reduce_dims));
// Caculate
eigen_out_tensor.device(*dev_ctx.eigen_device()) =
eigen_x_tensor.sum(eigen_reduce_dim);
out->Resize(origin_out_dims);
}
template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx,
const DenseTensor& x,
......@@ -29,10 +78,65 @@ void SumRawKernel(const Context& dev_ctx,
if (out_dtype == DataType::UNDEFINED && out->dtype() != x.dtype()) {
out_dtype = out->dtype();
}
if (x.numel() > std::numeric_limits<int32_t>::max()) {
#ifndef PADDLE_WITH_XPU_KP
if (out_dtype != phi::DataType::UNDEFINED && out_dtype != x.dtype()) {
PADDLE_THROW(phi::errors::Fatal(
"If Input.numel() > INT32_MAX, reduce_sum kernel uses EigenTensor "
"sum for reduce_sum function. As a result, input dtype should be "
"the same as out dtype"));
}
std::vector<int> reduce_dims = phi::funcs::details::GetReduceDim(
dims.GetData(), x.dims().size(), reduce_all);
#define CALL_EIGEN_REDUCE_SUM_KERNEL(reduce_rank) \
case reduce_rank: { \
if (reduce_all) { \
ReduceSumEigen<T, 5, reduce_rank, true>(dev_ctx, \
x, \
reduce_all, \
dims.GetData(), \
out_dtype, \
out, \
&reduce_dims); \
} else { \
ReduceSumEigen<T, 5, reduce_rank, false>(dev_ctx, \
x, \
reduce_all, \
dims.GetData(), \
out_dtype, \
out, \
&reduce_dims); \
} \
break; \
}
switch (reduce_dims.size()) {
CALL_EIGEN_REDUCE_SUM_KERNEL(1);
CALL_EIGEN_REDUCE_SUM_KERNEL(2);
CALL_EIGEN_REDUCE_SUM_KERNEL(3);
CALL_EIGEN_REDUCE_SUM_KERNEL(4);
CALL_EIGEN_REDUCE_SUM_KERNEL(5);
default:
PADDLE_THROW(phi::errors::Fatal(
"If Input.numel() > INT32_MAX, reduce_sum kernel uses EigenTensor "
"sum for reduce_sum function. As a result, its dim should be <= "
"5."));
break;
}
#undef CALL_EIGEN_REDUCE_SUM_KERNEL
#else
PADDLE_THROW(phi::errors::Fatal(
"If Input.numel() > INT32_MAX, reduce_sum kernel uses EigenTensor "
"sum for reduce_sum function. Such case is only supported on GPU "
"now."));
#endif
} else {
phi::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
dev_ctx, x, reduce_all, dims.GetData(), keep_dim, out_dtype, out);
}
}
} // namespace phi
#ifdef PADDLE_WITH_XPU_KP
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册