Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2811ea44
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2811ea44
编写于
3月 28, 2018
作者:
M
mozga-intel
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implementation of MKLDNN FC
上级
95710456
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
603 addition
and
14 deletion
+603
-14
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+25
-4
paddle/fluid/operators/fc_mkldnn_op.cc
paddle/fluid/operators/fc_mkldnn_op.cc
+410
-0
paddle/fluid/operators/fc_mkldnn_op.h
paddle/fluid/operators/fc_mkldnn_op.h
+47
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+22
-10
python/paddle/fluid/tests/unittests/test_fc_op.py
python/paddle/fluid/tests/unittests/test_fc_op.py
+99
-0
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
2811ea44
file
(
GLOB GENERAL_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"*_op.cc"
)
string
(
REPLACE
"_mkldnn"
""
GENERAL_OPS
"
${
GENERAL_OPS
}
"
)
string
(
REPLACE
".cc"
""
GENERAL_OPS
"
${
GENERAL_OPS
}
"
)
if
(
WITH_MKLDNN
)
string
(
REPLACE
"_mkldnn"
""
GENERAL_OPS
"
${
GENERAL_OPS
}
"
)
else
()
foreach
(
item
${
GENERAL_OPS
}
)
if
(
${
item
}
MATCHES
".*_mkldnn_op"
)
list
(
REMOVE_ITEM GENERAL_OPS
${
item
}
)
endif
()
endforeach
(
item
)
endif
()
list
(
REMOVE_DUPLICATES GENERAL_OPS
)
set
(
DEPS_OPS
""
)
set
(
pybind_file
${
PADDLE_SOURCE_DIR
}
/paddle/fluid/pybind/pybind.h
)
...
...
@@ -80,7 +88,12 @@ function(op_library TARGET)
endif
()
list
(
LENGTH cc_srcs cc_srcs_len
)
if
(
${
cc_srcs_len
}
EQUAL 0
)
if
(
WITH_MKLDNN
)
list
(
LENGTH mkldnn_cc_srcs mkldnn_cc_srcs_len
)
if
(
${
cc_srcs_len
}
EQUAL 0 AND
${
mkldnn_cc_srcs_len
}
EQUAL 0
)
message
(
FATAL_ERROR
"The op library
${
TARGET
}
should contains at least one .cc file"
)
endif
()
elseif
(
${
cc_srcs_len
}
EQUAL 0
)
message
(
FATAL_ERROR
"The op library
${
TARGET
}
should contains at least one .cc file"
)
endif
()
...
...
@@ -109,7 +122,16 @@ function(op_library TARGET)
# The registration of USE_OP, please refer to paddle/fluid/framework/op_registry.h.
# Note that it's enough to just adding one operator to pybind in a *_op.cc file.
# And for detail pybind information, please see generated paddle/pybind/pybind.h.
# This replacing is needed, when the CPU's kernel doesn't exist.
string
(
REPLACE
"_op"
"_mkldnn_op"
target_mkldnn_file
"
${
TARGET
}
"
)
if
(
EXISTS
${
CMAKE_CURRENT_SOURCE_DIR
}
/
${
TARGET
}
.cc
)
file
(
READ
${
TARGET
}
.cc TARGET_CONTENT
)
elseif
(
WITH_MKLDNN AND EXISTS
${
CMAKE_CURRENT_SOURCE_DIR
}
/
${
target_mkldnn_file
}
.cc
)
file
(
READ
${
target_mkldnn_file
}
.cc TARGET_CONTENT
)
else
()
message
(
FATAL_ERROR
"Cannot read the
${
TARGET
}
file from
${
CMAKE_CURRENT_SOURCE_DIR
}
"
)
endif
()
string
(
REGEX MATCH
"REGISTER_OP
\\
(.*REGISTER_OP
\\
("
multi_register
"
${
TARGET_CONTENT
}
"
)
string
(
REGEX MATCH
"REGISTER_OP
\\
([a-z0-9_]*,"
one_register
"
${
multi_register
}
"
)
if
(
one_register STREQUAL
""
)
...
...
@@ -224,7 +246,6 @@ op_library(recurrent_op DEPS executor)
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
op_library
(
cos_sim_op DEPS cos_sim_functor
)
op_library
(
parallel_do_op DEPS executor
)
if
(
WITH_GPU
)
op_library
(
conv_op DEPS vol2col depthwise_conv im2col
)
else
()
...
...
paddle/fluid/operators/fc_mkldnn_op.cc
0 → 100644
浏览文件 @
2811ea44
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fc_mkldnn_op.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace
paddle
{
namespace
operators
{
using
paddle
::
framework
::
Tensor
;
using
paddle
::
platform
::
MKLDNNDeviceContext
;
void
FCOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"X(Input) of Fully Connected should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Out(Output) of Fully Connected should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"W(Input) of Fully Connected should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
w_dims
=
ctx
->
GetInputDim
(
"W"
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
w_dims
[
1
]});
PADDLE_ENFORCE
(
in_dims
.
size
()
==
4
,
"Fully Connected input should be 4-D tensor."
);
PADDLE_ENFORCE
(
w_dims
.
size
()
==
2
,
"Fully Connected input should be 2-D tensor."
);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
ShareLoD
(
"Input"
,
"Out"
);
}
framework
::
OpKernelType
FCOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kMKLDNN
};
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
framework
::
DataLayout
layout
=
framework
::
StringToDataLayout
(
data_format
);
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
()),
ctx
.
GetPlace
(),
layout
,
library
);
}
void
FCOpGrad
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
w_dims
=
ctx
->
GetInputDim
(
"W"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Input"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Input"
),
in_dims
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"W"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
w_dims
);
}
}
framework
::
OpKernelType
FCOpGrad
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kMKLDNN
};
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
framework
::
DataLayout
layout
=
framework
::
StringToDataLayout
(
data_format
);
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
()),
ctx
.
GetPlace
(),
layout
,
library
);
}
class
FCOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
FCOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"(Tensor) The input tensor of fully connected operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the feature, "
"and W is the width of the feature."
);
AddInput
(
"W"
,
"(Tensor), The second input tensor of fc op."
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCHW, "
"where N is batch size, C is the number of channels, "
"H is the height of the feature, "
"and W is the width of the feature."
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"with_bias"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
"An optional string from:
\"
NHWC
\"
,
\"
NCHW
\"
. "
"Defaults to
\"
NHWC
\"
. Specify the data format of the output data, "
"the input will be transformed automatically. "
)
.
SetDefault
(
"AnyLayout"
);
AddComment
(
R"DOC(
)DOC"
);
}
};
struct
MKLDNNMatrixSize
final
{
explicit
MKLDNNMatrixSize
(
const
std
::
vector
<
int
>&
in
,
const
std
::
vector
<
int
>&
w
)
:
mb
{
in
[
0
]},
ic
{
in
[
1
]},
oc
{
w
[
1
]},
h
{
in
[
2
]},
w
{
in
[
3
]}
{}
bool
is_spatial
()
const
{
return
h
>
1
&&
w
>
1
;
}
const
int
mb
;
const
int
ic
;
const
int
oc
;
const
int
h
,
w
;
};
template
<
typename
T
>
class
MKLDNNMD
{
public:
explicit
MKLDNNMD
(
const
T
*
in
,
const
T
*
w
,
bool
bias
)
:
sz_
(
std
::
unique_ptr
<
MKLDNNMatrixSize
>
(
new
MKLDNNMatrixSize
(
paddle
::
framework
::
vectorize2int
(
in
->
dims
()),
paddle
::
framework
::
vectorize2int
(
w
->
dims
()))))
{
with_bias_
=
bias
;
}
mkldnn
::
memory
::
desc
dst
()
const
{
return
platform
::
MKLDNNMemDesc
({
sz_
->
mb
,
sz_
->
oc
},
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
nc
);
}
mkldnn
::
memory
::
desc
src
()
const
{
return
sz_
->
is_spatial
()
?
platform
::
MKLDNNMemDesc
({
sz_
->
mb
,
sz_
->
ic
,
sz_
->
h
,
sz_
->
w
},
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
nchw
)
:
platform
::
MKLDNNMemDesc
({
sz_
->
mb
,
sz_
->
ic
},
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
nc
);
}
mkldnn
::
memory
::
desc
weights
()
const
{
return
sz_
->
is_spatial
()
?
platform
::
MKLDNNMemDesc
({
sz_
->
oc
,
sz_
->
ic
,
sz_
->
h
,
sz_
->
w
},
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
oihw
)
:
platform
::
MKLDNNMemDesc
({
sz_
->
oc
,
sz_
->
ic
},
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
oi
);
}
mkldnn
::
memory
::
desc
bias
()
const
{
return
with_bias_
?
platform
::
MKLDNNMemDesc
({
sz_
->
oc
},
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
format_undef
)
:
platform
::
MKLDNNMemDesc
({},
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
format_undef
);
}
private:
std
::
unique_ptr
<
MKLDNNMatrixSize
>
sz_
;
bool
with_bias_
;
};
class
MKLDNNMemory
{
public:
MKLDNNMemory
(
MKLDNNMD
<
Tensor
>*
t
,
const
mkldnn
::
engine
&
e
)
:
md_
{
t
},
engine_
{
e
}
{}
virtual
~
MKLDNNMemory
()
=
default
;
template
<
typename
Output
>
mkldnn
::
memory
dst
(
const
Output
*
out
)
{
return
mkldnn
::
memory
({
md_
->
dst
(),
engine_
},
static_cast
<
void
*>
(
const_cast
<
float
*>
(
out
)));
}
template
<
typename
Output
>
mkldnn
::
memory
dst
(
Output
*
out
)
{
return
mkldnn
::
memory
({
md_
->
dst
(),
engine_
},
out
);
}
template
<
typename
Input
>
mkldnn
::
memory
src
(
const
Input
*
in
)
{
return
mkldnn
::
memory
({
md_
->
src
(),
engine_
},
static_cast
<
void
*>
(
const_cast
<
float
*>
(
in
)));
}
template
<
typename
Weight
>
mkldnn
::
memory
weights
(
const
Weight
*
w
)
{
return
mkldnn
::
memory
({
md_
->
weights
(),
engine_
},
static_cast
<
void
*>
(
const_cast
<
float
*>
(
w
)));
}
mkldnn
::
memory
bias
()
{
return
mkldnn
::
memory
(
mkldnn
::
memory
::
primitive_desc
(
md_
->
bias
(),
engine_
));
}
private:
MKLDNNMD
<
Tensor
>*
md_
;
const
mkldnn
::
engine
&
engine_
;
};
template
<
typename
T
>
class
FCMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
w
=
ctx
.
Input
<
Tensor
>
(
"W"
);
PADDLE_ENFORCE
(
input
->
dims
().
size
()
==
4
,
"Input must be with 4 dimensions, i.e. NCHW"
);
PADDLE_ENFORCE
(
w
->
dims
().
size
()
==
2
,
"Weights must be with 2 dimensions, i.e. NC"
);
bool
with_bias
=
ctx
.
Attr
<
bool
>
(
"with_bias"
);
MKLDNNMD
<
Tensor
>
md
(
input
,
w
,
with_bias
);
std
::
shared_ptr
<
mkldnn
::
inner_product_forward
::
primitive_desc
>
pd
=
FcFwdPrimitiveDesc
(
md
.
src
(),
md
.
weights
(),
md
.
dst
(),
md
.
bias
(),
with_bias
,
mkldnn_engine
);
const
std
::
string
key
=
ctx
.
op
().
Output
(
"Out"
);
const
std
::
string
key_fc_pd
=
key
+
"@fc_pd"
;
dev_ctx
.
SetBlob
(
key_fc_pd
,
pd
);
MKLDNNMemory
mem
(
&
md
,
mkldnn_engine
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
auto
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dst_memory
=
mem
.
dst
(
output_data
);
auto
src_memory
=
mem
.
src
(
input_data
);
auto
weights_memory
=
mem
.
weights
(
w_data
);
auto
bias_memory
=
mem
.
bias
();
auto
forward
=
with_bias
?
mkldnn
::
inner_product_forward
(
*
pd
,
src_memory
,
weights_memory
,
bias_memory
,
dst_memory
)
:
mkldnn
::
inner_product_forward
(
*
pd
,
src_memory
,
weights_memory
,
dst_memory
);
std
::
vector
<
mkldnn
::
primitive
>
pipeline
=
{
forward
};
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
private:
std
::
unique_ptr
<
mkldnn
::
inner_product_forward
::
primitive_desc
>
FcFwdPrimitiveDesc
(
const
mkldnn
::
memory
::
desc
&
src
,
const
mkldnn
::
memory
::
desc
&
weights
,
const
mkldnn
::
memory
::
desc
&
dst
,
const
mkldnn
::
memory
::
desc
&
bias
,
const
bool
with_bias
,
const
mkldnn
::
engine
&
engine
)
const
{
auto
desc
=
with_bias
?
mkldnn
::
inner_product_forward
::
desc
(
mkldnn
::
prop_kind
::
forward
,
src
,
weights
,
bias
,
dst
)
:
mkldnn
::
inner_product_forward
::
desc
(
mkldnn
::
prop_kind
::
forward
,
src
,
weights
,
dst
);
auto
pd
=
new
mkldnn
::
inner_product_forward
::
primitive_desc
(
desc
,
engine
);
return
std
::
unique_ptr
<
mkldnn
::
inner_product_forward
::
primitive_desc
>
(
pd
);
}
};
template
<
typename
T
>
class
FCMKLDNNGradOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
T
*
input_grad_data
=
nullptr
;
T
*
w_grad_data
=
nullptr
;
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
w_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"W"
));
if
(
input_grad
)
{
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
w_grad
)
{
w_grad_data
=
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
Tensor
*
w
=
ctx
.
Input
<
Tensor
>
(
"W"
);
const
T
*
w_data
=
w
->
data
<
T
>
();
const
Tensor
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
bool
with_bias
=
ctx
.
Attr
<
bool
>
(
"with_bias"
);
MKLDNNMD
<
Tensor
>
md
(
input
,
w
,
with_bias
);
MKLDNNMemory
mem
(
&
md
,
mkldnn_engine
);
auto
dst_memory
=
mem
.
dst
(
out_grad_data
);
auto
src_memory
=
mem
.
src
(
input_data
);
auto
weights_memory
=
mem
.
weights
(
w_data
);
auto
bias_memory
=
mem
.
bias
();
const
std
::
string
key
=
ctx
.
op
().
Input
(
"Out"
);
const
std
::
string
key_fc_pd
=
key
+
"@fc_pd"
;
auto
pd
=
std
::
static_pointer_cast
<
mkldnn
::
inner_product_forward
::
primitive_desc
>
(
dev_ctx
.
GetBlob
(
key_fc_pd
));
PADDLE_ENFORCE
(
pd
!=
nullptr
,
"Fail to find key_fc_pd in device context"
);
if
(
w_grad
)
{
auto
weights_grad_memory
=
mem
.
weights
(
w_grad_data
);
mkldnn
::
inner_product_backward_weights
::
primitive_desc
bwd_weight_pd
=
FcBwdWeightsPrimitiveDesc
(
md
.
src
(),
md
.
weights
(),
md
.
dst
(),
md
.
bias
(),
with_bias
,
*
pd
,
mkldnn_engine
);
auto
bwd_weights_prim
=
mkldnn
::
inner_product_backward_weights
(
bwd_weight_pd
,
src_memory
,
dst_memory
,
weights_grad_memory
,
bias_memory
);
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
bwd_weights_prim
};
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
if
(
input_grad
)
{
auto
src_grad_memory
=
mem
.
src
(
input_grad_data
);
mkldnn
::
inner_product_backward_data
::
primitive_desc
bwd_data_pd
=
FcBwdDataPrimitiveDesc
(
md
.
src
(),
md
.
weights
(),
md
.
dst
(),
*
pd
,
mkldnn_engine
);
auto
bwd_data_prim
=
mkldnn
::
inner_product_backward_data
(
bwd_data_pd
,
dst_memory
,
weights_memory
,
src_grad_memory
);
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
bwd_data_prim
};
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
}
private:
mkldnn
::
inner_product_backward_weights
::
primitive_desc
FcBwdWeightsPrimitiveDesc
(
const
mkldnn
::
memory
::
desc
&
src
,
const
mkldnn
::
memory
::
desc
&
diff_weights
,
const
mkldnn
::
memory
::
desc
&
diff_dst
,
const
mkldnn
::
memory
::
desc
&
bias
,
const
bool
with_bias
,
const
mkldnn
::
inner_product_forward
::
primitive_desc
&
pd
,
const
mkldnn
::
engine
&
engine
)
const
{
auto
bwd_weight_desc
=
with_bias
?
mkldnn
::
inner_product_backward_weights
::
desc
(
src
,
diff_weights
,
bias
,
diff_dst
)
:
mkldnn
::
inner_product_backward_weights
::
desc
(
src
,
diff_weights
,
bias
,
diff_dst
);
return
mkldnn
::
inner_product_backward_weights
::
primitive_desc
(
bwd_weight_desc
,
engine
,
pd
);
}
mkldnn
::
inner_product_backward_data
::
primitive_desc
FcBwdDataPrimitiveDesc
(
const
mkldnn
::
memory
::
desc
&
diff_src
,
const
mkldnn
::
memory
::
desc
&
weights
,
const
mkldnn
::
memory
::
desc
&
diff_dst
,
const
mkldnn
::
inner_product_forward
::
primitive_desc
&
pd
,
const
mkldnn
::
engine
&
engine
)
const
{
auto
bwd_data_desc
=
mkldnn
::
inner_product_backward_data
::
desc
(
diff_src
,
weights
,
diff_dst
);
return
mkldnn
::
inner_product_backward_data
::
primitive_desc
(
bwd_data_desc
,
engine
,
pd
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
fc
,
paddle
::
operators
::
FCOp
,
paddle
::
operators
::
FCOpMaker
,
fc_grad
,
paddle
::
operators
::
FCOpGrad
);
REGISTER_OP_KERNEL
(
fc
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
paddle
::
operators
::
FCMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL
(
fc_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
paddle
::
operators
::
FCMKLDNNGradOpKernel
<
float
>
);
paddle/fluid/operators/fc_mkldnn_op.h
0 → 100644
浏览文件 @
2811ea44
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
class
FCOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
FCOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
2811ea44
...
...
@@ -86,6 +86,7 @@ def fc(input,
param_attr
=
None
,
bias_attr
=
None
,
use_mkldnn
=
False
,
with_bias
=
False
,
act
=
None
,
name
=
None
):
"""
...
...
@@ -133,6 +134,8 @@ def fc(input,
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
of this layer. If it is set to None, no bias will be added to the output units.
act (str, default None): Activation to be applied to the output of this layer.
use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
library is installed. Default: False
name (str, default None): The name of this layer.
Returns:
...
...
@@ -162,6 +165,7 @@ def fc(input,
w
=
helper
.
create_parameter
(
attr
=
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
False
)
tmp
=
helper
.
create_tmp_variable
(
dtype
)
if
use_mkldnn
==
False
:
helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
input_var
,
...
...
@@ -172,6 +176,14 @@ def fc(input,
"y_num_col_dims"
:
1
,
'use_mkldnn'
:
use_mkldnn
})
else
:
helper
.
append_op
(
type
=
"fc"
,
inputs
=
{
"Input"
:
input_var
,
"W"
:
w
},
outputs
=
{
"Out"
:
tmp
},
attrs
=
{
"use_mkldnn"
:
use_mkldnn
,
"with_bias"
:
with_bias
})
mul_results
.
append
(
tmp
)
# sum
...
...
python/paddle/fluid/tests/unittests/test_fc_op.py
0 → 100644
浏览文件 @
2811ea44
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
fully_connected_naive
(
input
,
weights
,
bias_data
=
None
):
in_n
,
in_c
,
in_h
,
in_w
=
input
.
shape
w_h
,
w_c
=
weights
.
shape
x_data
=
np
.
reshape
(
input
,
[
in_n
,
in_c
*
in_h
*
in_w
])
w_data
=
np
.
transpose
(
np
.
reshape
(
weights
,
(
w_c
,
in_c
*
in_h
*
in_w
)))
result
=
None
if
not
bias_data
:
result
=
np
.
dot
(
x_data
,
w_data
)
else
:
result
=
np
.
dot
(
x_data
,
w_data
)
+
bias_data
return
result
class
MatrixGenerate
:
def
__init__
(
self
,
mb
,
ic
,
oc
,
h
,
w
):
self
.
input
=
np
.
random
.
random
((
mb
,
ic
,
h
,
w
)).
astype
(
"float32"
)
self
.
weights
=
np
.
random
.
random
((
ic
*
h
*
w
,
oc
)).
astype
(
"float32"
)
class
TestFCMKLDNNOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"fc"
self
.
use_mkldnn
=
True
self
.
with_bias
=
True
self
.
matrix
=
MatrixGenerate
(
1
,
10
,
15
,
3
,
3
)
self
.
inputs
=
{
'Input'
:
self
.
matrix
.
input
,
'W'
:
self
.
matrix
.
weights
}
self
.
attrs
=
{
'use_mkldnn'
:
self
.
use_mkldnn
,
'with_bias'
:
self
.
with_bias
}
self
.
outputs
=
{
'Out'
:
fully_connected_naive
(
self
.
matrix
.
input
,
self
.
matrix
.
weights
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
(
set
([
'Input'
,
'W'
]),
'Out'
,
max_relative_error
=
0.9
)
def
test_check_grad_no_weight
(
self
):
self
.
check_grad
(
[
'Input'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
'W'
))
class
TestFCMKLDNNOp1
(
TestFCMKLDNNOp
):
def
init_op_type
(
self
):
self
.
matrix
=
MatrixGenerate
(
2
,
15
,
48
,
2
,
2
)
class
TestFCMKLDNNOp2
(
TestFCMKLDNNOp
):
def
init_op_type
(
self
):
self
.
matrix
=
MatrixGenerate
(
2
,
32
,
40
,
1
,
1
)
class
TestFCMKLDNNOp3
(
TestFCMKLDNNOp
):
def
init_op_type
(
self
):
self
.
matrix
=
MatrixGenerate
(
2
,
2
,
4
,
1
,
1
)
class
TestFCMKLDNNOp4
(
TestFCMKLDNNOp
):
def
init_op_type
(
self
):
self
.
with_bias
=
False
self
.
matrix
=
MatrixGenerate
(
2
,
32
,
48
,
2
,
2
)
class
TestFCMKLDNNOp4
(
TestFCMKLDNNOp
):
def
init_op_type
(
self
):
self
.
with_bias
=
False
self
.
matrix
=
MatrixGenerate
(
2
,
32
,
1000
,
6
,
6
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录