提交 2811ea44 编写于 作者: M mozga-intel

Implementation of MKLDNN FC

上级 95710456
file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc") file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc")
string(REPLACE "_mkldnn" "" GENERAL_OPS "${GENERAL_OPS}")
string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}") string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}")
if(WITH_MKLDNN)
string(REPLACE "_mkldnn" "" GENERAL_OPS "${GENERAL_OPS}")
else()
foreach(item ${GENERAL_OPS})
if(${item} MATCHES ".*_mkldnn_op")
list(REMOVE_ITEM GENERAL_OPS ${item})
endif()
endforeach(item)
endif()
list(REMOVE_DUPLICATES GENERAL_OPS) list(REMOVE_DUPLICATES GENERAL_OPS)
set(DEPS_OPS "") set(DEPS_OPS "")
set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/fluid/pybind/pybind.h) set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/fluid/pybind/pybind.h)
...@@ -80,7 +88,12 @@ function(op_library TARGET) ...@@ -80,7 +88,12 @@ function(op_library TARGET)
endif() endif()
list(LENGTH cc_srcs cc_srcs_len) list(LENGTH cc_srcs cc_srcs_len)
if (${cc_srcs_len} EQUAL 0) if(WITH_MKLDNN)
list(LENGTH mkldnn_cc_srcs mkldnn_cc_srcs_len)
if (${cc_srcs_len} EQUAL 0 AND ${mkldnn_cc_srcs_len} EQUAL 0)
message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file")
endif()
elseif(${cc_srcs_len} EQUAL 0)
message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file") message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file")
endif() endif()
...@@ -109,7 +122,16 @@ function(op_library TARGET) ...@@ -109,7 +122,16 @@ function(op_library TARGET)
# The registration of USE_OP, please refer to paddle/fluid/framework/op_registry.h. # The registration of USE_OP, please refer to paddle/fluid/framework/op_registry.h.
# Note that it's enough to just adding one operator to pybind in a *_op.cc file. # Note that it's enough to just adding one operator to pybind in a *_op.cc file.
# And for detail pybind information, please see generated paddle/pybind/pybind.h. # And for detail pybind information, please see generated paddle/pybind/pybind.h.
# This replacing is needed, when the CPU's kernel doesn't exist.
string(REPLACE "_op" "_mkldnn_op" target_mkldnn_file "${TARGET}")
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cc)
file(READ ${TARGET}.cc TARGET_CONTENT) file(READ ${TARGET}.cc TARGET_CONTENT)
elseif(WITH_MKLDNN AND EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${target_mkldnn_file}.cc)
file(READ ${target_mkldnn_file}.cc TARGET_CONTENT)
else()
message(FATAL_ERROR "Cannot read the ${TARGET} file from ${CMAKE_CURRENT_SOURCE_DIR}")
endif()
string(REGEX MATCH "REGISTER_OP\\(.*REGISTER_OP\\(" multi_register "${TARGET_CONTENT}") string(REGEX MATCH "REGISTER_OP\\(.*REGISTER_OP\\(" multi_register "${TARGET_CONTENT}")
string(REGEX MATCH "REGISTER_OP\\([a-z0-9_]*," one_register "${multi_register}") string(REGEX MATCH "REGISTER_OP\\([a-z0-9_]*," one_register "${multi_register}")
if (one_register STREQUAL "") if (one_register STREQUAL "")
...@@ -224,7 +246,6 @@ op_library(recurrent_op DEPS executor) ...@@ -224,7 +246,6 @@ op_library(recurrent_op DEPS executor)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale) op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
op_library(cos_sim_op DEPS cos_sim_functor) op_library(cos_sim_op DEPS cos_sim_functor)
op_library(parallel_do_op DEPS executor) op_library(parallel_do_op DEPS executor)
if (WITH_GPU) if (WITH_GPU)
op_library(conv_op DEPS vol2col depthwise_conv im2col) op_library(conv_op DEPS vol2col depthwise_conv im2col)
else() else()
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fc_mkldnn_op.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
void FCOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"X(Input) of Fully Connected should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Out(Output) of Fully Connected should not be null.");
PADDLE_ENFORCE(ctx->HasInput("W"),
"W(Input) of Fully Connected should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto w_dims = ctx->GetInputDim("W");
std::vector<int64_t> output_shape({in_dims[0], w_dims[1]});
PADDLE_ENFORCE(in_dims.size() == 4,
"Fully Connected input should be 4-D tensor.");
PADDLE_ENFORCE(w_dims.size() == 2,
"Fully Connected input should be 2-D tensor.");
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
ctx->ShareLoD("Input", "Out");
}
framework::OpKernelType FCOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library{framework::LibraryType::kMKLDNN};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
layout, library);
}
void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto w_dims = ctx->GetInputDim("W");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
if (ctx->HasOutput(framework::GradVarName("W"))) {
ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
}
}
framework::OpKernelType FCOpGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library{framework::LibraryType::kMKLDNN};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
layout, library);
}
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FCOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"(Tensor) The input tensor of fully connected operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the feature, "
"and W is the width of the feature.");
AddInput("W", "(Tensor), The second input tensor of fc op.");
AddOutput("Out",
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCHW, "
"where N is batch size, C is the number of channels, "
"H is the height of the feature, "
"and W is the width of the feature.");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<bool>("with_bias",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
"An optional string from: \"NHWC\", \"NCHW\". "
"Defaults to \"NHWC\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("AnyLayout");
AddComment(R"DOC(
)DOC");
}
};
struct MKLDNNMatrixSize final {
explicit MKLDNNMatrixSize(const std::vector<int>& in,
const std::vector<int>& w)
: mb{in[0]}, ic{in[1]}, oc{w[1]}, h{in[2]}, w{in[3]} {}
bool is_spatial() const { return h > 1 && w > 1; }
const int mb;
const int ic;
const int oc;
const int h, w;
};
template <typename T>
class MKLDNNMD {
public:
explicit MKLDNNMD(const T* in, const T* w, bool bias)
: sz_(std::unique_ptr<MKLDNNMatrixSize>(new MKLDNNMatrixSize(
paddle::framework::vectorize2int(in->dims()),
paddle::framework::vectorize2int(w->dims())))) {
with_bias_ = bias;
}
mkldnn::memory::desc dst() const {
return platform::MKLDNNMemDesc({sz_->mb, sz_->oc},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::nc);
}
mkldnn::memory::desc src() const {
return sz_->is_spatial()
? platform::MKLDNNMemDesc({sz_->mb, sz_->ic, sz_->h, sz_->w},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::nchw)
: platform::MKLDNNMemDesc({sz_->mb, sz_->ic},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::nc);
}
mkldnn::memory::desc weights() const {
return sz_->is_spatial()
? platform::MKLDNNMemDesc({sz_->oc, sz_->ic, sz_->h, sz_->w},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::oihw)
: platform::MKLDNNMemDesc({sz_->oc, sz_->ic},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::oi);
}
mkldnn::memory::desc bias() const {
return with_bias_
? platform::MKLDNNMemDesc({sz_->oc},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::format_undef)
: platform::MKLDNNMemDesc({}, mkldnn::memory::data_type::f32,
mkldnn::memory::format::format_undef);
}
private:
std::unique_ptr<MKLDNNMatrixSize> sz_;
bool with_bias_;
};
class MKLDNNMemory {
public:
MKLDNNMemory(MKLDNNMD<Tensor>* t, const mkldnn::engine& e)
: md_{t}, engine_{e} {}
virtual ~MKLDNNMemory() = default;
template <typename Output>
mkldnn::memory dst(const Output* out) {
return mkldnn::memory({md_->dst(), engine_},
static_cast<void*>(const_cast<float*>(out)));
}
template <typename Output>
mkldnn::memory dst(Output* out) {
return mkldnn::memory({md_->dst(), engine_}, out);
}
template <typename Input>
mkldnn::memory src(const Input* in) {
return mkldnn::memory({md_->src(), engine_},
static_cast<void*>(const_cast<float*>(in)));
}
template <typename Weight>
mkldnn::memory weights(const Weight* w) {
return mkldnn::memory({md_->weights(), engine_},
static_cast<void*>(const_cast<float*>(w)));
}
mkldnn::memory bias() {
return mkldnn::memory(mkldnn::memory::primitive_desc(md_->bias(), engine_));
}
private:
MKLDNNMD<Tensor>* md_;
const mkldnn::engine& engine_;
};
template <typename T>
class FCMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
auto input = ctx.Input<Tensor>("Input");
auto w = ctx.Input<Tensor>("W");
PADDLE_ENFORCE(input->dims().size() == 4,
"Input must be with 4 dimensions, i.e. NCHW");
PADDLE_ENFORCE(w->dims().size() == 2,
"Weights must be with 2 dimensions, i.e. NC");
bool with_bias = ctx.Attr<bool>("with_bias");
MKLDNNMD<Tensor> md(input, w, with_bias);
std::shared_ptr<mkldnn::inner_product_forward::primitive_desc> pd =
FcFwdPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(),
with_bias, mkldnn_engine);
const std::string key = ctx.op().Output("Out");
const std::string key_fc_pd = key + "@fc_pd";
dev_ctx.SetBlob(key_fc_pd, pd);
MKLDNNMemory mem(&md, mkldnn_engine);
const T* input_data = input->data<T>();
const T* w_data = w->data<T>();
auto output = ctx.Output<Tensor>("Out");
T* output_data = output->mutable_data<T>(ctx.GetPlace());
auto dst_memory = mem.dst(output_data);
auto src_memory = mem.src(input_data);
auto weights_memory = mem.weights(w_data);
auto bias_memory = mem.bias();
auto forward = with_bias ? mkldnn::inner_product_forward(
*pd, src_memory, weights_memory, bias_memory,
dst_memory)
: mkldnn::inner_product_forward(
*pd, src_memory, weights_memory, dst_memory);
std::vector<mkldnn::primitive> pipeline = {forward};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
private:
std::unique_ptr<mkldnn::inner_product_forward::primitive_desc>
FcFwdPrimitiveDesc(const mkldnn::memory::desc& src,
const mkldnn::memory::desc& weights,
const mkldnn::memory::desc& dst,
const mkldnn::memory::desc& bias, const bool with_bias,
const mkldnn::engine& engine) const {
auto desc = with_bias
? mkldnn::inner_product_forward::desc(
mkldnn::prop_kind::forward, src, weights, bias, dst)
: mkldnn::inner_product_forward::desc(
mkldnn::prop_kind::forward, src, weights, dst);
auto pd = new mkldnn::inner_product_forward::primitive_desc(desc, engine);
return std::unique_ptr<mkldnn::inner_product_forward::primitive_desc>(pd);
}
};
template <typename T>
class FCMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
T* input_grad_data = nullptr;
T* w_grad_data = nullptr;
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
Tensor* w_grad = ctx.Output<Tensor>(framework::GradVarName("W"));
if (input_grad) {
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
}
if (w_grad) {
w_grad_data = w_grad->mutable_data<T>(ctx.GetPlace());
}
const Tensor* input = ctx.Input<Tensor>("Input");
const T* input_data = input->data<T>();
const Tensor* w = ctx.Input<Tensor>("W");
const T* w_data = w->data<T>();
const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
const T* out_grad_data = out_grad->data<T>();
bool with_bias = ctx.Attr<bool>("with_bias");
MKLDNNMD<Tensor> md(input, w, with_bias);
MKLDNNMemory mem(&md, mkldnn_engine);
auto dst_memory = mem.dst(out_grad_data);
auto src_memory = mem.src(input_data);
auto weights_memory = mem.weights(w_data);
auto bias_memory = mem.bias();
const std::string key = ctx.op().Input("Out");
const std::string key_fc_pd = key + "@fc_pd";
auto pd =
std::static_pointer_cast<mkldnn::inner_product_forward::primitive_desc>(
dev_ctx.GetBlob(key_fc_pd));
PADDLE_ENFORCE(pd != nullptr, "Fail to find key_fc_pd in device context");
if (w_grad) {
auto weights_grad_memory = mem.weights(w_grad_data);
mkldnn::inner_product_backward_weights::primitive_desc bwd_weight_pd =
FcBwdWeightsPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(),
with_bias, *pd, mkldnn_engine);
auto bwd_weights_prim = mkldnn::inner_product_backward_weights(
bwd_weight_pd, src_memory, dst_memory, weights_grad_memory,
bias_memory);
std::vector<mkldnn::primitive> pipeline{bwd_weights_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
if (input_grad) {
auto src_grad_memory = mem.src(input_grad_data);
mkldnn::inner_product_backward_data::primitive_desc bwd_data_pd =
FcBwdDataPrimitiveDesc(md.src(), md.weights(), md.dst(), *pd,
mkldnn_engine);
auto bwd_data_prim = mkldnn::inner_product_backward_data(
bwd_data_pd, dst_memory, weights_memory, src_grad_memory);
std::vector<mkldnn::primitive> pipeline{bwd_data_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
}
private:
mkldnn::inner_product_backward_weights::primitive_desc
FcBwdWeightsPrimitiveDesc(
const mkldnn::memory::desc& src, const mkldnn::memory::desc& diff_weights,
const mkldnn::memory::desc& diff_dst, const mkldnn::memory::desc& bias,
const bool with_bias,
const mkldnn::inner_product_forward::primitive_desc& pd,
const mkldnn::engine& engine) const {
auto bwd_weight_desc = with_bias
? mkldnn::inner_product_backward_weights::desc(
src, diff_weights, bias, diff_dst)
: mkldnn::inner_product_backward_weights::desc(
src, diff_weights, bias, diff_dst);
return mkldnn::inner_product_backward_weights::primitive_desc(
bwd_weight_desc, engine, pd);
}
mkldnn::inner_product_backward_data::primitive_desc FcBwdDataPrimitiveDesc(
const mkldnn::memory::desc& diff_src, const mkldnn::memory::desc& weights,
const mkldnn::memory::desc& diff_dst,
const mkldnn::inner_product_forward::primitive_desc& pd,
const mkldnn::engine& engine) const {
auto bwd_data_desc =
mkldnn::inner_product_backward_data::desc(diff_src, weights, diff_dst);
return mkldnn::inner_product_backward_data::primitive_desc(bwd_data_desc,
engine, pd);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP(fc, paddle::operators::FCOp, paddle::operators::FCOpMaker, fc_grad,
paddle::operators::FCOpGrad);
REGISTER_OP_KERNEL(fc, MKLDNN, ::paddle::platform::CPUPlace,
paddle::operators::FCMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(fc_grad, MKLDNN, ::paddle::platform::CPUPlace,
paddle::operators::FCMKLDNNGradOpKernel<float>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class FCOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class FCOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
} // namespace operators
} // namespace paddle
...@@ -86,6 +86,7 @@ def fc(input, ...@@ -86,6 +86,7 @@ def fc(input,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
use_mkldnn=False, use_mkldnn=False,
with_bias=False,
act=None, act=None,
name=None): name=None):
""" """
...@@ -133,6 +134,8 @@ def fc(input, ...@@ -133,6 +134,8 @@ def fc(input,
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
of this layer. If it is set to None, no bias will be added to the output units. of this layer. If it is set to None, no bias will be added to the output units.
act (str, default None): Activation to be applied to the output of this layer. act (str, default None): Activation to be applied to the output of this layer.
use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
library is installed. Default: False
name (str, default None): The name of this layer. name (str, default None): The name of this layer.
Returns: Returns:
...@@ -162,6 +165,7 @@ def fc(input, ...@@ -162,6 +165,7 @@ def fc(input,
w = helper.create_parameter( w = helper.create_parameter(
attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False) attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
tmp = helper.create_tmp_variable(dtype) tmp = helper.create_tmp_variable(dtype)
if use_mkldnn == False:
helper.append_op( helper.append_op(
type="mul", type="mul",
inputs={"X": input_var, inputs={"X": input_var,
...@@ -172,6 +176,14 @@ def fc(input, ...@@ -172,6 +176,14 @@ def fc(input,
"y_num_col_dims": 1, "y_num_col_dims": 1,
'use_mkldnn': use_mkldnn 'use_mkldnn': use_mkldnn
}) })
else:
helper.append_op(
type="fc",
inputs={"Input": input_var,
"W": w},
outputs={"Out": tmp},
attrs={"use_mkldnn": use_mkldnn,
"with_bias": with_bias})
mul_results.append(tmp) mul_results.append(tmp)
# sum # sum
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def fully_connected_naive(input, weights, bias_data=None):
in_n, in_c, in_h, in_w = input.shape
w_h, w_c = weights.shape
x_data = np.reshape(input, [in_n, in_c * in_h * in_w])
w_data = np.transpose(np.reshape(weights, (w_c, in_c * in_h * in_w)))
result = None
if not bias_data:
result = np.dot(x_data, w_data)
else:
result = np.dot(x_data, w_data) + bias_data
return result
class MatrixGenerate:
def __init__(self, mb, ic, oc, h, w):
self.input = np.random.random((mb, ic, h, w)).astype("float32")
self.weights = np.random.random((ic * h * w, oc)).astype("float32")
class TestFCMKLDNNOp(OpTest):
def setUp(self):
self.op_type = "fc"
self.use_mkldnn = True
self.with_bias = True
self.matrix = MatrixGenerate(1, 10, 15, 3, 3)
self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}
self.attrs = {
'use_mkldnn': self.use_mkldnn,
'with_bias': self.with_bias
}
self.outputs = {
'Out': fully_connected_naive(self.matrix.input, self.matrix.weights)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(set(['Input', 'W']), 'Out', max_relative_error=0.9)
def test_check_grad_no_weight(self):
self.check_grad(
['Input'], 'Out', max_relative_error=0.5, no_grad_set=set('W'))
class TestFCMKLDNNOp1(TestFCMKLDNNOp):
def init_op_type(self):
self.matrix = MatrixGenerate(2, 15, 48, 2, 2)
class TestFCMKLDNNOp2(TestFCMKLDNNOp):
def init_op_type(self):
self.matrix = MatrixGenerate(2, 32, 40, 1, 1)
class TestFCMKLDNNOp3(TestFCMKLDNNOp):
def init_op_type(self):
self.matrix = MatrixGenerate(2, 2, 4, 1, 1)
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
def init_op_type(self):
self.with_bias = False
self.matrix = MatrixGenerate(2, 32, 48, 2, 2)
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
def init_op_type(self):
self.with_bias = False
self.matrix = MatrixGenerate(2, 32, 1000, 6, 6)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册