Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
276017bb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
276017bb
编写于
3月 21, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
3月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
conv2d support FP16 on xpu and update unittest for conv2d, test=kunlun (#40395)
上级
1eb96eec
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
382 addition
and
338 deletion
+382
-338
paddle/fluid/operators/conv_op_xpu.cc
paddle/fluid/operators/conv_op_xpu.cc
+51
-26
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+8
-4
python/paddle/fluid/tests/unittests/xpu/test_conv2d_op_xpu.py
...on/paddle/fluid/tests/unittests/xpu/test_conv2d_op_xpu.py
+323
-308
未找到文件。
paddle/fluid/operators/conv_op_xpu.cc
浏览文件 @
276017bb
...
...
@@ -19,14 +19,16 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
class
GemmConvXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUT
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
...
...
@@ -53,11 +55,16 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
const
int
img_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
f
=
static_cast
<
int
>
(
filter
.
dims
()[
0
]);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
input
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
output
->
data
<
float
>
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
const
XPUT
*
input_data
=
reinterpret_cast
<
const
XPUT
*>
(
input
->
data
<
T
>
());
const
XPUT
*
filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter
.
data
<
T
>
());
XPUT
*
output_data
=
reinterpret_cast
<
XPUT
*>
(
output
->
data
<
T
>
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d
<
XPUT
,
XPUT
,
XPUT
,
int16_t
>
(
dev_ctx
.
x_context
(),
input_data
,
filter_data
,
output_data
,
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d %s]"
,
...
...
@@ -67,14 +74,16 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
GemmConvGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUT
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output_grad
=
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
Tensor
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
Tensor
*
filter_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
...
...
@@ -107,19 +116,27 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
const
int
img_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
f
=
static_cast
<
int
>
(
filter
.
dims
()[
0
]);
const
XPUT
*
input_data
=
reinterpret_cast
<
const
XPUT
*>
(
input
->
data
<
T
>
());
const
XPUT
*
filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter
.
data
<
T
>
());
const
XPUT
*
output_grad_data
=
reinterpret_cast
<
const
XPUT
*>
(
output_grad
->
data
<
T
>
());
XPUT
*
input_grad_data
=
nullptr
;
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
input_grad_data
=
reinterpret_cast
<
XPUT
*>
(
input_grad
->
data
<
T
>
());
}
XPUT
*
filter_grad_data
=
nullptr
;
if
(
filter_grad
)
{
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
filter_grad_data
=
reinterpret_cast
<
XPUT
*>
(
filter_grad
->
data
<
T
>
());
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d_grad
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
filter
.
data
<
T
>
(),
output_grad
->
data
<
T
>
(),
input_grad
?
input_grad
->
data
<
T
>
()
:
nullptr
,
filter_grad
?
filter_grad
->
data
<
T
>
()
:
nullptr
,
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
true
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d_grad
<
XPUT
,
XPUT
,
XPUT
,
int16_t
>
(
dev_ctx
.
x_context
(),
input_data
,
filter_data
,
output_grad_data
,
input_grad_data
,
filter_grad_data
,
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d %s]"
,
...
...
@@ -130,14 +147,22 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
depthwise_conv2d
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
conv2d
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
conv2d
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
conv2d_grad
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
depthwise_conv2d
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
depthwise_conv2d_grad
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
276017bb
...
...
@@ -51,16 +51,20 @@ XPUOpMap& get_kl2_ops() {
{
"clip"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"concat_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"concat"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"conv2d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"conv2d_transpose_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_transpose"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"depthwise_conv2d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"dropout_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"dropout"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
...
...
python/paddle/fluid/tests/unittests/xpu/test_conv2d_op_xpu.py
浏览文件 @
276017bb
...
...
@@ -23,6 +23,7 @@ import paddle.fluid as fluid
from
op_test_xpu
import
XPUOpTest
import
paddle
from
paddle.fluid
import
Program
,
program_guard
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
def
conv2d_forward_naive
(
input
,
...
...
@@ -159,8 +160,15 @@ def create_test_padding_VALID_class(parent):
globals
()[
cls_name
]
=
TestPaddingVALIDCase
class
TestConv2DOp
(
XPUOpTest
):
class
XPUTestConv2DOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'conv2d'
self
.
use_dynamic_create_class
=
False
class
TestConv2DOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"conv2d"
self
.
use_cudnn
=
False
self
.
exhaustive_search
=
False
...
...
@@ -168,7 +176,6 @@ class TestConv2DOp(XPUOpTest):
self
.
use_mkldnn
=
False
self
.
fuse_relu_before_depthwise_conv
=
False
self
.
data_format
=
"AnyLayout"
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
init_group
()
self
.
init_dilation
()
...
...
@@ -180,6 +187,7 @@ class TestConv2DOp(XPUOpTest):
'dilation'
:
self
.
dilations
}
np
.
random
.
seed
(
100
)
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
if
not
self
.
has_cuda
():
self
.
fuse_relu_before_depthwise_conv
=
False
...
...
@@ -190,10 +198,12 @@ class TestConv2DOp(XPUOpTest):
input2
=
np
.
maximum
(
input
,
0.0
)
else
:
input2
=
input
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
filter_size
).
astype
(
self
.
dtype
)
np
.
random
.
seed
(
1
)
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
filter_size
).
astype
(
self
.
dtype
)
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input2
,
filter
,
self
.
groups
,
conv2d_param
)
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input2
,
filter
,
self
.
groups
,
conv2d_param
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
...
...
@@ -221,37 +231,38 @@ class TestConv2DOp(XPUOpTest):
def
test_check_output
(
self
):
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
or
(
hasattr
(
self
,
"no_need_check_grad"
)
and
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
no_need_check_grad
==
True
):
return
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
{
'Input'
,
'Filter'
},
'Output'
)
self
.
check_grad_with_place
(
self
.
place
,
{
'Input'
,
'Filter'
},
'Output'
)
def
test_check_grad_no_filter
(
self
):
if
self
.
dtype
==
np
.
float16
or
(
hasattr
(
self
,
"no_need_check_grad"
)
and
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
no_need_check_grad
==
True
):
return
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
self
.
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad_no_input
(
self
):
if
self
.
dtype
==
np
.
float16
or
(
hasattr
(
self
,
"no_need_check_grad"
)
and
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
no_need_check_grad
==
True
):
return
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
self
.
place
,
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
...
...
@@ -273,8 +284,7 @@ class TestConv2DOp(XPUOpTest):
def
init_kernel_type
(
self
):
pass
class
TestWithPad
(
TestConv2DOp
):
class
TestWithPad
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
...
...
@@ -283,8 +293,7 @@ class TestWithPad(TestConv2DOp):
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestWithStride
(
TestConv2DOp
):
class
TestWithStride
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
...
...
@@ -293,8 +302,7 @@ class TestWithStride(TestConv2DOp):
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestWith1x1
(
TestConv2DOp
):
class
TestWith1x1
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
...
...
@@ -307,24 +315,22 @@ class TestWith1x1(TestConv2DOp):
self
.
groups
=
1
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
# def init_op_type(self):
# self.op_type = "conv_cudnn"
# ---- test asymmetric padding ----
class
XPUTestConv2DOp_v2
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'conv2d'
self
.
use_dynamic_create_class
=
False
class
TestConv2DOp_v2
(
XPUOpTest
):
class
TestConv2DOp_v2
(
XPUOpTest
):
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"conv2d"
self
.
use_cudnn
=
False
self
.
exhaustive_search
=
False
self
.
use_cuda
=
False
self
.
use_mkldnn
=
False
self
.
fuse_relu_before_depthwise_conv
=
False
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
init_group
()
self
.
init_dilation
()
...
...
@@ -339,6 +345,7 @@ class TestConv2DOp_v2(XPUOpTest):
'dilation'
:
self
.
dilations
}
np
.
random
.
seed
(
100
)
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
if
not
self
.
has_cuda
():
self
.
fuse_relu_before_depthwise_conv
=
False
...
...
@@ -349,10 +356,12 @@ class TestConv2DOp_v2(XPUOpTest):
input2
=
np
.
maximum
(
input
,
0.0
)
else
:
input2
=
input
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
filter_size
).
astype
(
self
.
dtype
)
np
.
random
.
seed
(
8
)
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
filter_size
).
astype
(
self
.
dtype
)
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input2
,
filter
,
self
.
groups
,
conv2d_param
,
self
.
padding_algorith
m
,
self
.
data_format
)
input2
,
filter
,
self
.
groups
,
conv2d_para
m
,
self
.
padding_algorithm
,
self
.
data_format
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
...
...
@@ -382,37 +391,41 @@ class TestConv2DOp_v2(XPUOpTest):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
place
=
self
.
place
)
def
test_check_grad
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
self
.
dtype
==
np
.
float16
:
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
no_need_check_grad
==
True
):
return
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
{
'Input'
,
'Filter'
},
'Output'
)
self
.
check_grad_with_place
(
self
.
place
,
{
'Input'
,
'Filter'
},
'Output'
)
def
test_check_grad_no_filter
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
self
.
dtype
==
np
.
float16
:
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
no_need_check_grad
==
True
):
return
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
self
.
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad_no_input
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
self
.
dtype
==
np
.
float16
:
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
no_need_check_grad
==
True
):
return
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
self
.
place
,
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
...
...
@@ -441,14 +454,12 @@ class TestConv2DOp_v2(XPUOpTest):
def
init_test_case_2
(
self
):
pass
class
TestConv2DOp_AsyPadding
(
TestConv2DOp_v2
):
class
TestConv2DOp_AsyPadding
(
TestConv2DOp_v2
):
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
0
,
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithPad_AsyPadding
(
TestConv2DOp_v2
):
class
TestWithPad_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
...
...
@@ -460,8 +471,7 @@ class TestWithPad_AsyPadding(TestConv2DOp_v2):
self
.
pad
=
[
1
,
1
,
1
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithStride_AsyPadding
(
TestConv2DOp_v2
):
class
TestWithStride_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
6
,
6
]
# NCHW
...
...
@@ -474,6 +484,11 @@ class TestWithStride_AsyPadding(TestConv2DOp_v2):
self
.
padding_algorithm
=
"EXPLICIT"
support_types
=
get_xpu_op_support_types
(
'conv2d'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestConv2DOp
,
stype
)
create_test_class
(
globals
(),
XPUTestConv2DOp_v2
,
stype
)
#---------- test SAME VALID -----------
#create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
#create_test_padding_SAME_class(TestWithPad_AsyPadding)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录