Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
256d6a33
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
256d6a33
编写于
9月 05, 2017
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add axis for rowwise_add_op
上级
e168fc44
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
81 addition
and
23 deletion
+81
-23
paddle/framework/ddim.cc
paddle/framework/ddim.cc
+4
-0
paddle/framework/ddim.h
paddle/framework/ddim.h
+2
-0
paddle/framework/eigen.h
paddle/framework/eigen.h
+11
-4
paddle/operators/rowwise_add_op.cc
paddle/operators/rowwise_add_op.cc
+25
-13
paddle/operators/rowwise_add_op.h
paddle/operators/rowwise_add_op.h
+9
-6
python/paddle/v2/framework/tests/test_rowwise_add_op.py
python/paddle/v2/framework/tests/test_rowwise_add_op.py
+30
-0
未找到文件。
paddle/framework/ddim.cc
浏览文件 @
256d6a33
...
...
@@ -291,5 +291,9 @@ DDim flatten_to_2d(const DDim& src, int num_row_dims) {
static_cast
<
int
>
(
product
(
slice_ddim
(
src
,
rank
-
num_row_dims
,
rank
)))});
}
DDim
flatten_to_1d
(
const
DDim
&
src
)
{
return
make_ddim
({
static_cast
<
int
>
(
product
(
src
))});
}
}
// namespace framework
}
// namespace paddle
paddle/framework/ddim.h
浏览文件 @
256d6a33
...
...
@@ -117,6 +117,8 @@ std::ostream& operator<<(std::ostream&, const DDim&);
DDim
flatten_to_2d
(
const
DDim
&
src
,
int
num_row_dims
);
DDim
flatten_to_1d
(
const
DDim
&
src
);
}
// namespace framework
}
// namespace paddle
...
...
paddle/framework/eigen.h
浏览文件 @
256d6a33
...
...
@@ -71,6 +71,15 @@ struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
return
EigenMatrix
::
From
(
tensor
,
flatten_to_2d
(
tensor
.
dims
(),
num_row_dims
));
}
static
typename
EigenMatrix
::
ConstType
Reshape
(
const
Tensor
&
tensor
,
int
num_row_dims
)
{
int
rank
=
tensor
.
dims_
.
size
();
PADDLE_ENFORCE
(
num_row_dims
>
0
&&
num_row_dims
<
rank
,
"`num_row_dims` must be between (0, rank_of_tensor)."
);
return
EigenMatrix
::
From
(
tensor
,
flatten_to_2d
(
tensor
.
dims
(),
num_row_dims
));
}
};
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
...
...
@@ -78,13 +87,11 @@ template <typename T, int MajorType = Eigen::RowMajor,
struct
EigenVector
:
public
EigenTensor
<
T
,
1
,
MajorType
,
IndexType
>
{
// Flatten reshapes a Tensor into an EigenVector.
static
typename
EigenVector
::
Type
Flatten
(
Tensor
&
tensor
)
{
return
EigenVector
::
From
(
tensor
,
make_ddim
({
static_cast
<
int
>
(
product
(
tensor
.
dims_
))}));
return
EigenVector
::
From
(
tensor
,
{
static_cast
<
int
>
(
product
(
tensor
.
dims_
))});
}
static
typename
EigenVector
::
ConstType
Flatten
(
const
Tensor
&
tensor
)
{
return
EigenVector
::
From
(
tensor
,
make_ddim
({
static_cast
<
int
>
(
product
(
tensor
.
dims_
))}));
return
EigenVector
::
From
(
tensor
,
{
static_cast
<
int
>
(
product
(
tensor
.
dims_
))});
}
};
...
...
paddle/operators/rowwise_add_op.cc
浏览文件 @
256d6a33
...
...
@@ -25,14 +25,19 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dim1
=
ctx
.
Input
<
Tensor
>
(
"b"
)
->
dims
();
PADDLE_ENFORCE
(
dim0
.
size
()
==
2
,
"Input 0 must be matrix"
);
PADDLE_ENFORCE
(
dim1
.
size
()
==
1
,
"The second input must be vector"
);
PADDLE_ENFORCE
(
dim0
[
1
]
==
dim1
[
0
],
"The width of two input must be same"
);
PADDLE_ENFORCE
(
ctx
.
OutputSize
(
"Out"
)
==
1
,
"The output size must be 1"
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
b_dims
=
ctx
.
Input
<
Tensor
>
(
"b"
)
->
dims
();
PADDLE_ENFORCE_GT
(
x_dims
.
size
(),
b_dims
.
size
(),
"The rank of input `X` must be larger than the one of input `b`."
);
int
num_row_dims
=
b_dims
.
size
();
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
x_dims
.
size
()
-
num_row_dims
,
x_dims
.
size
()),
b_dims
,
"The width of two operands must be same"
);
PADDLE_ENFORCE_EQ
(
ctx
.
OutputSize
(
"Out"
),
1
,
"The output size must be 1"
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
x_dims
);
}
};
...
...
@@ -61,13 +66,20 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"b"
),
"b should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
dims0
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dims1
=
ctx
.
Input
<
Tensor
>
(
"b"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
1
,
dims1
.
size
(),
"b dims should be 1"
)
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
b_dims
=
ctx
.
Input
<
Tensor
>
(
"b"
)
->
dims
();
PADDLE_ENFORCE_GT
(
x_dims
.
size
(),
b_dims
.
size
(),
"The rank of input `X` must be larger than the one of input `b`."
);
int
num_row_dims
=
b_dims
.
size
();
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
x_dims
.
size
()
-
num_row_dims
,
x_dims
.
size
()),
b_dims
,
"The width of two operands must be same"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
db
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"b"
));
if
(
dx
)
dx
->
Resize
(
dims0
);
if
(
db
)
db
->
Resize
(
dims1
);
if
(
dx
)
dx
->
Resize
(
x_dims
);
if
(
db
)
db
->
Resize
(
b_dims
);
}
};
...
...
paddle/operators/rowwise_add_op.h
浏览文件 @
256d6a33
...
...
@@ -33,10 +33,11 @@ class RowwiseAddKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
input
=
EigenMatrix
<
T
>::
From
(
*
context
.
Input
<
Tensor
>
(
"X"
));
auto
bias
=
EigenVector
<
T
>::
From
(
*
context
.
Input
<
Tensor
>
(
"b"
));
auto
output
=
EigenMatrix
<
T
>::
From
(
*
out
);
int
num_row_dims
=
context
.
Input
<
Tensor
>
(
"b"
)
->
dims
().
size
();
auto
input
=
EigenMatrix
<
T
>::
Reshape
(
*
context
.
Input
<
Tensor
>
(
"X"
),
num_row_dims
);
auto
bias
=
EigenVector
<
T
>::
Flatten
(
*
context
.
Input
<
Tensor
>
(
"b"
));
auto
output
=
EigenMatrix
<
T
>::
Reshape
(
*
out
,
num_row_dims
);
const
int
bias_size
=
bias
.
dimension
(
0
);
const
int
rest_size
=
input
.
size
()
/
bias_size
;
...
...
@@ -54,12 +55,14 @@ class RowwiseAddGradKernel : public framework::OpKernel {
auto
*
dout
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
db
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"b"
));
int
num_row_dims
=
context
.
Input
<
Tensor
>
(
"b"
)
->
dims
().
size
();
auto
out_grad
=
EigenMatrix
<
T
>::
From
(
*
dout
);
auto
out_grad
=
EigenMatrix
<
T
>::
Reshape
(
*
dout
,
num_row_dims
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
EigenMatrix
<
T
>::
From
(
*
dx
).
device
(
place
)
=
out_grad
;
EigenMatrix
<
T
>::
Reshape
(
*
dx
,
num_row_dims
).
device
(
place
)
=
out_grad
;
}
if
(
db
)
{
...
...
python/paddle/v2/framework/tests/test_rowwise_add_op.py
浏览文件 @
256d6a33
...
...
@@ -16,6 +16,18 @@ class TestRowwiseAddOp(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
np
.
add
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'b'
])}
class
TestRowwiseAddOp2
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"rowwise_add"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
13
,
6
,
7
,
8
)).
astype
(
"float32"
),
'b'
:
np
.
random
.
random
((
7
,
8
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
add
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'b'
])}
class
TestRowwiseAddGradOp
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"rowwise_add"
)
...
...
@@ -34,5 +46,23 @@ class TestRowwiseAddGradOp(GradientChecker):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"b"
],
"Out"
,
no_grad_set
=
{
"X"
})
class
TestRowwiseAddGradOp2
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"rowwise_add"
)
self
.
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
2
,
5
]).
astype
(
"float32"
),
"b"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
5
]).
astype
(
"float32"
)
}
def
test_normal
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
,
"b"
],
"Out"
)
def
test_ignore_b
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
],
"Out"
,
no_grad_set
=
{
"b"
})
def
test_ignore_x
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"b"
],
"Out"
,
no_grad_set
=
{
"X"
})
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录