From 2540b0235ca2d5b05e22cc93979c9725466a4351 Mon Sep 17 00:00:00 2001 From: fuyou765 <64373205+fuyou765@users.noreply.github.com> Date: Fri, 17 Jun 2022 17:53:41 +0800 Subject: [PATCH] [MLU]add mlu kernel for where op (#43441) --- paddle/fluid/operators/mlu/mlu_baseop.cc | 24 +- paddle/fluid/operators/mlu/mlu_baseop.h | 11 +- paddle/fluid/operators/where_op_mlu.cc | 51 +++ .../tests/unittests/mlu/test_where_op_mlu.py | 400 ++++++++++++++++++ 4 files changed, 474 insertions(+), 12 deletions(-) create mode 100644 paddle/fluid/operators/where_op_mlu.cc create mode 100644 python/paddle/fluid/tests/unittests/mlu/test_where_op_mlu.py diff --git a/paddle/fluid/operators/mlu/mlu_baseop.cc b/paddle/fluid/operators/mlu/mlu_baseop.cc index dd1ac81493..89ea065e21 100644 --- a/paddle/fluid/operators/mlu/mlu_baseop.cc +++ b/paddle/fluid/operators/mlu/mlu_baseop.cc @@ -1160,15 +1160,25 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() { } /* static */ void MLUCnnl::Select( - const ExecutionContext& ctx, const cnnlTensorDescriptor_t then_desc, - const void* p_then, const cnnlTensorDescriptor_t else_desc, - const void* p_else, const cnnlTensorDescriptor_t output_desc, void* output, - const bool* condition, const int condition_size) { + const ExecutionContext& ctx, const cnnlTensorDescriptor_t condition_desc, + const void* condition_ptr, const cnnlTensorDescriptor_t then_desc, + const void* then_ptr, const cnnlTensorDescriptor_t else_desc, + const void* else_ptr, const cnnlTensorDescriptor_t output_desc, + void* output_ptr) { cnnlHandle_t handle = GetHandleFromCTX(ctx); - PADDLE_ENFORCE_MLU_SUCCESS(cnnlSelect(handle, then_desc, p_then, else_desc, - p_else, output_desc, output, condition, - condition_size)); + size_t workspace_size = 0; + PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSelectV2WorkspaceSize( + handle, condition_desc, then_desc, else_desc, &workspace_size)); + + auto& dev_ctx = GetDevCtxFromCTX(ctx); + Tensor workspace = ctx.AllocateTmpTensor( + {static_cast(workspace_size)}, dev_ctx); + void* workspace_ptr = workspace.mutable_data(ctx.GetPlace()); + + PADDLE_ENFORCE_MLU_SUCCESS(cnnlSelectV2( + handle, condition_desc, condition_ptr, then_desc, then_ptr, else_desc, + else_ptr, workspace_ptr, workspace_size, output_desc, output_ptr)); } /*static */ void MLUCnnl::GatherNd(const ExecutionContext& ctx, diff --git a/paddle/fluid/operators/mlu/mlu_baseop.h b/paddle/fluid/operators/mlu/mlu_baseop.h index 636618bf2d..b8fa0cbdd4 100644 --- a/paddle/fluid/operators/mlu/mlu_baseop.h +++ b/paddle/fluid/operators/mlu/mlu_baseop.h @@ -684,11 +684,12 @@ class MLUCnnl { const void* input2, const cnnlTensorDescriptor_t ouput_desc, void* output); - static void Select(const ExecutionContext& ctx, - const cnnlTensorDescriptor_t then_desc, const void* p_then, - const cnnlTensorDescriptor_t else_desc, const void* p_else, - const cnnlTensorDescriptor_t output_desc, void* output, - const bool* condition, const int condition_size); + static void Select( + const ExecutionContext& ctx, const cnnlTensorDescriptor_t condition_desc, + const void* condition_ptr, const cnnlTensorDescriptor_t then_desc, + const void* then_ptr, const cnnlTensorDescriptor_t else_desc, + const void* else_ptr, const cnnlTensorDescriptor_t output_desc, + void* output_ptr); static void AssignAdd(const ExecutionContext& ctx, const void* alpha, const void* beta, diff --git a/paddle/fluid/operators/where_op_mlu.cc b/paddle/fluid/operators/where_op_mlu.cc new file mode 100644 index 0000000000..fc58146fb4 --- /dev/null +++ b/paddle/fluid/operators/where_op_mlu.cc @@ -0,0 +1,51 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifdef PADDLE_WITH_MLU + +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/mlu/mlu_baseop.h" + +namespace paddle { +namespace operators { + +template +class WhereMLUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* condition = context.Input("Condition"); + auto* X = context.Input("X"); + auto* Y = context.Input("Y"); + auto* out = context.Output("Out"); + auto place = context.GetPlace(); + out->mutable_data(place); + MLUCnnlTensorDesc x_desc(*X); + MLUCnnlTensorDesc y_desc(*Y); + MLUCnnlTensorDesc condition_desc(*condition); + MLUCnnlTensorDesc out_desc(*out); + MLUCnnl::Select(context, condition_desc.get(), GetBasePtr(condition), + x_desc.get(), GetBasePtr(X), y_desc.get(), GetBasePtr(Y), + out_desc.get(), GetBasePtr(out)); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_MLU_KERNEL( + where, ops::WhereMLUKernel, + ops::WhereMLUKernel); +#endif diff --git a/python/paddle/fluid/tests/unittests/mlu/test_where_op_mlu.py b/python/paddle/fluid/tests/unittests/mlu/test_where_op_mlu.py new file mode 100644 index 0000000000..38d5e6e94c --- /dev/null +++ b/python/paddle/fluid/tests/unittests/mlu/test_where_op_mlu.py @@ -0,0 +1,400 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import sys + +sys.path.append("..") +import unittest +import numpy as np +import paddle +import paddle.fluid as fluid +import paddle.fluid.layers as layers +import paddle.fluid.core as core +from op_test import OpTest +from paddle.fluid import compiler, Program, program_guard +from paddle.fluid.op import Operator +from paddle.fluid.backward import append_backward +from paddle.fluid.framework import _test_eager_guard + + +class TestWhereOp(OpTest): + + def setUp(self): + self.op_type = 'where' + self.place = paddle.device.MLUPlace(0) + self.__class__.use_mlu = True + self.__class__.no_need_check_grad = True + self.python_api = paddle.where + self.init_config() + self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y} + self.outputs = {'Out': np.where(self.cond, self.x, self.y)} + + def test_check_output(self): + self.check_output_with_place(self.place, check_eager=False) + + def test_check_grad(self): + self.check_grad(['X', 'Y'], 'Out', check_eager=False) + + def init_config(self): + self.x = np.random.uniform((-3), 5, 100).astype('float32') + self.y = np.random.uniform((-3), 5, 100).astype('float32') + self.cond = np.zeros(100).astype('bool') + + +class TestWhereOp2(TestWhereOp): + + def init_config(self): + self.x = np.random.uniform((-5), 5, (60, 2)).astype('float32') + self.y = np.random.uniform((-5), 5, (60, 2)).astype('float32') + self.cond = np.ones((60, 2)).astype('bool') + + +class TestWhereOp3(TestWhereOp): + + def init_config(self): + self.x = np.random.uniform((-3), 5, (20, 2, 4)).astype('float32') + self.y = np.random.uniform((-3), 5, (20, 2, 4)).astype('float32') + self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool) + + +class TestWhereAPI(unittest.TestCase): + + def setUp(self): + self.place = paddle.device.MLUPlace(0) + self.__class__.use_mlu = True + self.__class__.no_need_check_grad = True + self.init_data() + + def init_data(self): + self.shape = [10, 15] + self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool) + self.x = np.random.uniform((-2), 3, self.shape).astype(np.float32) + self.y = np.random.uniform((-2), 3, self.shape).astype(np.float32) + self.out = np.where(self.cond, self.x, self.y) + + def ref_x_backward(self, dout): + return np.where((self.cond == True), dout, 0) + + def ref_y_backward(self, dout): + return np.where((self.cond == False), dout, 0) + + def test_api(self, use_mlu=False): + for x_stop_gradient in [False, True]: + for y_stop_gradient in [False, True]: + with fluid.program_guard(Program(), Program()): + cond = fluid.layers.data(name='cond', + shape=self.shape, + dtype='bool') + x = fluid.layers.data(name='x', + shape=self.shape, + dtype='float32') + y = fluid.layers.data(name='y', + shape=self.shape, + dtype='float32') + x.stop_gradient = x_stop_gradient + y.stop_gradient = y_stop_gradient + result = paddle.where(cond, x, y) + append_backward(layers.mean(result)) + for use_mlu in [False, True]: + place = (paddle.device.MLUPlace(0) + if use_mlu else fluid.CPUPlace()) + exe = fluid.Executor(place) + fetch_list = [result, result.grad_name] + if (x_stop_gradient is False): + fetch_list.append(x.grad_name) + if (y_stop_gradient is False): + fetch_list.append(y.grad_name) + out = exe.run(fluid.default_main_program(), + feed={ + 'cond': self.cond, + 'x': self.x, + 'y': self.y + }, + fetch_list=fetch_list) + assert np.array_equal(out[0], self.out) + if (x_stop_gradient is False): + assert np.array_equal(out[2], + self.ref_x_backward(out[1])) + if (y.stop_gradient is False): + assert np.array_equal( + out[3], self.ref_y_backward(out[1])) + elif (y.stop_gradient is False): + assert np.array_equal(out[2], + self.ref_y_backward(out[1])) + + def test_api_broadcast(self, use_mlu=False): + main_program = Program() + with fluid.program_guard(main_program): + x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32') + y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32') + x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype('float32') + y_i = np.array([[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, + 1.0]]).astype('float32') + result = paddle.where((x > 1), x=x, y=y) + for use_mlu in [False, True]: + place = (paddle.device.MLUPlace(0) + if use_mlu else fluid.CPUPlace()) + exe = fluid.Executor(place) + out = exe.run(fluid.default_main_program(), + feed={ + 'x': x_i, + 'y': y_i + }, + fetch_list=[result]) + assert np.array_equal(out[0], np.where((x_i > 1), x_i, y_i)) + + def test_scalar(self): + paddle.enable_static() + main_program = Program() + with fluid.program_guard(main_program): + cond_shape = [2, 4] + cond = fluid.layers.data(name='cond', + shape=cond_shape, + dtype='bool') + x_data = 1.0 + y_data = 2.0 + cond_data = np.array([False, False, True, True]).astype('bool') + result = paddle.where(condition=cond, x=x_data, y=y_data) + for use_mlu in [False, True]: + place = (paddle.device.MLUPlace(0) + if use_mlu else fluid.CPUPlace()) + exe = fluid.Executor(place) + out = exe.run(fluid.default_main_program(), + feed={'cond': cond_data}, + fetch_list=[result]) + expect = np.where(cond_data, x_data, y_data) + assert np.array_equal(out[0], expect) + + def __test_where_with_broadcast_static(self, cond_shape, x_shape, y_shape): + paddle.enable_static() + main_program = Program() + with fluid.program_guard(main_program): + cond = fluid.layers.data(name='cond', + shape=cond_shape, + dtype='bool') + x = fluid.layers.data(name='x', shape=x_shape, dtype='float32') + y = fluid.layers.data(name='y', shape=y_shape, dtype='float32') + cond_data_tmp = np.random.random(size=cond_shape).astype('float32') + cond_data = (cond_data_tmp < 0.3) + x_data = np.random.random(size=x_shape).astype('float32') + y_data = np.random.random(size=y_shape).astype('float32') + result = paddle.where(condition=cond, x=x, y=y) + for use_mlu in [False, True]: + place = (paddle.device.MLUPlace(0) + if use_mlu else fluid.CPUPlace()) + exe = fluid.Executor(place) + out = exe.run(fluid.default_main_program(), + feed={ + 'cond': cond_data, + 'x': x_data, + 'y': y_data + }, + fetch_list=[result]) + expect = np.where(cond_data, x_data, y_data) + assert np.array_equal(out[0], expect) + + def test_static_api_broadcast_1(self): + cond_shape = [2, 4] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape) + + def test_static_api_broadcast_2(self): + cond_shape = [2, 1] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape) + + def test_static_api_broadcast_3(self): + cond_shape = [2, 2, 1] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape) + + def test_static_api_broadcast_4(self): + cond_shape = [2, 1, 4] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape) + + def test_static_api_broadcast_5(self): + cond_shape = [3, 2, 2, 4] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape) + + def test_static_api_broadcast_6(self): + cond_shape = [2, 2, 4] + a_shape = [2, 2, 1] + b_shape = [2, 2, 1] + self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape) + + def test_static_api_broadcast_7(self): + cond_shape = [2, 2, 4] + a_shape = [2, 1, 4] + b_shape = [2, 1, 4] + self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape) + + def test_static_api_broadcast_8(self): + cond_shape = [3, 2, 2, 4] + a_shape = [2, 2, 1] + b_shape = [2, 2, 1] + self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape) + + +class TestWhereDygraphAPI(unittest.TestCase): + + def test_api(self): + with fluid.dygraph.guard(): + x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float32') + y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float32') + cond_i = np.array([False, False, True, True]).astype('bool') + x = fluid.dygraph.to_variable(x_i) + y = fluid.dygraph.to_variable(y_i) + cond = fluid.dygraph.to_variable(cond_i) + out = paddle.where(cond, x, y) + assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i)) + + def test_scalar(self): + with fluid.dygraph.guard(): + cond_i = np.array([False, False, True, True]).astype('bool') + x = 1.0 + y = 2.0 + cond = fluid.dygraph.to_variable(cond_i) + out = paddle.where(cond, x, y) + assert np.array_equal(out.numpy(), np.where(cond_i, x, y)) + + def __test_where_with_broadcast_dygraph(self, cond_shape, a_shape, b_shape): + with fluid.dygraph.guard(): + cond_tmp = paddle.rand(cond_shape) + cond = (cond_tmp < 0.3) + a = paddle.rand(a_shape) + b = paddle.rand(b_shape) + result = paddle.where(cond, a, b) + result = result.numpy() + expect = np.where(cond, a, b) + self.assertTrue(np.array_equal(expect, result)) + + def test_dygraph_api_broadcast_1(self): + cond_shape = [2, 4] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape) + + def test_dygraph_api_broadcast_2(self): + cond_shape = [2, 1] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape) + + def test_dygraph_api_broadcast_3(self): + cond_shape = [2, 2, 1] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape) + + def test_dygraph_api_broadcast_4(self): + cond_shape = [2, 1, 4] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape) + + def test_dygraph_api_broadcast_5(self): + cond_shape = [3, 2, 2, 4] + a_shape = [2, 2, 4] + b_shape = [2, 2, 4] + self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape) + + def test_dygraph_api_broadcast_6(self): + cond_shape = [2, 2, 4] + a_shape = [2, 2, 1] + b_shape = [2, 2, 1] + self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape) + + def test_dygraph_api_broadcast_7(self): + cond_shape = [2, 2, 4] + a_shape = [2, 1, 4] + b_shape = [2, 1, 4] + self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape) + + def test_dygraph_api_broadcast_8(self): + cond_shape = [3, 2, 2, 4] + a_shape = [2, 2, 1] + b_shape = [2, 2, 1] + self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape) + + def test_where_condition(self): + data = np.array([[True, False], [False, True]]) + with program_guard(Program(), Program()): + x = fluid.layers.data(name='x', shape=[(-1), 2]) + y = paddle.where(x) + self.assertEqual(type(y), tuple) + self.assertEqual(len(y), 2) + z = fluid.layers.concat(list(y), axis=1) + exe = fluid.Executor(paddle.device.MLUPlace(0)) + (res, ) = exe.run(feed={'x': data}, + fetch_list=[z.name], + return_numpy=False) + expect_out = np.array([[0, 0], [1, 1]]) + self.assertTrue(np.allclose(expect_out, np.array(res))) + data = np.array([True, True, False]) + with program_guard(Program(), Program()): + x = fluid.layers.data(name='x', shape=[(-1)]) + y = paddle.where(x) + self.assertEqual(type(y), tuple) + self.assertEqual(len(y), 1) + z = fluid.layers.concat(list(y), axis=1) + exe = fluid.Executor(paddle.device.MLUPlace(0)) + (res, ) = exe.run(feed={'x': data}, + fetch_list=[z.name], + return_numpy=False) + expect_out = np.array([[0], [1]]) + self.assertTrue(np.allclose(expect_out, np.array(res))) + + +class TestWhereOpError(unittest.TestCase): + + def test_errors(self): + with program_guard(Program(), Program()): + x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float32') + y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float32') + cond_i = np.array([False, False, True, True]).astype('bool') + + def test_Variable(): + paddle.where(cond_i, x_i, y_i) + + self.assertRaises(TypeError, test_Variable) + + def test_type(): + x = fluid.layers.data(name='x', shape=[4], dtype='bool') + y = fluid.layers.data(name='y', shape=[4], dtype='float16') + cond = fluid.layers.data(name='cond', shape=[4], dtype='int32') + paddle.where(cond, x, y) + + self.assertRaises(TypeError, test_type) + + def test_value_error(self): + with fluid.dygraph.guard(): + cond_shape = [2, 2, 4] + cond_tmp = paddle.rand(cond_shape) + cond = (cond_tmp < 0.3) + a = paddle.rand(cond_shape) + self.assertRaises(ValueError, paddle.where, cond, a) + + +if __name__ == "__main__": + paddle.enable_static() + unittest.main() -- GitLab