提交 24a33bed 编写于 作者: C Chen Weihang

replace config by kwargs

......@@ -234,7 +234,6 @@ from .framework import grad #DEFINE_ALIAS
from .framework import no_grad #DEFINE_ALIAS
from .framework import save #DEFINE_ALIAS
from .framework import load #DEFINE_ALIAS
from .framework import SaveLoadConfig #DEFINE_ALIAS
from .framework import DataParallel #DEFINE_ALIAS
from .framework import NoamDecay #DEFINE_ALIAS
......
......@@ -24,7 +24,7 @@ from . import learning_rate_scheduler
import warnings
from .. import core
from .base import guard
from paddle.fluid.dygraph.jit import SaveLoadConfig, deprecate_save_load_configs
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers, EXTRA_VAR_INFO_FILENAME
__all__ = [
......@@ -33,35 +33,27 @@ __all__ = [
]
# NOTE(chenweihang): deprecate load_dygraph's argument keep_name_table,
# ensure compatibility when user still use keep_name_table argument
def deprecate_keep_name_table(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
def __warn_and_build_configs__(keep_name_table):
warnings.warn(
"The argument `keep_name_table` has deprecated, please use `SaveLoadConfig.keep_name_table`.",
DeprecationWarning)
config = SaveLoadConfig()
config.keep_name_table = keep_name_table
return config
# deal with arg `keep_name_table`
if len(args) > 1 and isinstance(args[1], bool):
args = list(args)
args[1] = __warn_and_build_configs__(args[1])
# deal with kwargs
elif 'keep_name_table' in kwargs:
kwargs['config'] = __warn_and_build_configs__(kwargs[
'keep_name_table'])
kwargs.pop('keep_name_table')
else:
# do nothing
pass
def _parse_load_config(configs):
supported_configs = [
'model_filename', 'params_filename', 'separate_params',
'keep_name_table'
]
# input check
for key in configs:
if key not in supported_configs:
raise ValueError(
"The additional config (%s) of `paddle.fluid.load_dygraph` is not supported."
% (key))
return func(*args, **kwargs)
# construct inner config
inner_config = _SaveLoadConfig()
inner_config.model_filename = configs.get('model_filename', None)
inner_config.params_filename = configs.get('params_filename', None)
inner_config.separate_params = configs.get('separate_params', None)
inner_config.keep_name_table = configs.get('keep_name_table', None)
return wrapper
return inner_config
@dygraph_only
......@@ -135,9 +127,7 @@ def save_dygraph(state_dict, model_path):
# TODO(qingqing01): remove dygraph_only to support loading static model.
# maybe need to unify the loading interface after 2.0 API is ready.
# @dygraph_only
@deprecate_save_load_configs
@deprecate_keep_name_table
def load_dygraph(model_path, config=None):
def load_dygraph(model_path, **configs):
'''
:api_attr: imperative
......@@ -152,10 +142,20 @@ def load_dygraph(model_path, config=None):
Args:
model_path(str) : The file prefix store the state_dict.
(The path should Not contain suffix '.pdparams')
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig`
object that specifies additional configuration options, these options
are for compatibility with ``jit.save/io.save_inference_model`` formats.
Default None.
configs (dict, optional): other save configuration options for compatibility. We do not
recommend using these configurations, if not necessary, DO NOT use them. Default None.
The following options are currently supported:
(1) model_filename (string): The filename to load the translated program of target Layer.
Default filename is :code:`__model__` .
(2) params_filename (string): The filename to load all persistable variables in target Layer.
Default file name is :code:`__variables__` .
(3) separate_params (bool): Configure whether to load the Layer parameters from separete files.
If True, each parameter will be loaded from a file separately, the file name is the parameter name,
and the params_filename configuration will not take effect. Default False.
(4) keep_name_table (bool): Configures whether keep ``structured_name -> parameter_name`` dict in
loaded state dict. This dict is the debugging information saved when call ``paddle.fluid.save_dygraph`` .
It is generally only used for debugging and does not affect the actual training or inference.
By default, it will not be retained in ``paddle.fluid.load_dygraph`` result. Default: False.
Returns:
state_dict(dict) : the dict store the state_dict
......@@ -196,8 +196,7 @@ def load_dygraph(model_path, config=None):
opti_file_path = model_prefix + ".pdopt"
# deal with argument `config`
if config is None:
config = SaveLoadConfig()
config = _parse_load_config(configs)
if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
# Load state dict by `save_dygraph` save format
......
此差异已折叠。
......@@ -14,7 +14,7 @@
from __future__ import print_function
from paddle.fluid.dygraph.jit import SaveLoadConfig
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import TranslatedLayer
......@@ -31,7 +31,7 @@ class StaticModelRunner(object):
"""
def __new__(cls, model_dir, model_filename=None, params_filename=None):
configs = SaveLoadConfig()
configs = _SaveLoadConfig()
if model_filename is not None:
configs.model_filename = model_filename
if params_filename is not None:
......
......@@ -498,13 +498,11 @@ def do_train(args, to_static):
step += 1
# save inference model
if to_static:
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.output_spec = [crf_decode]
fluid.dygraph.jit.save(
layer=model,
model_path=args.model_save_dir,
input_spec=[words, length],
configs=configs)
output_spec=[crf_decode])
else:
fluid.dygraph.save_dygraph(model.state_dict(), args.dy_param_path)
......
......@@ -218,13 +218,11 @@ class TestMNISTWithToStatic(TestMNIST):
def check_jit_save_load(self, model, inputs, input_spec, to_static, gt_out):
if to_static:
infer_model_path = "./test_mnist_inference_model_by_jit_save"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.output_spec = [gt_out]
fluid.dygraph.jit.save(
layer=model,
model_path=infer_model_path,
input_spec=input_spec,
configs=configs)
output_spec=[gt_out])
# load in static mode
static_infer_out = self.jit_load_and_run_inference_static(
infer_model_path, inputs)
......
......@@ -67,13 +67,11 @@ class TestDyToStaticSaveInferenceModel(unittest.TestCase):
layer.clear_gradients()
# test for saving model in dygraph.guard
infer_model_dir = "./test_dy2stat_save_inference_model_in_guard"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.output_spec = [pred]
fluid.dygraph.jit.save(
layer=layer,
model_path=infer_model_dir,
input_spec=[x],
configs=configs)
output_spec=[pred])
# Check the correctness of the inference
dygraph_out, _ = layer(x)
self.check_save_inference_model(layer, [x_data], dygraph_out.numpy())
......@@ -92,15 +90,12 @@ class TestDyToStaticSaveInferenceModel(unittest.TestCase):
expected_persistable_vars = set([p.name for p in model.parameters()])
infer_model_dir = "./test_dy2stat_save_inference_model"
configs = fluid.dygraph.jit.SaveLoadConfig()
if fetch is not None:
configs.output_spec = fetch
configs.separate_params = True
fluid.dygraph.jit.save(
layer=model,
model_path=infer_model_dir,
input_spec=feed if feed else None,
configs=configs)
separate_params=True,
output_spec=fetch if fetch else None)
saved_var_names = set([
filename for filename in os.listdir(infer_model_dir)
if filename != '__model__' and filename != EXTRA_VAR_INFO_FILENAME
......
......@@ -383,10 +383,10 @@ def train(train_reader, to_static):
step_idx += 1
if step_idx == STEP_NUM:
if to_static:
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.output_spec = [pred]
fluid.dygraph.jit.save(se_resnext, MODEL_SAVE_PATH,
[img], configs)
fluid.dygraph.jit.save(
se_resnext,
MODEL_SAVE_PATH, [img],
output_spec=[pred])
else:
fluid.dygraph.save_dygraph(se_resnext.state_dict(),
DY_STATE_DICT_SAVE_PATH)
......
......@@ -43,15 +43,14 @@ class TestDirectory(unittest.TestCase):
'paddle.distributed.prepare_context', 'paddle.DataParallel',
'paddle.jit', 'paddle.jit.TracedLayer', 'paddle.jit.to_static',
'paddle.jit.ProgramTranslator', 'paddle.jit.TranslatedLayer',
'paddle.jit.save', 'paddle.jit.load', 'paddle.SaveLoadConfig',
'paddle.NoamDecay', 'paddle.PiecewiseDecay',
'paddle.NaturalExpDecay', 'paddle.ExponentialDecay',
'paddle.InverseTimeDecay', 'paddle.PolynomialDecay',
'paddle.CosineDecay', 'paddle.static.Executor',
'paddle.static.global_scope', 'paddle.static.scope_guard',
'paddle.static.append_backward', 'paddle.static.gradients',
'paddle.static.BuildStrategy', 'paddle.static.CompiledProgram',
'paddle.static.ExecutionStrategy',
'paddle.jit.save', 'paddle.jit.load', 'paddle.NoamDecay',
'paddle.PiecewiseDecay', 'paddle.NaturalExpDecay',
'paddle.ExponentialDecay', 'paddle.InverseTimeDecay',
'paddle.PolynomialDecay', 'paddle.CosineDecay',
'paddle.static.Executor', 'paddle.static.global_scope',
'paddle.static.scope_guard', 'paddle.static.append_backward',
'paddle.static.gradients', 'paddle.static.BuildStrategy',
'paddle.static.CompiledProgram', 'paddle.static.ExecutionStrategy',
'paddle.static.default_main_program',
'paddle.static.default_startup_program', 'paddle.static.Program',
'paddle.static.name_scope', 'paddle.static.program_guard',
......@@ -104,9 +103,7 @@ class TestDirectory(unittest.TestCase):
'paddle.imperative.TracedLayer', 'paddle.imperative.declarative',
'paddle.imperative.ProgramTranslator',
'paddle.imperative.TranslatedLayer', 'paddle.imperative.jit.save',
'paddle.imperative.jit.load',
'paddle.imperative.jit.SaveLoadConfig',
'paddle.imperative.NoamDecay'
'paddle.imperative.jit.load', 'paddle.imperative.NoamDecay'
'paddle.imperative.PiecewiseDecay',
'paddle.imperative.NaturalExpDecay',
'paddle.imperative.ExponentialDecay',
......
......@@ -225,16 +225,13 @@ class TestJitSaveLoad(unittest.TestCase):
paddle.manual_seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def train_and_save_model(self, model_path=None, configs=None):
def train_and_save_model(self, model_path=None):
layer = LinearNet(784, 1)
example_inputs, layer, _ = train(layer)
final_model_path = model_path if model_path else self.model_path
orig_input_types = [type(x) for x in example_inputs]
fluid.dygraph.jit.save(
layer=layer,
model_path=final_model_path,
input_spec=example_inputs,
configs=configs)
layer=layer, model_path=final_model_path, input_spec=example_inputs)
new_input_types = [type(x) for x in example_inputs]
self.assertEqual(orig_input_types, new_input_types)
return layer
......@@ -314,7 +311,6 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
[None, 8], name='x')])
model_path = "model.input_spec.output_spec"
configs = fluid.dygraph.jit.SaveLoadConfig()
# check inputs and outputs
self.assertTrue(len(net.forward.inputs) == 1)
input_x = net.forward.inputs[0]
......@@ -322,11 +318,11 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
self.assertTrue(input_x.name == 'x')
# 1. prune loss
configs.output_spec = net.forward.outputs[:1]
fluid.dygraph.jit.save(net, model_path, configs=configs)
output_spec = net.forward.outputs[:1]
fluid.dygraph.jit.save(net, model_path, output_spec=output_spec)
# 2. load to infer
infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
infer_layer = fluid.dygraph.jit.load(model_path)
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
pred = infer_layer(x)
......@@ -335,7 +331,6 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
net = LinearNetMultiInput(8, 8)
model_path = "model.multi_inout.output_spec1"
configs = fluid.dygraph.jit.SaveLoadConfig()
# 1. check inputs and outputs
self.assertTrue(len(net.forward.inputs) == 2)
input_x = net.forward.inputs[0]
......@@ -344,11 +339,11 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
self.assertTrue(input_y.shape == (-1, 8))
# 2. prune loss
configs.output_spec = net.forward.outputs[:2]
fluid.dygraph.jit.save(net, model_path, configs=configs)
output_spec = net.forward.outputs[:2]
fluid.dygraph.jit.save(net, model_path, output_spec=output_spec)
# 3. load to infer
infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
infer_layer = fluid.dygraph.jit.load(model_path)
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
y = fluid.dygraph.to_variable(
......@@ -358,10 +353,11 @@ class TestSaveLoadWithInputSpec(unittest.TestCase):
# 1. prune y and loss
model_path = "model.multi_inout.output_spec2"
configs.output_spec = net.forward.outputs[:1]
fluid.dygraph.jit.save(net, model_path, [input_x], configs)
output_spec = net.forward.outputs[:1]
fluid.dygraph.jit.save(
net, model_path, [input_x], output_spec=output_spec)
# 2. load again
infer_layer2 = fluid.dygraph.jit.load(model_path, configs=configs)
infer_layer2 = fluid.dygraph.jit.load(model_path)
# 3. predict
pred_xx = infer_layer2(x)
......@@ -377,16 +373,16 @@ class TestJitSaveLoadConfig(unittest.TestCase):
paddle.manual_seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def basic_save_load(self, layer, model_path, configs):
def basic_save_load(self, layer, model_path, **configs):
# 1. train & save
example_inputs, train_layer, _ = train(layer)
fluid.dygraph.jit.save(
layer=train_layer,
model_path=model_path,
input_spec=example_inputs,
configs=configs)
**configs)
# 2. load
infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
infer_layer = fluid.dygraph.jit.load(model_path, **configs)
train_layer.eval()
# 3. inference & compare
x = fluid.dygraph.to_variable(
......@@ -397,23 +393,18 @@ class TestJitSaveLoadConfig(unittest.TestCase):
def test_model_filename(self):
layer = LinearNet(784, 1)
model_path = "model.save_load_config.output_spec"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.model_filename = "__simplenet__"
self.basic_save_load(layer, model_path, configs)
self.basic_save_load(layer, model_path, model_filename="__simplenet__")
def test_params_filename(self):
layer = LinearNet(784, 1)
model_path = "model.save_load_config.params_filename"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.params_filename = "__params__"
self.basic_save_load(layer, model_path, configs)
self.basic_save_load(layer, model_path, params_filename="__params__")
def test_separate_params(self):
layer = LinearNet(784, 1)
model_path = "model.save_load_config.separate_params"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.separate_params = True
self.basic_save_load(layer, model_path, configs)
self.basic_save_load(layer, model_path, separate_params=True)
def test_output_spec(self):
train_layer = LinearNetReturnLoss(8, 8)
......@@ -428,16 +419,15 @@ class TestJitSaveLoadConfig(unittest.TestCase):
train_layer.clear_gradients()
model_path = "model.save_load_config.output_spec"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.output_spec = [out]
output_spec = [out]
fluid.dygraph.jit.save(
layer=train_layer,
model_path=model_path,
input_spec=[x],
configs=configs)
output_spec=output_spec)
train_layer.eval()
infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
infer_layer = fluid.dygraph.jit.load(model_path)
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
self.assertTrue(
......@@ -494,13 +484,12 @@ class TestJitPruneModelAndLoad(unittest.TestCase):
adam.minimize(loss)
train_layer.clear_gradients()
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.output_spec = [hidden]
output_spec = [hidden]
fluid.dygraph.jit.save(
layer=train_layer,
model_path=self.model_path,
input_spec=[x],
configs=configs)
output_spec=output_spec)
return train_layer
......@@ -617,8 +606,6 @@ class TestJitSaveMultiCases(unittest.TestCase):
out = train_with_label(layer)
model_path = "test_prune_to_static_after_train"
configs = paddle.SaveLoadConfig()
configs.output_spec = [out]
paddle.jit.save(
layer,
model_path,
......@@ -626,7 +613,7 @@ class TestJitSaveMultiCases(unittest.TestCase):
InputSpec(
shape=[None, 784], dtype='float32', name="image")
],
configs=configs)
output_spec=[out])
self.verify_inference_correctness(layer, model_path, True)
......@@ -634,10 +621,9 @@ class TestJitSaveMultiCases(unittest.TestCase):
layer = LinerNetWithLabel(784, 1)
model_path = "test_prune_to_static_no_train"
configs = paddle.SaveLoadConfig()
# TODO: no train, cannot get output_spec var here
# now only can use index
configs.output_spec = layer.forward.outputs[:1]
output_spec = layer.forward.outputs[:1]
paddle.jit.save(
layer,
model_path,
......@@ -645,7 +631,7 @@ class TestJitSaveMultiCases(unittest.TestCase):
InputSpec(
shape=[None, 784], dtype='float32', name="image")
],
configs=configs)
output_spec=output_spec)
self.verify_inference_correctness(layer, model_path, True)
......@@ -676,10 +662,8 @@ class TestJitSaveMultiCases(unittest.TestCase):
train(layer)
model_path = "test_not_prune_output_spec_name_warning"
configs = paddle.SaveLoadConfig()
out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
configs.output_spec = [out]
paddle.jit.save(layer, model_path, configs=configs)
paddle.jit.save(layer, model_path, output_spec=[out])
self.verify_inference_correctness(layer, model_path)
......@@ -708,9 +692,7 @@ class TestJitSaveMultiCases(unittest.TestCase):
train_with_label(layer)
model_path = "test_prune_to_static_after_train"
configs = paddle.SaveLoadConfig()
out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
configs.output_spec = [out]
with self.assertRaises(ValueError):
paddle.jit.save(
layer,
......@@ -719,7 +701,7 @@ class TestJitSaveMultiCases(unittest.TestCase):
InputSpec(
shape=[None, 784], dtype='float32', name="image")
],
configs=configs)
output_spec=[out])
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
......
......@@ -63,6 +63,8 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self.epoch_num = 1
self.batch_size = 128
self.batch_num = 10
# enable static mode
paddle.enable_static()
def train_and_save_model(self, only_params=False):
with new_program_scope():
......@@ -136,13 +138,12 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self.params_filename = None
orig_param_dict = self.train_and_save_model()
config = paddle.SaveLoadConfig()
config.separate_params = True
config.model_filename = self.model_filename
load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
load_param_dict, _ = fluid.load_dygraph(
self.save_dirname, model_filename=self.model_filename)
self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
new_load_param_dict = paddle.load(
self.save_dirname, model_filename=self.model_filename)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_with_param_filename(self):
......@@ -151,12 +152,12 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self.params_filename = "static_mnist.params"
orig_param_dict = self.train_and_save_model()
config = paddle.SaveLoadConfig()
config.params_filename = self.params_filename
load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
load_param_dict, _ = fluid.load_dygraph(
self.save_dirname, params_filename=self.params_filename)
self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
new_load_param_dict = paddle.load(
self.save_dirname, params_filename=self.params_filename)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_with_model_and_param_filename(self):
......@@ -165,13 +166,16 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self.params_filename = "static_mnist.params"
orig_param_dict = self.train_and_save_model()
config = paddle.SaveLoadConfig()
config.params_filename = self.params_filename
config.model_filename = self.model_filename
load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
load_param_dict, _ = fluid.load_dygraph(
self.save_dirname,
params_filename=self.params_filename,
model_filename=self.model_filename)
self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
new_load_param_dict = paddle.load(
self.save_dirname,
params_filename=self.params_filename,
model_filename=self.model_filename)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_state_dict_from_save_params(self):
......
......@@ -20,8 +20,8 @@ __all__ = [
]
__all__ += [
'grad', 'LayerList', 'load', 'save', 'SaveLoadConfig', 'to_variable',
'no_grad', 'DataParallel'
'grad', 'LayerList', 'load', 'save', 'to_variable', 'no_grad',
'DataParallel'
]
__all__ += [
......@@ -50,7 +50,6 @@ from ..fluid.dygraph.base import to_variable #DEFINE_ALIAS
from ..fluid.dygraph.base import grad #DEFINE_ALIAS
from .io import save
from .io import load
from ..fluid.dygraph.jit import SaveLoadConfig #DEFINE_ALIAS
from ..fluid.dygraph.parallel import DataParallel #DEFINE_ALIAS
from ..fluid.dygraph.learning_rate_scheduler import NoamDecay #DEFINE_ALIAS
......
......@@ -26,6 +26,7 @@ import paddle
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers, EXTRA_VAR_INFO_FILENAME
__all__ = [
......@@ -116,6 +117,29 @@ def _load_state_dict_from_save_params(model_path):
return load_param_dict
def _parse_load_config(configs):
supported_configs = [
'model_filename', 'params_filename', 'separate_params',
'keep_name_table'
]
# input check
for key in configs:
if key not in supported_configs:
raise ValueError(
"The additional config (%s) of `paddle.load` is not supported."
% key)
# construct inner config
inner_config = _SaveLoadConfig()
inner_config.model_filename = configs.get('model_filename', None)
inner_config.params_filename = configs.get('params_filename', None)
inner_config.separate_params = configs.get('separate_params', None)
inner_config.keep_name_table = configs.get('keep_name_table', None)
return inner_config
def save(obj, path):
'''
Save an object to the specified path.
......@@ -178,7 +202,7 @@ def save(obj, path):
pickle.dump(saved_obj, f, protocol=2)
def load(path, config=None):
def load(path, **configs):
'''
Load an object can be used in paddle from specified path.
......@@ -197,10 +221,20 @@ def load(path, config=None):
path(str) : The path to load the target object. Generally, the path is the target
file path, when compatible with loading the saved results of
``paddle.jit.save/paddle.static.save_inference_model`` , the path is a directory.
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig`
object that specifies additional configuration options, these options
are for compatibility with ``paddle.jit.save/paddle.static.save_inference_model``
formats. Default None.
configs (dict, optional): other save configuration options for compatibility. We do not
recommend using these configurations, if not necessary, DO NOT use them. Default None.
The following options are currently supported:
(1) model_filename (string): The filename to load the translated program of target Layer.
Default filename is :code:`__model__` .
(2) params_filename (string): The filename to load all persistable variables in target Layer.
Default file name is :code:`__variables__` .
(3) separate_params (bool): Configure whether to load the Layer parameters from separete files.
If True, each parameter will be loaded from a file separately, the file name is the parameter name,
and the params_filename configuration will not take effect. Default False.
(4) keep_name_table (bool): Configures whether keep ``structured_name -> parameter_name`` dict in
loaded state dict. This dict is the debugging information saved when call ``paddle.save`` .
It is generally only used for debugging and does not affect the actual training or inference.
By default, it will not be retained in ``paddle.load`` result. Default: False.
Returns:
Object(Object): a target object can be used in paddle
......@@ -242,8 +276,7 @@ def load(path, config=None):
"`paddle.load('model')`."
raise ValueError(error_msg % path)
if config is None:
config = paddle.SaveLoadConfig()
config = _parse_load_config(configs)
# 2. load target
load_result = None
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
反馈
建议
客服 返回
顶部