未验证 提交 247ef477 编写于 作者: X xiongkun 提交者: GitHub

[CherryPick] Support TypeHint for function decorated by @to_static (#47147)

* [Dy2Static] Support TypeHint for function decorated by @to_static (#47121)

* Add TypeHint Transformer

* add unittest for typehint transformer

* [Dy2Static] Remove GradTransformer (#47063)

* [Dy2Static] Remove GradTransformer
1. fix einsum infershape bugs.
2. remove grad_transformer and unify paddle.grad and paddle.static.gradient.
3. add dygraph_and_dy2static_only decorator for dy2static.

* fix bugs

* rename
上级 1d015f12
......@@ -241,7 +241,7 @@ inline static void InferLabelShape(const std::vector<std::string>& op_labels,
} else if (labelshape->is_default(c) || (*labelshape)[c] == -1) {
(*labelshape)[c] = op_dim[dim_ptr];
dim_ptr++;
} else {
} else if (op_dim[dim_ptr] != -1) {
PADDLE_ENFORCE_EQ(
(*labelshape)[c],
op_dim[dim_ptr],
......
......@@ -27,6 +27,7 @@ from ..data_feeder import convert_dtype
import warnings
from ..framework import _get_paddle_place, _in_legacy_dygraph, _in_eager_without_dygraph_check
import paddle
import warnings
__all__ = [
'no_grad', 'no_grad_', 'grad', 'guard', 'enable_dygraph', 'disable_dygraph',
......@@ -45,6 +46,20 @@ def in_declarative_mode():
return _in_declarative_mode_
def declarative_unsupport_argument_warning(func_name, input_names, inputs,
support_values):
"""
Warning if inputs do not elementwisely equals to support_values.
It's a utility function for dy2static when dygraph interface have
more inputs than static interface such as paddle.grad.
"""
for name, inp, sup in zip(input_names, inputs, support_values):
if inp != sup:
warnings.warn(f"{func_name} has unsupported parameter in jit: " +
f"{name}, jit will discard it")
def _switch_to_static_graph_(func):
def __impl__(*args, **kwargs):
......@@ -290,6 +305,10 @@ def no_grad(func=None):
test_layer()
"""
if in_declarative_mode():
warnings.warn(
"paddle.no_grad is only supported for inference model, and not supported for training under @to_static."
)
if func is None:
return _switch_tracer_mode_guard_(is_train=False)
else:
......@@ -428,7 +447,7 @@ def guard(place=None):
yield
@framework.dygraph_only
@framework.non_static_only
def grad(outputs,
inputs,
grad_outputs=None,
......@@ -563,6 +582,16 @@ def grad(outputs,
grad_y1 = paddle.to_tensor(3.0)
print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
'''
if in_declarative_mode():
# In dy2static context, we call static interface `gradients`
# to calculate grads.
from paddle.static import gradients
declarative_unsupport_argument_warning(
"paddle.grad",
["retain_graph", "create_grad", "only_inputs", "allow_unused"],
[retain_graph, create_graph, only_inputs, allow_unused],
[None, False, True, False])
return gradients(outputs, inputs, grad_outputs, no_grad_vars)
def check_in_out(in_out_list, name):
assert in_out_list is not None, "{} should not be None".format(name)
......
......@@ -30,6 +30,7 @@ from paddle.fluid.dygraph.dygraph_to_static.break_continue_transformer import Br
from paddle.fluid.dygraph.dygraph_to_static.call_transformer import CallTransformer
from paddle.fluid.dygraph.dygraph_to_static.cast_transformer import CastTransformer
from paddle.fluid.dygraph.dygraph_to_static.grad_transformer import GradTransformer
from paddle.fluid.dygraph.dygraph_to_static.typehint_transformer import TypeHintTransformer
from paddle.fluid.dygraph.dygraph_to_static.ifelse_transformer import IfElseTransformer
from paddle.fluid.dygraph.dygraph_to_static.list_transformer import ListTransformer
from paddle.fluid.dygraph.dygraph_to_static.logical_transformer import LogicalTransformer
......@@ -104,8 +105,9 @@ class DygraphToStaticAst(BaseTransformer):
PrintTransformer, # print statement
CallTransformer, # transform call recursively
CastTransformer, # type casting statement
GradTransformer, # transform paddle.grad to paddle.gradients
#GradTransformer, # transform paddle.grad to paddle.gradients
DecoratorTransformer, # transform decorators to function call
TypeHintTransformer, # remove all typehint in gast.Name
]
apply_optimization(transformers)
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.utils import gast
import warnings
from paddle.fluid.dygraph.dygraph_to_static.static_analysis import AstNodeWrapper
from paddle.fluid.dygraph.dygraph_to_static import utils
from paddle.fluid.dygraph.dygraph_to_static.base_transformer import BaseTransformer
class TypeHintTransformer(BaseTransformer):
"""
A class remove all the typehint in gast.Name(annotation).
Please put it behind other transformers because other transformer may relay on typehints.
"""
def __init__(self, wrapper_root):
assert isinstance(
wrapper_root, AstNodeWrapper
), "Input non-AstNodeWrapper node for the initialization of TypeHintTransformer."
self.wrapper_root = wrapper_root
self.root = wrapper_root.node
def transform(self):
self.visit(self.root)
def visit_FunctionDef(self, node):
node.returns = None
self.generic_visit(node)
return node
def visit_Name(self, node):
node.annotation = None
self.generic_visit(node)
return node
......@@ -511,6 +511,17 @@ def _dygraph_only_(func):
return __impl__
def _non_static_only_(func):
def __impl__(*args, **kwargs):
from .dygraph.base import in_declarative_mode
assert _non_static_mode() or in_declarative_mode(
), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
return func(*args, **kwargs)
return __impl__
def _static_only_(func):
def __impl__(*args, **kwargs):
......@@ -570,6 +581,7 @@ dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
static_only = wrap_decorator(_static_only_)
fake_interface_only = wrap_decorator(_fake_interface_only_)
non_static_only = wrap_decorator(_non_static_only_)
def _dygraph_tracer():
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle.fluid as fluid
import unittest
from paddle.fluid.dygraph.jit import declarative
SEED = 2020
np.random.seed(SEED)
class A:
pass
def function(x: A) -> A:
t: A = A()
return 2 * x
class TestTransformWhileLoop(unittest.TestCase):
def setUp(self):
self.place = fluid.CUDAPlace(
0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
self.x = np.zeros(shape=(1), dtype=np.int32)
self._init_dyfunc()
def _init_dyfunc(self):
self.dyfunc = function
def _run_static(self):
return self._run(to_static=True)
def _run_dygraph(self):
return self._run(to_static=False)
def _run(self, to_static):
with fluid.dygraph.guard(self.place):
# Set the input of dyfunc to VarBase
tensor_x = fluid.dygraph.to_variable(self.x, zero_copy=False)
if to_static:
ret = declarative(self.dyfunc)(tensor_x)
else:
ret = self.dyfunc(tensor_x)
if hasattr(ret, "numpy"):
return ret.numpy()
else:
return ret
def test_ast_to_func(self):
static_numpy = self._run_static()
dygraph_numpy = self._run_dygraph()
print(static_numpy, dygraph_numpy)
np.testing.assert_allclose(dygraph_numpy, static_numpy, rtol=1e-05)
class TestTypeHint(TestTransformWhileLoop):
def _init_dyfunc(self):
self.dyfunc = function
if __name__ == '__main__':
with fluid.framework._test_eager_guard():
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册