diff --git a/benchmark/.gitignore b/benchmark/.gitignore index 7b66e8a5b5020fd847982db401665d24ba3a069c..fb4114356d4f37efc8ad672316fd4f99443d9fcd 100644 --- a/benchmark/.gitignore +++ b/benchmark/.gitignore @@ -7,3 +7,6 @@ paddle/rnn/imdb.pkl caffe/image/logs tensorflow/image/logs tensorflow/rnn/logs +fluid/models/*.pyc +fluid/logs +fluid/nohup.out diff --git a/benchmark/fluid/fluid_benchmark.py b/benchmark/fluid/fluid_benchmark.py index c1d458970a58bfac2a3369e8964eb100568b28f2..8e6bfcbd3017a60ab5d5b4dcdbe313b1091a07ca 100644 --- a/benchmark/fluid/fluid_benchmark.py +++ b/benchmark/fluid/fluid_benchmark.py @@ -40,10 +40,7 @@ def parse_args(): parser.add_argument( '--batch_size', type=int, default=32, help='The minibatch size.') parser.add_argument( - '--learning_rate', - type=float, - default=0.001, - help='The minibatch size.') + '--learning_rate', type=float, default=0.001, help='The learning rate.') # TODO(wuyi): add "--use_fake_data" option back. parser.add_argument( '--skip_batch_num', @@ -88,8 +85,8 @@ def parse_args(): help='If set, use nvprof for CUDA.') parser.add_argument( '--no_test', - action='store_false', - help='If set, test the testset during training.') + action='store_true', + help='If set, do not test the testset during training.') parser.add_argument( '--memory_optimize', action='store_true', @@ -231,13 +228,10 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc, train_losses.append(loss) print("Pass: %d, Iter: %d, Loss: %f\n" % (pass_id, iters, np.mean(train_losses))) - train_elapsed = time.time() - start_time - examples_per_sec = num_samples / train_elapsed - print('\nTotal examples: %d, total time: %.5f, %.5f examples/sec\n' % - (num_samples, train_elapsed, examples_per_sec)) - print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses))) + print_train_time(start_time, time.time(), num_samples) + print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses))), # evaluation - if not args.no_test and batch_acc != None: + if not args.no_test and batch_acc: pass_test_acc = test(exe, infer_prog, test_reader, feeder, batch_acc) print(", Test Accuracy: %f" % pass_test_acc) @@ -315,11 +309,8 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader, if batch_id % 1 == 0: print("Pass %d, batch %d, loss %s" % (pass_id, batch_id, np.array(loss))) - train_elapsed = time.time() - start_time - examples_per_sec = num_samples / train_elapsed - print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' % - (num_samples, train_elapsed, examples_per_sec)) - if not args.no_test and batch_acc != None: + print_train_time(start_time, time.time(), num_samples) + if not args.no_test and batch_acc: test_acc = test(startup_exe, infer_prog, test_reader, feeder, batch_acc) print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc)) @@ -329,12 +320,19 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader, def print_arguments(args): vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and vars(args)['device'] == 'GPU') - print('----------- resnet Configuration Arguments -----------') + print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): print('%s: %s' % (arg, value)) print('------------------------------------------------') +def print_train_time(start_time, end_time, num_samples): + train_elapsed = end_time - start_time + examples_per_sec = num_samples / train_elapsed + print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' % + (num_samples, train_elapsed, examples_per_sec)) + + def main(): args = parse_args() print_arguments(args) @@ -342,7 +340,7 @@ def main(): # the unique trainer id, starting from 0, needed by trainer # only nccl_id_var, num_trainers, trainer_id = ( - None, 1, int(os.getenv("PADDLE_TRAINER_ID", "-1"))) + None, 1, int(os.getenv("PADDLE_TRAINER_ID", "0"))) if args.use_cprof: pr = cProfile.Profile() diff --git a/benchmark/fluid/run.sh b/benchmark/fluid/run.sh index afaab5f4de43fa7e94feeed4a1de991351c04b76..5d9b2db87135e53470b106dcd11a6bcfdc5dbda9 100644 --- a/benchmark/fluid/run.sh +++ b/benchmark/fluid/run.sh @@ -2,6 +2,7 @@ # This script benchmarking the PaddlePaddle Fluid on # single thread single GPU. +mkdir -p logs #export FLAGS_fraction_of_gpu_memory_to_use=0.0 export CUDNN_PATH=/paddle/cudnn_v5 @@ -35,6 +36,7 @@ nohup stdbuf -oL nvidia-smi \ --format=csv \ --filename=mem.log \ -l 1 & + # mnist # mnist gpu mnist 128 FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ @@ -43,7 +45,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ --batch_size=128 \ --skip_batch_num=5 \ --iterations=500 \ - 2>&1 | tee -a mnist_gpu_128.log + 2>&1 | tee -a logs/mnist_gpu_128.log # vgg16 # gpu cifar10 128 @@ -53,7 +55,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ --batch_size=128 \ --skip_batch_num=5 \ --iterations=30 \ - 2>&1 | tee -a vgg16_gpu_128.log + 2>&1 | tee -a logs/vgg16_gpu_128.log # flowers gpu 128 FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ @@ -63,28 +65,28 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ --data_set=flowers \ --skip_batch_num=5 \ --iterations=30 \ - 2>&1 | tee -a vgg16_gpu_flowers_32.log + 2>&1 | tee -a logs/vgg16_gpu_flowers_32.log # resnet50 # resnet50 gpu cifar10 128 FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ - --model=resnet50 \ + --model=resnet \ --device=GPU \ --batch_size=128 \ --data_set=cifar10 \ --skip_batch_num=5 \ --iterations=30 \ - 2>&1 | tee -a resnet50_gpu_128.log + 2>&1 | tee -a logs/resnet50_gpu_128.log # resnet50 gpu flowers 64 FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ - --model=resnet50 \ + --model=resnet \ --device=GPU \ --batch_size=64 \ --data_set=flowers \ --skip_batch_num=5 \ --iterations=30 \ - 2>&1 | tee -a resnet50_gpu_flowers_64.log + 2>&1 | tee -a logs/resnet50_gpu_flowers_64.log # lstm # lstm gpu imdb 32 # tensorflow only support batch=32 @@ -94,7 +96,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ --batch_size=32 \ --skip_batch_num=5 \ --iterations=30 \ - 2>&1 | tee -a lstm_gpu_32.log + 2>&1 | tee -a logs/lstm_gpu_32.log # seq2seq # seq2seq gpu wmb 128 @@ -104,4 +106,4 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ --batch_size=128 \ --skip_batch_num=5 \ --iterations=30 \ - 2>&1 | tee -a lstm_gpu_128.log + 2>&1 | tee -a logs/lstm_gpu_128.log diff --git a/cmake/external/grpc.cmake b/cmake/external/grpc.cmake index 9459f1ddfe85f5607880d3fdd968b494d6af592a..ffdf91a354bd92bdaf3f88344f0a9256638b568c 100644 --- a/cmake/external/grpc.cmake +++ b/cmake/external/grpc.cmake @@ -33,10 +33,19 @@ ELSE() SET(BUILD_CMD make HAS_SYSTEM_PROTOBUF=false -s -j ${NUM_OF_PROCESSOR} static grpc_cpp_plugin) ENDIF() +# FIXME(wuyi): do not build zlib cares protobuf twice, find a way to build grpc with them ExternalProject_Add( extern_grpc DEPENDS protobuf zlib - URL "http://paddlepaddledeps.bj.bcebos.com/grpc.tar.xz" + # NOTE(wuyi): + # this package is generated by following steps: + # 1. git clone -b v1.8.x https://github.com/grpc/grpc.git + # 2. submodule update --init + # 3. keep only zlib, cares, protobuf, boringssl under "third_party", + # checkout and clean other dirs under third_party + # 4. remove .git, and package the directory. + URL "http://paddlepaddledeps.bj.bcebos.com/grpc-v1.8.x.tar.gz" + URL_MD5 "c9c58ee7d0e8929a63155af6a2ecdbd0" PREFIX ${GRPC_SOURCES_DIR} UPDATE_COMMAND "" CONFIGURE_COMMAND "" @@ -49,7 +58,6 @@ ExternalProject_Add( INSTALL_COMMAND make prefix=${GRPC_INSTALL_DIR} install ) -# FIXME(typhoonzero): hack to get static lib path, try a better way like merge them. ADD_LIBRARY(grpc++_unsecure STATIC IMPORTED GLOBAL) SET_PROPERTY(TARGET grpc++_unsecure PROPERTY IMPORTED_LOCATION "${GRPC_INSTALL_DIR}/lib/libgrpc++_unsecure.a") diff --git a/doc/fluid/api/io.rst b/doc/fluid/api/io.rst index dd9d88b669957c22cd0a07fa4b7e219e2d6e5d61..3e956f8302d261b52f9f76ff8eb4a01f9c6381f8 100644 --- a/doc/fluid/api/io.rst +++ b/doc/fluid/api/io.rst @@ -59,3 +59,21 @@ get_inference_program .. autofunction:: paddle.fluid.io.get_inference_program :noindex: +save_checkpoint +--------------- + +.. autofunction:: paddle.fluid.io.save_checkpoint + :noindex: + +load_checkpoint +--------------- + +.. autofunction:: paddle.fluid.io.load_checkpoint + :noindex: + +clean_checkpoint +---------------- + +.. autofunction:: paddle.fluid.io.clean_checkpoint + :noindex: + diff --git a/doc/fluid/api/layers.rst b/doc/fluid/api/layers.rst index 5329adaa18ba3309a1aeda7e24c9d0d3b26ea377..f78e6db3268e44d5f30d83508f07c4ed68106e48 100644 --- a/doc/fluid/api/layers.rst +++ b/doc/fluid/api/layers.rst @@ -181,6 +181,12 @@ Print .. autofunction:: paddle.fluid.layers.Print :noindex: +is_empty +-------- + +.. autofunction:: paddle.fluid.layers.is_empty + :noindex: + device ====== @@ -255,6 +261,19 @@ double_buffer .. autofunction:: paddle.fluid.layers.double_buffer :noindex: +random_data_generator +--------------------- + +.. autofunction:: paddle.fluid.layers.random_data_generator + :noindex: + +Preprocessor +------------ + +.. autoclass:: paddle.fluid.layers.Preprocessor + :members: + :noindex: + nn == @@ -594,6 +613,29 @@ roi_pool .. autofunction:: paddle.fluid.layers.roi_pool :noindex: +dice_loss +--------- + +.. autofunction:: paddle.fluid.layers.dice_loss + :noindex: + +resize_bilinear +--------------- + +.. autofunction:: paddle.fluid.layers.resize_bilinear + :noindex: + +gather +------ + +.. autofunction:: paddle.fluid.layers.gather + :noindex: + +random_crop +----------- + +.. autofunction:: paddle.fluid.layers.random_crop + :noindex: ops === @@ -742,6 +784,12 @@ sum .. autofunction:: paddle.fluid.layers.sum :noindex: +shape +----- + +.. autofunction:: paddle.fluid.layers.shape + :noindex: + sigmoid ------- @@ -991,27 +1039,3 @@ zeros .. autofunction:: paddle.fluid.layers.zeros :noindex: -topk ----- - -.. autofunction:: paddle.fluid.layers.topk - :noindex: - -dice_loss ----- - -.. autofunction:: paddle.fluid.layers.dice_loss - :noindex: - -resize_bilinear -____ - -.. autofunction:: paddle.fluid.layers.resize_bilinear - :noindex: - -gather -____ - -.. autofunction:: paddle.fluid.layers.gather - :noindex: - diff --git a/doc/fluid/api/optimizer.rst b/doc/fluid/api/optimizer.rst index df2bd2eace52e78805433bea320f5de95d45bfc7..6ad44bb6905b6e3f2b6e4aeb3701ced5d18e2005 100644 --- a/doc/fluid/api/optimizer.rst +++ b/doc/fluid/api/optimizer.rst @@ -47,28 +47,6 @@ DecayedAdagrad :members: :noindex: -Adadelta ------------------ - -.. autoclass:: paddle.fluid.optimizer.Adadelta - :members: - :noindex: - -RMSProp ------------------ - -.. autoclass:: paddle.fluid.optimizer.RMSProp - :members: - :noindex: - -ModelAverage ------------------ - -.. autoclass:: paddle.fluid.optimizer.ModelAverage - :members: - :noindex: - - SGDOptimizer ------------ @@ -111,25 +89,31 @@ DecayedAdagradOptimizer :members: :noindex: +RMSPropOptimizer +---------------- -AdadeltaOptimizer ------------------ - -.. autoclass:: paddle.fluid.optimizer.AdadeltaOptimizer +.. autoclass:: paddle.fluid.optimizer.RMSPropOptimizer :members: :noindex: +Adadelta +-------- -RMSPropOptimizer ------------------ +.. autoclass:: paddle.fluid.optimizer.Adadelta + :members: + :noindex: -.. autoclass:: paddle.fluid.optimizer.RMSPropOptimizer +ModelAverage +------------ + +.. autoclass:: paddle.fluid.optimizer.ModelAverage :members: :noindex: - + Optimizer --------- .. autoclass:: paddle.fluid.optimizer.Optimizer :members: :noindex: + diff --git a/doc/fluid/api/profiler.rst b/doc/fluid/api/profiler.rst index 74d102dcb0db35766c34e3d14939a8aa5861686b..39fda65863471a78895503184848a754828b71a1 100644 --- a/doc/fluid/api/profiler.rst +++ b/doc/fluid/api/profiler.rst @@ -23,3 +23,15 @@ profiler .. autofunction:: paddle.fluid.profiler.profiler :noindex: +start_profiler +-------------- + +.. autofunction:: paddle.fluid.profiler.start_profiler + :noindex: + +stop_profiler +------------- + +.. autofunction:: paddle.fluid.profiler.stop_profiler + :noindex: + diff --git a/doc/fluid/howto/cluster/fluid_recordio.md b/doc/fluid/howto/cluster/fluid_recordio.md new file mode 100644 index 0000000000000000000000000000000000000000..55ce63ec193948424cd0b87f13d56b9cf6154dfc --- /dev/null +++ b/doc/fluid/howto/cluster/fluid_recordio.md @@ -0,0 +1,127 @@ +# How to use RecordIO in Fluid + +If you want to use RecordIO as your training data format, you need to convert to your training data +to RecordIO files and reading them in the process of training, PaddlePaddle Fluid provides some +interface to deal with the RecordIO files. + +## Generate RecordIO File + +Before start training with RecordIO files, you need to convert your training data +to RecordIO format by `fluid.recordio_writer.convert_reader_to_recordio_file`, the sample codes +as follows: + +```python + reader = paddle.batch(mnist.train(), batch_size=1) + feeder = fluid.DataFeeder( + feed_list=[ # order is image and label + fluid.layers.data( + name='image', shape=[784]), + fluid.layers.data( + name='label', shape=[1], dtype='int64'), + ], + place=fluid.CPUPlace()) + fluid.recordio_writer.convert_reader_to_recordio_file('./mnist.recordio', reader, feeder) +``` + +The above code snippet would generate a RecordIO `./mnist.recordio` on your host. + +**NOTE**: we recommend users to set `batch_size=1` when generating the recordio files so that users can +adjust it flexibly while reading it. + +## Use the RecordIO file in a Local Training Job + +PaddlePaddle Fluid provides an interface `fluid.layers.io.open_recordio_file` to load your RecordIO file +and then you can use them as a Layer in your network configuration, the sample codes as follows: + +```python + data_file = fluid.layers.io.open_recordio_file( + filename="./mnist.recordio", + shapes=[(-1, 784),(-1, 1)], + lod_levels=[0, 0], + dtypes=["float32", "int32"]) + data_file = fluid.layers.io.batch(data_file, batch_size=4) + + img, label = fluid.layers.io.read_file(data_file) + hidden = fluid.layers.fc(input=img, size=100, act='tanh') + prediction = fluid.layers.fc(input=hidden, size=10, act='softmax') + loss = fluid.layers.cross_entropy(input=prediction, label=label) + avg_loss = fluid.layers.mean(loss) + + fluid.optimizer.Adam(learning_rate=1e-3).minimize(avg_loss) + + place = fluid.CPUPlace() + + exe = fluid.Executor(place) + exe.run(fluid.default_startup_program()) + avg_loss_np = [] + + # train a pass + batch_id = 0 + while True: + tmp, = exe.run(fetch_list=[avg_loss]) + + avg_loss_np.append(tmp) + print(batch_id) + batch_id += 1 +``` + +## Use the RecordIO files in Distributed Training + +1. generate multiple RecordIO files + +For a distributed training job, you may have multiple trainer nodes, +and one or more RecordIO files for one trainer node, you can use the interface +`fluid.recordio_writer.convert_reader_to_recordio_files` to convert your training data +into multiple RecordIO files, the sample codes as follows: + +```python + reader = paddle.batch(mnist.train(), batch_size=1) + feeder = fluid.DataFeeder( + feed_list=[ # order is image and label + fluid.layers.data( + name='image', shape=[784]), + fluid.layers.data( + name='label', shape=[1], dtype='int64'), + ], + place=fluid.CPUPlace()) + fluid.recordio_writer.convert_reader_to_recordio_files( + filename_suffix='./mnist.recordio', batch_per_file=100, reader, feeder) +``` + +The above codes would generate multiple RecordIO files on your host like: + +```bash +. + \_mnist-00000.recordio + |-mnist-00001.recordio + |-mnist-00002.recordio + |-mnist-00003.recordio + |-mnist-00004.recordio +``` + +2. open multiple RecordIO files by `fluid.layers.io.open_files` + +For a distributed training job, the distributed operator system will schedule trainer process on multiple nodes, +each trainer process reads parts of the whole training data, we usually take the following approach to make the training +data allocated by each trainer process as uniform as possiable: + +```python +def gen_train_list(file_pattern, trainers, trainer_id): + file_list = glob.glob(file_pattern) + ret_list = [] + for idx, f in enumerate(file_list): + if (idx + trainers) % trainers == trainer_id: + ret_list.append(f) + return ret_list + +trainers = int(os.getenv("TRAINERS")) +trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID")) +data_file = fluid.layers.io.open_files( + filenames=gen_train_list("./mnist-[0-9]*.recordio", 2, 0), + thread_num=1, + shapes=[(-1, 784),(-1, 1)], + lod_levels=[0, 0], + dtypes=["float32", "int32"]) +img, label = fluid.layers.io.read_file(data_files) +... +``` diff --git a/doc/fluid/howto/optimization/benchmark/README.md b/doc/fluid/howto/optimization/benchmark/README.md deleted file mode 120000 index db30af7f53231c687f9ad61ad961a685733cbad0..0000000000000000000000000000000000000000 --- a/doc/fluid/howto/optimization/benchmark/README.md +++ /dev/null @@ -1 +0,0 @@ -../../../../../benchmark/cluster/README.md \ No newline at end of file diff --git a/doc/fluid/howto/optimization/benchmark/vgg16/README.md b/doc/fluid/howto/optimization/benchmark/vgg16/README.md deleted file mode 120000 index ca963ef5f06aa0c2fe507ba7548dca8017358120..0000000000000000000000000000000000000000 --- a/doc/fluid/howto/optimization/benchmark/vgg16/README.md +++ /dev/null @@ -1 +0,0 @@ -../../../../../../benchmark/cluster/vgg16/README.md \ No newline at end of file diff --git a/doc/fluid/howto/optimization/host_memory_profiling_cn.md b/doc/fluid/howto/optimization/host_memory_profiling_cn.md new file mode 100644 index 0000000000000000000000000000000000000000..475557ed1b776cb4f2ee07b99a1e59070d8a79de --- /dev/null +++ b/doc/fluid/howto/optimization/host_memory_profiling_cn.md @@ -0,0 +1,89 @@ +## 堆内存分析和优化 + +计算机程序都可能有内存泄露的风险。**内存泄露**一般是由于程序在堆(heap)上分配了内存而没有释放,随着程序的运行占用的内存越来越大,一方面会影响程序的稳定性,可能让运行速度越来越慢,或者造成oom,甚至会影响运行程序的机器的稳定性,造成宕机。 + + +目前有很多内存泄露分析工具,比较经典的有[valgrind](http://valgrind.org/docs/manual/quick-start.html#quick-start.intro), [gperftools](https://gperftools.github.io/gperftools/)。 + +因为Fluid是用Python驱动C++ core来运行,valgrind直接分析非常困难,需要自己编译debug版本的、带valgrind支持的专用Python版本,而且输出的信息中大部分是Python自己的符号和调用信息,分析起来很困难,另外使用valgrind会让程序运行速度变得非常慢,所以不建议使用。 + +本教程主要介绍[gperftools](https://gperftools.github.io/gperftools/)的使用。 + +gperftool主要支持以下四个功能: + +- thread-caching malloc +- heap-checking using tcmalloc +- heap-profiling using tcmalloc +- CPU profiler + +Paddle也提供了基于gperftool的[CPU性能分析教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/optimization/cpu_profiling_cn.md)。 + +对于堆内存的分析,主要用到thread-caching malloc和heap-profiling using tcmalloc。 + +## 使用流程 +#### 环境 +本教程基于paddle提供的Docker开发环境paddlepaddle/paddle:latest-dev,基于Ubuntu 16.04.4 LTS环境。 + +#### 使用流程 + +- 安装google-perftools + +``` +apt-get install libunwind-dev +apt-get install google-perftools +``` + +- 安装pprof + +``` +go get -u github.com/google/pprof +``` + +- 设置运行环境 + +``` +export PPROF_PATH=/root/gopath/bin/pprof +export PPROF_BINARY_PATH=/root/gopath/bin/pprof +export LD_PRELOAD=/usr/lib/libtcmalloc.so.4 +``` + +- 使用heap profile来运行python程序。本质上是周期性的对堆的分配情况做一次快照。 + +``` +# HEAPPROFILE 设置生成的堆分析文件的目录和文件前缀 +# HEAP_PROFILE_ALLOCATION_INTERVAL 设置每分配多少存储dump一次dump,默认1GB +env HEAPPROFILE="./perf_log/test.log" HEAP_PROFILE_ALLOCATION_INTERVAL=209715200 python trainer.py +``` + +随着程序的运行,会在perf_log这个文件夹下生成很多文件,如下: + +``` +-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0001.heap +-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0002.heap +-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0003.heap +-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0004.heap +-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0005.heap +-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0006.heap +``` + +- 使用pprof对heap文件进行分析。分析有两种模式: + - 完整模式。会对当前heap做一个分析,显示目前分配内存一些调用路径。 + + ``` + pprof --pdf python test.log.0012.heap + ``` + 上述命令会生成一个profile00x.pdf的文件,可以直接打开,例如:[allocator](https://github.com/jacquesqiao/Paddle/blob/tutorial-of-memory-profile/doc/fluid/howto/optimization/memory_cpu_allocator.pdf)。从下图可以看出,在CPU版本fluid的运行过程中,分配存储最多的模块式CPUAllocator. 而别的模块相对而言分配内存较少,所以被忽略了,这对于分配内存泄露是很不方便的,因为泄露是一个缓慢的过程,在这种图中是无法看到的。 + + ![result](https://user-images.githubusercontent.com/3048612/40964027-a54033e4-68dc-11e8-836a-144910c4bb8c.png) + + - Diff模式。可以对两个时刻的heap做diff,把一些内存分配没有发生变化的模块去掉,而把增量部分显示出来。 + ``` + pprof --pdf --base test.log.0010.heap python test.log.1045.heap + ``` + 生成的结果为:[`memory_leak_protobuf`](https://github.com/jacquesqiao/Paddle/blob/tutorial-of-memory-profile/doc/fluid/howto/optimization/memory_leak_protobuf.pdf) + + 从图中可以看出:ProgramDesc这个结构,在两个版本之间增长了200MB+,所以这里有很大的内存泄露的可能性,最终结果也确实证明是这里造成了泄露。 + + ![result](https://user-images.githubusercontent.com/3048612/40964057-b434d5e4-68dc-11e8-894b-8ab62bcf26c2.png) + ![result](https://user-images.githubusercontent.com/3048612/40964063-b7dbee44-68dc-11e8-9719-da279f86477f.png) + diff --git a/doc/mobile/cross_compiling_for_android_cn.md b/doc/mobile/cross_compiling_for_android_cn.md index cdd6917239371a660d0df05bb623f0b94f8f11a3..0607748b751e9f2d606236d9e98868335379b05c 100644 --- a/doc/mobile/cross_compiling_for_android_cn.md +++ b/doc/mobile/cross_compiling_for_android_cn.md @@ -63,16 +63,16 @@ Android的Docker开发镜像向用户提供两个可配置的参数: - 编译`armeabi-v7a`,`Android API 21`的PaddlePaddle库 ```bash -$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev +$ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev ./paddle/scripts/paddle_build.sh build_android ``` - 编译`arm64-v8a`,`Android API 21`的PaddlePaddle库 ```bash -$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev +$ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev ./paddle/scripts/paddle_build.sh build_android ``` -执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 +执行上述`docker run`命令时,容器执行[paddle/scripts/paddle_build.sh build_android](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/paddle_build.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 ## 基于Linux交叉编译环境的编译方式 本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。 diff --git a/doc/mobile/cross_compiling_for_android_en.md b/doc/mobile/cross_compiling_for_android_en.md index 6af16fc114a2310e364023ec43cc3c64149af8f7..572063e8012efee2d2e142eb57e459e0e8c6382c 100644 --- a/doc/mobile/cross_compiling_for_android_en.md +++ b/doc/mobile/cross_compiling_for_android_en.md @@ -36,7 +36,7 @@ $ docker pull docker.paddlepaddlehub.com/paddle:latest-dev-android We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below: ```bash -$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" paddle:dev-android +$ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" paddle:dev-android ./paddle/scripts/paddle_build.sh build_android ``` The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`: @@ -70,7 +70,7 @@ The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`: The ARM-64 architecture (`arm64-v8a`) requires at least level 21 of Android API. -The default entry-point of the Docker image, [`paddle/scripts/docker/build_android.sh`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh) generates the [Android cross-compiling standalone toolchain](https://developer.android.com/ndk/guides/standalone_toolchain.html) based on the argument: `ANDROID_ABI` or `ANDROID_API`. For information about other configuration arguments, please continue reading. +The build command, [`paddle/scripts/paddle_build.sh build_android`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/paddle_build.sh) generates the [Android cross-compiling standalone toolchain](https://developer.android.com/ndk/guides/standalone_toolchain.html) based on the argument: `ANDROID_ABI` or `ANDROID_API`. For information about other configuration arguments, please continue reading. The above command generates and outputs the inference library in `$PWD/install_android` and puts third-party libraries in `$PWD/install_android/third_party`. diff --git a/doc/v2/build_and_install/build_from_source_cn.rst b/doc/v2/build_and_install/build_from_source_cn.rst index 741c01ce5428c0046daa5a784da70d4bb492438c..de7e9eb75c3a053179f2d03ac887955bb4e0a6d2 100644 --- a/doc/v2/build_and_install/build_from_source_cn.rst +++ b/doc/v2/build_and_install/build_from_source_cn.rst @@ -23,7 +23,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 在 `这里 `__ 找到 paddle_manylinux_devel 镜像的编译以及使用方法。或者参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。 -如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 `编译依赖`_ 之后才能开始编译的步骤。 +如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 :ref:`编译依赖 <_compile_deps>` 之后才能开始编译的步骤。 编译PaddlePaddle,需要执行: @@ -106,7 +106,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 - 学习 Docker 有多难? - 理解 Docker 并不难,大概花十分钟看一下[这篇文章](https://zhuanlan.zhihu.com/p/19902938)。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。 + 理解 Docker 并不难,大概花十分钟看一下 `这篇文章 `_ 。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。 - 我可以用 IDE 吗? @@ -123,7 +123,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 - 可以并行编译吗? - 是的。我们的 Docker image 运行一个 [Bash 脚本](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh)。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。 + 是的。我们的 Docker image 运行一个 `Bash脚本 `_ 。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。 - Docker 需要 sudo @@ -131,11 +131,11 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 - 在 Windows/MacOS 上编译很慢 - Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考[这个issue](https://github.com/PaddlePaddle/Paddle/issues/627)。 + Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考 `这个issue `_ 。 - 磁盘不够 - 本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考[这篇文章](https://zaiste.net/posts/removing_docker_containers/)来清理这些内容。 + 本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考 `这篇文章 `_ 来清理这些内容。 .. _compile_deps: @@ -211,7 +211,7 @@ PaddlePaddle可以使用cuDNN v5.1之后的任何一个版本来编译运行, 编译选项的设置 ++++++++++++++ -PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。cmake编译时,首先在系统路径( :code:`/usr/lib:/usr/local/lib` )中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如 +PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。cmake编译时,首先在系统路径( :code:`/usr/lib:/usr/local/lib` )中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如 .. code-block:: bash diff --git a/doc/v2/build_and_install/build_from_source_en.rst b/doc/v2/build_and_install/build_from_source_en.rst index b06c43e19dcfc52ad0f074a85517a16744895a3a..b08b45d43ec7f1deb2889832079a731ee724a44c 100644 --- a/doc/v2/build_and_install/build_from_source_en.rst +++ b/doc/v2/build_and_install/build_from_source_en.rst @@ -11,7 +11,7 @@ To build PaddlePaddle, you need 1. A computer -- Linux, Windows, MacOS. 2. Docker. -Nothing else. Not even Python and GCC, because you can install all build tools into a Docker image. +Nothing else. Not even Python and GCC, because you can install all build tools into a Docker image. We run all the tools by running this image. .. _build_step: @@ -26,6 +26,8 @@ you can also find how to build and use paddle_manylinux_devel Docker image from `here `__ Or you can build your own image from source as the optional step below: +If you don't wish to use docker,you need to install several compile dependencies manually as :ref:`Compile Dependencies <_compile_deps>` shows to start compilation. + .. code-block:: bash # 1. clone the source code @@ -108,7 +110,7 @@ Frequently Asked Questions - How difficult is it to learn Docker? - It takes you ten minutes to read [an introductory article](https://docs.docker.com/get-started) and saves you more than one hour to install all required build tools, configure them, especially when new versions of PaddlePaddle require some new tools. Not even to mention the time saved when other people trying to reproduce the issue you have. + It takes you ten minutes to read `an introductory article `_ and saves you more than one hour to install all required build tools, configure them, especially when new versions of PaddlePaddle require some new tools. Not even to mention the time saved when other people trying to reproduce the issue you have. - Can I use my favorite IDE? @@ -125,7 +127,7 @@ Frequently Asked Questions - Does Docker do parallel building? - Our building Docker image runs a [Bash script](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh), which calls `make -j$(nproc)` to starts as many processes as the number of your CPU cores. + Our building Docker image runs a `Bash script `_ , which calls `make -j$(nproc)` to starts as many processes as the number of your CPU cores. - Docker requires sudo @@ -133,11 +135,11 @@ Frequently Asked Questions - Docker on Windows/MacOS builds slowly - On Windows and MacOS, Docker containers run in a Linux VM. You might want to give this VM some more memory and CPUs so to make the building efficient. Please refer to [this issue](https://github.com/PaddlePaddle/Paddle/issues/627) for details. + On Windows and MacOS, Docker containers run in a Linux VM. You might want to give this VM some more memory and CPUs so to make the building efficient. Please refer to `this issue `_ for details. - Not enough disk space - Examples in this article use option `--rm` with the `docker run` command. This option ensures that stopped containers do not exist on hard disks. We can use `docker ps -a` to list all containers, including stopped. Sometimes `docker build` generates some intermediate dangling images, which also take disk space. To clean them, please refer to [this article](https://zaiste.net/posts/removing_docker_containers/). + Examples in this article use option `--rm` with the `docker run` command. This option ensures that stopped containers do not exist on hard disks. We can use `docker ps -a` to list all containers, including stopped. Sometimes `docker build` generates some intermediate dangling images, which also take disk space. To clean them, please refer to `this article `_ . .. _compile_deps: diff --git a/paddle/contrib/inference/CMakeLists.txt b/paddle/contrib/inference/CMakeLists.txt index 8ca34465395761cab9cbde4bfbcf32edc1c4a1d1..1e3bb7bf16f969255dba6f6ec7a6a70bbb1e07ee 100644 --- a/paddle/contrib/inference/CMakeLists.txt +++ b/paddle/contrib/inference/CMakeLists.txt @@ -17,6 +17,42 @@ if(APPLE) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=pessimizing-move") endif(APPLE) +set(ANAKIN_INCLUDE "" CACHE STRING "root of Anakin header files") +set(ANAKIN_LIBRARY "" CACHE STRING "path of Anakin library") + + +set(inference_deps paddle_inference_api paddle_fluid_api) + +# if anakin is set enable anakin api implementation +if(ANAKIN_INCLUDE_DIR AND ANAKIN_LIBRARY) + set(ANAKIN_FOUND ON) +else() + set(ANAKIN_FOUND OFF) +endif() + +if (ANAKIN_FOUND) + # Anakin's code style doesn't follow google c style. + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=comment + -Wno-error=reorder + -Wno-error=format + -Wno-error=switch + -Wno-error=return-type + -Wno-error=non-virtual-dtor + -Wno-error=cpp") + + message(STATUS "Anakin for inference is enabled") + message(STATUS "Anakin is set INCLUDE:${ANAKIN_INCLUDE} LIBRARY:${ANAKIN_LIBRARY}") + include_directories("${ANAKIN_INCLUDE}") + # Anakin's source path is a mass, need to set sub-directories trivially. + include_directories("${ANAKIN_INCLUDE}/saber") + link_directories("${ANAKIN_LIBRARY}") + + nv_library(inference_anakin_api SRCS paddle_inference_api_anakin_engine.cc) + target_link_libraries(inference_anakin_api anakin) + list(APPEND inference_deps inference_anakin_api) +endif() + + function(inference_api_test TARGET_NAME) if (WITH_TESTING) set(options "") @@ -27,7 +63,7 @@ function(inference_api_test TARGET_NAME) set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests) cc_test(${TARGET_NAME} SRCS ${TARGET_NAME}.cc - DEPS paddle_fluid paddle_inference_api + DEPS "${inference_deps}" ARGS --dirname=${PYTHON_TESTS_DIR}/book/) if(inference_test_ARGS) set_tests_properties(${TARGET_NAME} @@ -47,6 +83,11 @@ cc_test(test_paddle_inference_api inference_api_test(test_paddle_inference_api_impl ARGS test_word2vec test_image_classification) +if (ANAKIN_FOUND) + nv_test(inference_anakin_test SRCS paddle_inference_api_anakin_engine_tester.cc + DEPS ${inference_deps} protobuf) +endif() + if(WITH_TESTING) add_subdirectory(demo) endif() diff --git a/paddle/contrib/inference/demo/simple_on_word2vec.cc b/paddle/contrib/inference/demo/simple_on_word2vec.cc index 165d2e196b3d544f540cf72d61c6f9d0dfa62977..9b4843f714f11484860056711fd223edc8a5d037 100644 --- a/paddle/contrib/inference/demo/simple_on_word2vec.cc +++ b/paddle/contrib/inference/demo/simple_on_word2vec.cc @@ -54,7 +54,7 @@ void Main(bool use_gpu) { CHECK(predictor->Run(slots, &outputs)); //# 4. Get output. - ASSERT_EQ(outputs.size(), 1); + ASSERT_EQ(outputs.size(), 1UL); LOG(INFO) << "output buffer size: " << outputs.front().data.length; const size_t num_elements = outputs.front().data.length / sizeof(float); // The outputs' buffers are in CPU memory. @@ -65,7 +65,10 @@ void Main(bool use_gpu) { } TEST(demo, word2vec_cpu) { Main(false /*use_gpu*/); } + +#ifdef PADDLE_WITH_CUDA TEST(demo, word2vec_gpu) { Main(true /*use_gpu*/); } +#endif } // namespace demo } // namespace paddle diff --git a/paddle/contrib/inference/paddle_inference_api.h b/paddle/contrib/inference/paddle_inference_api.h index 5fe8399762bba69bc99ed9ae694db32f532ed953..c4588cf04030b9627dbe9b40c1bb04d1e782ebba 100644 --- a/paddle/contrib/inference/paddle_inference_api.h +++ b/paddle/contrib/inference/paddle_inference_api.h @@ -1,16 +1,16 @@ /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ /* * This file contains the definition of a simple Inference API for Paddle. @@ -47,8 +47,8 @@ struct PaddleTensor { enum class PaddleEngineKind { kNative = 0, // Use the native Fluid facility. + kAnakin, // Use Anakin for inference. // TODO(Superjomn) support following engines latter. - // kAnakin, // Use Anakin for inference. // kTensorRT, // Use TensorRT for inference. // kAutoMixedAnakin, // Automatically mix Fluid with Anakin. // kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT. @@ -63,6 +63,7 @@ class PaddlePredictor { struct Config; PaddlePredictor() = default; PaddlePredictor(const PaddlePredictor&) = delete; + PaddlePredictor& operator=(const PaddlePredictor&) = delete; // Predict an record. // The caller should be responsible for allocating and releasing the memory of @@ -76,7 +77,7 @@ class PaddlePredictor { virtual std::unique_ptr Clone() = 0; // Destroy the Predictor. - virtual ~PaddlePredictor() {} + virtual ~PaddlePredictor() = default; // The common configs for all the predictors. struct Config { @@ -95,6 +96,13 @@ struct NativeConfig : public PaddlePredictor::Config { std::string param_file; }; +// Configurations for Anakin engine. +struct AnakinConfig : public PaddlePredictor::Config { + int device; + std::string model_file; + int max_batch_size{-1}; +}; + // A factory to help create different predictors. // // FOR EXTENSION DEVELOPER: diff --git a/paddle/contrib/inference/paddle_inference_api_anakin_engine.cc b/paddle/contrib/inference/paddle_inference_api_anakin_engine.cc new file mode 100644 index 0000000000000000000000000000000000000000..865d7ac10db55ce9565f4b1a35defa2a3d1d40ef --- /dev/null +++ b/paddle/contrib/inference/paddle_inference_api_anakin_engine.cc @@ -0,0 +1,82 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include + +#include "paddle/contrib/inference/paddle_inference_api_anakin_engine.h" + +namespace paddle { + +PaddleInferenceAnakinPredictor::PaddleInferenceAnakinPredictor( + const AnakinConfig &config) { + CHECK(Init(config)); +} + +bool PaddleInferenceAnakinPredictor::Init(const AnakinConfig &config) { + // TODO(Superjomn) Tell anakin to support return code. + engine_.Build(config.model_file, config.max_batch_size); + return true; +} + +bool PaddleInferenceAnakinPredictor::Run( + const std::vector &inputs, + std::vector *output_data) { + for (const auto &input : inputs) { + if (input.dtype != PaddleDType::FLOAT32) { + LOG(ERROR) << "Only support float type inputs. " << input.name + << "'s type is not float"; + return false; + } + engine_.SetInputFromCPU( + input.name, static_cast(input.data.data), input.data.length); + } + + // TODO(Superjomn) Tell anakin to support return code. + engine_.Execute(); + + if (output_data->empty()) { + LOG(ERROR) << "At least one output should be set with tensors' names."; + return false; + } + for (auto &output : *output_data) { + auto *tensor = engine_.GetOutputInGPU(output.name); + output.shape = tensor->shape(); + // Copy data from GPU -> CPU + if (cudaMemcpy(output.data.data, + tensor->data(), + tensor->size(), + cudaMemcpyDeviceToHost) != 0) { + LOG(ERROR) << "copy data from GPU to CPU error"; + return false; + } + } + return true; +} + +// TODO(Superjomn) To implement latter. +std::unique_ptr PaddleInferenceAnakinPredictor::Clone() { + return nullptr; +} + +// A factory to help create difference predictor. +template <> +std::unique_ptr +CreatePaddlePredictor( + const AnakinConfig &config) { + std::unique_ptr x( + new PaddleInferenceAnakinPredictor(config)); + return x; +}; + +} // namespace paddle diff --git a/paddle/contrib/inference/paddle_inference_api_anakin_engine.h b/paddle/contrib/inference/paddle_inference_api_anakin_engine.h new file mode 100644 index 0000000000000000000000000000000000000000..fe9f562e9d1d40c30585bcb68fa51e445bedb4aa --- /dev/null +++ b/paddle/contrib/inference/paddle_inference_api_anakin_engine.h @@ -0,0 +1,51 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +/* + * This file contains the implementation of inference API with Anakin engine + * embeded, this API can only support Anakin models. + */ + +#pragma once + +// NOTE This header file do not have namespace. +// TODO(Superjomn) Tell Anakin to provide better APIs. +#include +#include "paddle/contrib/inference/paddle_inference_api.h" + +namespace paddle { + +class PaddleInferenceAnakinPredictor : public PaddlePredictor { + public: + PaddleInferenceAnakinPredictor(const AnakinConfig& config); + + // NOTE Unlike the native engine, the buffers of anakin engine's output_data + // should be allocated first. + // TODO(Superjomn) should unify all the behaviors of output_data accross all + // the engines. + bool Run(const std::vector& inputs, + std::vector* output_data) override; + + std::unique_ptr Clone() override; + + private: + bool Init(const AnakinConfig& config); + + anakin::AnakinEngine + engine_; +}; + +} // namespace paddle diff --git a/paddle/contrib/inference/paddle_inference_api_anakin_engine_tester.cc b/paddle/contrib/inference/paddle_inference_api_anakin_engine_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..43324bc67cba16c36d9dbcb58ccde1c57293085e --- /dev/null +++ b/paddle/contrib/inference/paddle_inference_api_anakin_engine_tester.cc @@ -0,0 +1,27 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/contrib/inference/paddle_inference_api.h" +#include + +namespace paddle { + +TEST(inference, anakin) { + AnakinConfig config; + + auto engine = + CreatePaddlePredictor(config); +} + +} // namespace paddle diff --git a/paddle/contrib/inference/paddle_inference_api_impl.cc b/paddle/contrib/inference/paddle_inference_api_impl.cc index e7a8fa68b7fa84e246c0860dcb6b5528eb155a66..bda2981a14482e2c4a29773d37b074506cc344b1 100644 --- a/paddle/contrib/inference/paddle_inference_api_impl.cc +++ b/paddle/contrib/inference/paddle_inference_api_impl.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include @@ -54,7 +54,8 @@ std::string num2str(T a) { } } // namespace -bool NativePaddlePredictor::Init() { +bool NativePaddlePredictor::Init( + std::shared_ptr parent_scope) { VLOG(3) << "Predictor::init()"; if (config_.use_gpu) { @@ -62,9 +63,15 @@ bool NativePaddlePredictor::Init() { } else { place_ = paddle::platform::CPUPlace(); } - paddle::framework::InitDevices(false); + if (parent_scope) { + scope_ = parent_scope; + sub_scope_ = &(parent_scope->NewScope()); + } else { + paddle::framework::InitDevices(false); + scope_.reset(new paddle::framework::Scope()); + } + executor_.reset(new paddle::framework::Executor(place_)); - scope_.reset(new paddle::framework::Scope()); // Initialize the inference program if (!config_.model_dir.empty()) { @@ -83,13 +90,8 @@ bool NativePaddlePredictor::Init() { return false; } ctx_ = executor_->Prepare(*inference_program_, 0); - - // Create temporary variables first, so that the first batch do not need to - // create variables in the runtime. This is the logics of the old inference - // API. - // TODO(Superjomn) this should be modified when `Clone` is valid for - // multi-thread application. - executor_->CreateVariables(*inference_program_, scope_.get(), 0); + executor_->CreateVariables( + *inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0); // Get the feed_target_names and fetch_target_names feed_target_names_ = inference_program_->GetFeedTargetNames(); @@ -97,6 +99,13 @@ bool NativePaddlePredictor::Init() { return true; } +NativePaddlePredictor::~NativePaddlePredictor() { + if (sub_scope_) { + PADDLE_ENFORCE_NOT_NULL(scope_, "Should have parent scope!"); + scope_->DeleteScope(sub_scope_); + } +}; + bool NativePaddlePredictor::Run(const std::vector &inputs, std::vector *output_data) { VLOG(3) << "Predictor::predict"; @@ -121,11 +130,12 @@ bool NativePaddlePredictor::Run(const std::vector &inputs, } // Run the inference program // if share variables, we need not create variables - executor_->RunPreparedContext(ctx_.get(), - scope_.get(), - &feed_targets, - &fetch_targets, - false /* don't create variable eatch time */); + executor_->RunPreparedContext( + ctx_.get(), + sub_scope_ != nullptr ? sub_scope_ : scope_.get(), + &feed_targets, + &fetch_targets, + false /* don't create variable eatch time */); if (!GetFetch(fetchs, output_data)) { LOG(ERROR) << "fail to get fetchs"; return false; @@ -138,7 +148,7 @@ std::unique_ptr NativePaddlePredictor::Clone() { VLOG(3) << "Predictor::clone"; std::unique_ptr cls(new NativePaddlePredictor(config_)); - if (!dynamic_cast(cls.get())->Init()) { + if (!dynamic_cast(cls.get())->Init(scope_)) { LOG(ERROR) << "fail to call Init"; return nullptr; } @@ -266,7 +276,7 @@ CreatePaddlePredictor( } std::unique_ptr predictor(new NativePaddlePredictor(config)); - if (!dynamic_cast(predictor.get())->Init()) { + if (!dynamic_cast(predictor.get())->Init(nullptr)) { return nullptr; } return std::move(predictor); diff --git a/paddle/contrib/inference/paddle_inference_api_impl.h b/paddle/contrib/inference/paddle_inference_api_impl.h index 84707e223d7aa3d1ebca933923e932b3973613ae..86d1db7bcc7567e104cd20c9f767ed4513f611f5 100644 --- a/paddle/contrib/inference/paddle_inference_api_impl.h +++ b/paddle/contrib/inference/paddle_inference_api_impl.h @@ -34,14 +34,15 @@ class NativePaddlePredictor : public PaddlePredictor { explicit NativePaddlePredictor(const NativeConfig &config) : config_(config) {} - bool Init(); + // will only create sub scope if have global scope + bool Init(std::shared_ptr parent_scope); bool Run(const std::vector &inputs, std::vector *output_data) override; std::unique_ptr Clone() override; - ~NativePaddlePredictor() override{}; + ~NativePaddlePredictor() override; private: bool SetFeed(const std::vector &input_datas, @@ -52,11 +53,13 @@ class NativePaddlePredictor : public PaddlePredictor { NativeConfig config_; platform::Place place_; std::unique_ptr executor_; - std::unique_ptr scope_; + std::shared_ptr scope_; std::unique_ptr ctx_; std::unique_ptr inference_program_; std::vector feed_target_names_; std::vector fetch_target_names_; + // Do not use unique_ptr, use parent scope to delete + framework::Scope *sub_scope_{nullptr}; }; } // namespace paddle diff --git a/paddle/fluid/framework/block_desc.cc b/paddle/fluid/framework/block_desc.cc index e7842e9b8130d35e511e02dfb1dc27f307d17f38..f537e4b9e569dd4c513ac0efde7240833bcf04b6 100644 --- a/paddle/fluid/framework/block_desc.cc +++ b/paddle/fluid/framework/block_desc.cc @@ -169,17 +169,13 @@ void BlockDesc::Flush() { } if (need_update_) { - auto &op_field = *this->desc_->mutable_ops(); - this->ClearPBOps(); - op_field.Reserve(static_cast(ops_.size())); + this->desc_->mutable_ops()->Clear(); for (auto &op_desc : ops_) { - op_field.AddAllocated(op_desc->Proto()); + this->desc_->mutable_ops()->Add()->CopyFrom(*op_desc->Proto()); } - auto &var_field = *this->desc_->mutable_vars(); - this->ClearPBVars(); - var_field.Reserve(static_cast(vars_.size())); + this->desc_->mutable_vars()->Clear(); for (auto &var_desc : vars_) { - var_field.AddAllocated(var_desc.second->Proto()); + this->desc_->mutable_vars()->Add()->CopyFrom(*var_desc.second->Proto()); } need_update_ = false; } @@ -217,22 +213,6 @@ BlockDesc::BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, } } -void BlockDesc::ClearPBOps() { - auto ops = this->desc_->mutable_ops(); - while (!ops->empty()) { - // we do not own the OpDesc, so release the ownership. - ops->ReleaseLast(); - } -} - -void BlockDesc::ClearPBVars() { - auto vars = this->desc_->mutable_vars(); - while (!vars->empty()) { - // we do not own the VarDesc, so release the ownership. - vars->ReleaseLast(); - } -} - void BlockDesc::SetForwardBlockID(int32_t forward_block_id) { PADDLE_ENFORCE(!desc_->has_forward_block_idx(), "Parent block ID has been set to %d. Cannot set to %d", diff --git a/paddle/fluid/framework/block_desc.h b/paddle/fluid/framework/block_desc.h index 189dd6c52f85b5bf623b98c64c07c0c7269505d4..ce48548418478cc5c9f9ca1244df9e66dca884e6 100644 --- a/paddle/fluid/framework/block_desc.h +++ b/paddle/fluid/framework/block_desc.h @@ -41,11 +41,6 @@ class BlockDesc { BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, ProgramDesc *prog); - ~BlockDesc() { - this->ClearPBVars(); - this->ClearPBOps(); - } - int32_t ID() const { return desc_->idx(); } int32_t Parent() const { return desc_->parent_idx(); } @@ -113,10 +108,6 @@ class BlockDesc { ProgramDesc *Program() const { return this->prog_; } - private: - void ClearPBOps(); - void ClearPBVars(); - private: ProgramDesc *prog_; // not_own proto::BlockDesc *desc_; // not_own diff --git a/paddle/fluid/framework/executor.cc b/paddle/fluid/framework/executor.cc index 863053c32b190f4e8497b16f3edd76cb2f76168b..3d68c5fb870d5b575f97eeb286528544402b8ed9 100644 --- a/paddle/fluid/framework/executor.cc +++ b/paddle/fluid/framework/executor.cc @@ -220,8 +220,10 @@ void Executor::Run(const ProgramDesc& program, Scope* scope, has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name); ProgramDesc* copy_program = const_cast(&program); + std::unique_ptr unique_ptr_of_copy_program; if (!has_feed_ops || !has_fetch_ops) { - copy_program = std::unique_ptr(new ProgramDesc(program)).get(); + unique_ptr_of_copy_program.reset(new ProgramDesc(program)); + copy_program = unique_ptr_of_copy_program.get(); } auto* global_block = copy_program->MutableBlock(0); diff --git a/paddle/fluid/inference/tests/book/CMakeLists.txt b/paddle/fluid/inference/tests/book/CMakeLists.txt index dbb81462b8273bd701e9c9f530eaf69817abd6a1..2fa5a9540ba1311c7f87e6675a53044b23dd8276 100644 --- a/paddle/fluid/inference/tests/book/CMakeLists.txt +++ b/paddle/fluid/inference/tests/book/CMakeLists.txt @@ -38,3 +38,11 @@ inference_test(recommender_system) #inference_test(rnn_encoder_decoder) #inference_test(understand_sentiment ARGS conv) inference_test(word2vec) + +# This is an unly work around to make this test run +# TODO(TJ): clean me up +cc_test(test_inference_nlp + SRCS test_inference_nlp.cc + DEPS paddle_fluid + ARGS + --model_path=${PADDLE_BINARY_DIR}/python/paddle/fluid/tests/book/recognize_digits_mlp.inference.model) diff --git a/paddle/fluid/inference/tests/book/test_inference_nlp.cc b/paddle/fluid/inference/tests/book/test_inference_nlp.cc new file mode 100644 index 0000000000000000000000000000000000000000..70aa42ac4111c0524a55e26aaefa864338c1d6c1 --- /dev/null +++ b/paddle/fluid/inference/tests/book/test_inference_nlp.cc @@ -0,0 +1,236 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include +#include // NOLINT +#include "gflags/gflags.h" +#include "gtest/gtest.h" +#include "paddle/fluid/inference/tests/test_helper.h" +#ifdef PADDLE_WITH_MKLML +#include +#include +#endif + +DEFINE_string(model_path, "", "Directory of the inference model."); +DEFINE_string(data_file, "", "File of input index data."); +DEFINE_int32(repeat, 100, "Running the inference program repeat times"); +DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference"); +DEFINE_bool(prepare_vars, true, "Prepare variables before executor"); +DEFINE_int32(num_threads, 1, "Number of threads should be used"); + +inline double GetCurrentMs() { + struct timeval time; + gettimeofday(&time, NULL); + return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec; +} + +// This function just give dummy data for recognize_digits model. +size_t DummyData(std::vector* out) { + paddle::framework::LoDTensor input; + SetupTensor(&input, {1, 1, 28, 28}, -1.f, 1.f); + out->emplace_back(input); + return 1; +} + +// Load the input word index data from file and save into LodTensor. +// Return the size of words. +size_t LoadData(std::vector* out, + const std::string& filename) { + if (filename.empty()) { + return DummyData(out); + } + + size_t sz = 0; + std::fstream fin(filename); + std::string line; + out->clear(); + while (getline(fin, line)) { + std::istringstream iss(line); + std::vector ids; + std::string field; + while (getline(iss, field, ' ')) { + ids.push_back(stoi(field)); + } + if (ids.size() >= 1024) { + // Synced with NLP guys, they will ignore input larger then 1024 + continue; + } + + paddle::framework::LoDTensor words; + paddle::framework::LoD lod{{0, ids.size()}}; + words.set_lod(lod); + int64_t* pdata = words.mutable_data( + {static_cast(ids.size()), 1}, paddle::platform::CPUPlace()); + memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t)); + out->emplace_back(words); + sz += ids.size(); + } + return sz; +} + +// Split input data samples into small pieces jobs as balanced as possible, +// according to the number of threads. +void SplitData( + const std::vector& datasets, + std::vector>* jobs, + const int num_threads) { + size_t s = 0; + jobs->resize(num_threads); + while (s < datasets.size()) { + for (auto it = jobs->begin(); it != jobs->end(); it++) { + it->emplace_back(&datasets[s]); + s++; + if (s >= datasets.size()) { + break; + } + } + } +} + +void ThreadRunInfer( + const int tid, paddle::framework::Executor* executor, + paddle::framework::Scope* scope, + const std::unique_ptr& inference_program, + const std::vector>& jobs) { + auto copy_program = std::unique_ptr( + new paddle::framework::ProgramDesc(*inference_program)); + auto& sub_scope = scope->NewScope(); + + std::string feed_holder_name = "feed_" + paddle::string::to_string(tid); + std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid); + copy_program->SetFeedHolderName(feed_holder_name); + copy_program->SetFetchHolderName(fetch_holder_name); + + const std::vector& feed_target_names = + copy_program->GetFeedTargetNames(); + const std::vector& fetch_target_names = + copy_program->GetFetchTargetNames(); + + PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL); + std::map fetch_targets; + paddle::framework::LoDTensor outtensor; + fetch_targets[fetch_target_names[0]] = &outtensor; + + std::map feed_targets; + PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL); + + auto& inputs = jobs[tid]; + auto start_ms = GetCurrentMs(); + for (size_t i = 0; i < inputs.size(); ++i) { + feed_targets[feed_target_names[0]] = inputs[i]; + executor->Run(*copy_program, &sub_scope, &feed_targets, &fetch_targets, + true /*create_local_scope*/, true /*create_vars*/, + feed_holder_name, fetch_holder_name); + } + auto stop_ms = GetCurrentMs(); + scope->DeleteScope(&sub_scope); + LOG(INFO) << "Tid: " << tid << ", process " << inputs.size() + << " samples, avg time per sample: " + << (stop_ms - start_ms) / inputs.size() << " ms"; +} + +TEST(inference, nlp) { + if (FLAGS_model_path.empty()) { + LOG(FATAL) << "Usage: ./example --model_path=path/to/your/model"; + } + if (FLAGS_data_file.empty()) { + LOG(WARNING) << "No data file provided, will use dummy data!" + << "Note: if you use nlp model, please provide data file."; + } + LOG(INFO) << "Model Path: " << FLAGS_model_path; + LOG(INFO) << "Data File: " << FLAGS_data_file; + + std::vector datasets; + size_t num_total_words = LoadData(&datasets, FLAGS_data_file); + LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size(); + LOG(INFO) << "Total number of words: " << num_total_words; + + const bool model_combined = false; + // 0. Call `paddle::framework::InitDevices()` initialize all the devices + // 1. Define place, executor, scope + auto place = paddle::platform::CPUPlace(); + auto executor = paddle::framework::Executor(place); + std::unique_ptr scope( + new paddle::framework::Scope()); + + // 2. Initialize the inference_program and load parameters + std::unique_ptr inference_program; + inference_program = + InitProgram(&executor, scope.get(), FLAGS_model_path, model_combined); + if (FLAGS_use_mkldnn) { + EnableMKLDNN(inference_program); + } + +#ifdef PADDLE_WITH_MKLML + // only use 1 thread number per std::thread + omp_set_dynamic(0); + omp_set_num_threads(1); + mkl_set_num_threads(1); +#endif + + double start_ms = 0, stop_ms = 0; + if (FLAGS_num_threads > 1) { + std::vector> jobs; + SplitData(datasets, &jobs, FLAGS_num_threads); + std::vector> threads; + start_ms = GetCurrentMs(); + for (int i = 0; i < FLAGS_num_threads; ++i) { + threads.emplace_back( + new std::thread(ThreadRunInfer, i, &executor, scope.get(), + std::ref(inference_program), std::ref(jobs))); + } + for (int i = 0; i < FLAGS_num_threads; ++i) { + threads[i]->join(); + } + stop_ms = GetCurrentMs(); + } else { + if (FLAGS_prepare_vars) { + executor.CreateVariables(*inference_program, scope.get(), 0); + } + // always prepare context + std::unique_ptr ctx; + ctx = executor.Prepare(*inference_program, 0); + + // preapre fetch + const std::vector& fetch_target_names = + inference_program->GetFetchTargetNames(); + PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL); + std::map fetch_targets; + paddle::framework::LoDTensor outtensor; + fetch_targets[fetch_target_names[0]] = &outtensor; + + // prepare feed + const std::vector& feed_target_names = + inference_program->GetFeedTargetNames(); + PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL); + std::map feed_targets; + + // feed data and run + start_ms = GetCurrentMs(); + for (size_t i = 0; i < datasets.size(); ++i) { + feed_targets[feed_target_names[0]] = &(datasets[i]); + executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets, + &fetch_targets, !FLAGS_prepare_vars); + } + stop_ms = GetCurrentMs(); + LOG(INFO) << "Tid: 0, process " << datasets.size() + << " samples, avg time per sample: " + << (stop_ms - start_ms) / datasets.size() << " ms"; + } + LOG(INFO) << "Total inference time with " << FLAGS_num_threads + << " threads : " << (stop_ms - start_ms) / 1000.0 + << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000); +} diff --git a/paddle/fluid/operators/activation_mkldnn_op.cc b/paddle/fluid/operators/activation_mkldnn_op.cc index b892ac77d9ed60210ddadaecb1a4f214e5a25180..46ed99bcf2234f7621d9f00eb48c846d8a355795 100644 --- a/paddle/fluid/operators/activation_mkldnn_op.cc +++ b/paddle/fluid/operators/activation_mkldnn_op.cc @@ -222,35 +222,35 @@ struct MKLDNNActivationGradFunc : public BaseActivationFunctor { }; template -using ReluMkldnnFunctor = +using ReluMKLDNNFunctor = MKLDNNActivationFunc; template -using TanhMkldnnFunctor = +using TanhMKLDNNFunctor = MKLDNNActivationFunc; template -using SqrtMkldnnFunctor = +using SqrtMKLDNNFunctor = MKLDNNActivationFunc; template -using AbsMkldnnFunctor = +using AbsMKLDNNFunctor = MKLDNNActivationFunc; template -using ReluMkldnnGradFunctor = +using ReluMKLDNNGradFunctor = MKLDNNActivationGradFunc; template -using TanhMkldnnGradFunctor = +using TanhMKLDNNGradFunctor = MKLDNNActivationGradFunc; template -using SqrtMkldnnGradFunctor = +using SqrtMKLDNNGradFunctor = MKLDNNActivationGradFunc; template -using AbsMkldnnGradFunctor = +using AbsMKLDNNGradFunctor = MKLDNNActivationGradFunc; } // namespace operators } // namespace paddle @@ -265,9 +265,9 @@ namespace ops = paddle::operators; ops::MKLDNNActivationGradKernel>); #define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro) \ - __macro(relu, ReluMkldnnFunctor, ReluMkldnnGradFunctor); \ - __macro(tanh, TanhMkldnnFunctor, TanhMkldnnGradFunctor); \ - __macro(sqrt, SqrtMkldnnFunctor, SqrtMkldnnGradFunctor); \ - __macro(abs, AbsMkldnnFunctor, AbsMkldnnGradFunctor); + __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \ + __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \ + __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \ + __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor); FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL); diff --git a/paddle/fluid/operators/detail/grpc_client.cc b/paddle/fluid/operators/detail/grpc_client.cc index da9ca1a0c1d55018141f0e4285fe35d7c437fd55..f4d83e86ecb01eed863a387d827023a5d808dad0 100644 --- a/paddle/fluid/operators/detail/grpc_client.cc +++ b/paddle/fluid/operators/detail/grpc_client.cc @@ -38,6 +38,25 @@ void RPCClient::Init() { if (rpc_client_.get() == nullptr) { rpc_client_.reset(new RPCClient()); } + rpc_client_->InitEventLoop(); +} + +void RPCClient::InitEventLoop() { + // start the client process thread + // TODO(wuyi): can make this in a threadpool + client_thread_.reset(new std::thread(std::bind(&RPCClient::Proceed, this))); +} + +RPCClient::~RPCClient() { + Wait(); + cq_.Shutdown(); + { + std::lock_guard guard(chan_mutex_); + for (auto& it : channels_) { + it.second.reset(); + } + } + client_thread_->join(); } bool RPCClient::AsyncSendVariable(const std::string& ep, @@ -204,70 +223,37 @@ void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) { req_count_++; } -bool RPCClient::Wait() { - VLOG(3) << "RPCClient begin Wait()" - << " req_count_:" << req_count_; - if (req_count_ <= 0) { - return true; - } - const size_t kReqCnt = req_count_; - bool a[kReqCnt]; - std::vector> waits(req_count_); - std::mutex mu; - - for (int i = 0; i < req_count_; i++) { - waits[i] = framework::AsyncIO([i, &a, &mu, this] { - bool ret = Proceed(); - std::lock_guard l(mu); - a[i] = ret; - }); - } - - for (int i = 0; i < req_count_; i++) { - waits[i].wait(); - } - - int last_req_count = req_count_; - req_count_ = 0; - - for (int i = 0; i < last_req_count; i++) { - if (!a[i]) { - return false; - } - } - - return true; +void RPCClient::Wait() { + std::unique_lock lk(sync_mutex_); + sync_cond_.wait(lk, [this] { return req_count_ == 0; }); } -bool RPCClient::Proceed() { - void* tag = NULL; +void RPCClient::Proceed() { + void* tag = nullptr; bool ok = false; - // request counts. - if (!cq_.Next(&tag, &ok)) { - LOG(ERROR) << "Get meets CompletionQueue error"; - return false; - } - - GPR_ASSERT(ok); - PADDLE_ENFORCE(tag); - - // TODO(gongwb): add more retries. - BaseProcessor* c = static_cast(tag); - if (!c->status_.ok()) { - LOG(ERROR) << "proc param error:" << c->var_h_.String() - << " grpc error:" << c->status_.error_message(); + while (cq_.Next(&tag, &ok)) { + BaseProcessor* c = static_cast(tag); + GPR_ASSERT(ok); + PADDLE_ENFORCE(c); + if (c->status_.ok()) { + c->Process(); + } else { + LOG(ERROR) << "var: " << c->var_h_.String() + << " grpc error:" << c->status_.error_message(); + } delete c; - return false; + { + std::lock_guard lk(sync_mutex_); + req_count_--; + } + sync_cond_.notify_all(); } - - c->Process(); - delete c; - return true; } + std::shared_ptr RPCClient::GetChannel(const std::string& ep) { // TODO(Yancey1989): make grpc client completely thread-safe - std::unique_lock lock(mutex_); + std::lock_guard guard(chan_mutex_); auto it = channels_.find(ep); if (it != channels_.end()) { return it->second; diff --git a/paddle/fluid/operators/detail/grpc_client.h b/paddle/fluid/operators/detail/grpc_client.h index 449d5105afb8c02294a0ef57610e7de1b1631b35..bb3813efcf4f77a8ec3d2f4b39969faa6216e38f 100644 --- a/paddle/fluid/operators/detail/grpc_client.h +++ b/paddle/fluid/operators/detail/grpc_client.h @@ -16,15 +16,18 @@ limitations under the License. */ #include -#include // NOLINT +#include // NOLINT +#include // NOLINT #include #include #include #include #include // NOLINT #include +#include // NOLINT #include +#include "grpc++/channel.h" #include "grpc++/generic/generic_stub.h" #include "grpc++/grpc++.h" #include "grpc++/support/byte_buffer.h" @@ -164,6 +167,7 @@ class FetchBarrierProcessor : public BaseProcessor { class RPCClient { public: RPCClient() {} + ~RPCClient(); static RPCClient* GetInstance(); @@ -192,19 +196,28 @@ class RPCClient { void AsyncSendFetchBarrier(const std::string& ep, int64_t time_out = 600 * 1000); - bool Wait(); + void Wait(); + // InitEventLoop should only be called by Init() + void InitEventLoop(); private: - bool Proceed(); + void Proceed(); std::shared_ptr GetChannel(const std::string& ep); // Init is called by GetInstance. static void Init(); private: grpc::CompletionQueue cq_; - std::map> channels_; + std::unordered_map> channels_; + std::unique_ptr client_thread_; + + // mutex for Wait client sync + std::mutex sync_mutex_; + std::condition_variable sync_cond_; std::atomic req_count_{0}; - std::mutex mutex_; + + // mutex for GetChannel thread safety + std::mutex chan_mutex_; static std::unique_ptr rpc_client_; static std::once_flag init_flag_; DISABLE_COPY_AND_ASSIGN(RPCClient); diff --git a/paddle/fluid/operators/detail/grpc_server.cc b/paddle/fluid/operators/detail/grpc_server.cc index e73756d89004bc48339c0aa31dd0857c2ca6722d..57867aad4d679f75ea790b65b5773a73586fd96e 100644 --- a/paddle/fluid/operators/detail/grpc_server.cc +++ b/paddle/fluid/operators/detail/grpc_server.cc @@ -68,9 +68,7 @@ class RequestSend final : public RequestBase { method_id, &ctx_, request_.get(), &responder_, cq_, cq_, reinterpret_cast(static_cast(req_id))); } - virtual ~RequestSend() {} - std::string GetReqName() override { return request_->Varname(); } void Process() override { @@ -82,7 +80,6 @@ class RequestSend final : public RequestBase { framework::Variable* outvar = nullptr; request_handler_->Handle(varname, scope, invar, &outvar); - status_ = FINISH; responder_.Finish(reply_, ::grpc::Status::OK, reinterpret_cast(static_cast(req_id_))); @@ -125,7 +122,6 @@ class RequestGet final : public RequestBase { SerializeToByteBuffer(varname, outvar, *request_handler_->dev_ctx(), &reply_); } - status_ = FINISH; responder_.Finish(reply_, ::grpc::Status::OK, reinterpret_cast(static_cast(req_id_))); @@ -170,10 +166,9 @@ class RequestPrefetch final : public RequestBase { SerializeToByteBuffer(varname, outvar, *request_handler_->dev_ctx(), &reply_); - - status_ = FINISH; responder_.Finish(reply_, ::grpc::Status::OK, reinterpret_cast(static_cast(req_id_))); + status_ = FINISH; } protected: diff --git a/paddle/fluid/operators/detail/grpc_server.h b/paddle/fluid/operators/detail/grpc_server.h index d1fcbc414f123c5c4810d9cecf807a406aa2c405..e6ffc7066f24d5088a95801ed1c0670b24d5771f 100644 --- a/paddle/fluid/operators/detail/grpc_server.h +++ b/paddle/fluid/operators/detail/grpc_server.h @@ -71,8 +71,6 @@ class AsyncGRPCServer final : public RPCServer { std::unique_ptr<::grpc::Server> server_; // condition of the sub program - std::mutex barrier_mutex_; - mutable int barrier_cond_step_; std::condition_variable barrier_condition_; std::mutex mutex_ready_; diff --git a/paddle/fluid/operators/detail/grpc_server_test.cc b/paddle/fluid/operators/detail/grpc_server_test.cc index f97f638701cfb263f28dddbdc3bc80fb16468744..22a3a8135759c04b051d4ec2d2707e6752df2de2 100644 --- a/paddle/fluid/operators/detail/grpc_server_test.cc +++ b/paddle/fluid/operators/detail/grpc_server_test.cc @@ -113,10 +113,6 @@ void StartServer() { std::thread server_thread( std::bind(&detail::AsyncGRPCServer::StartServer, g_rpc_service.get())); - // FIXME(gongwb): don't use hard time. - sleep(10); - LOG(INFO) << "got nccl id and stop server..."; - g_rpc_service->ShutDown(); server_thread.join(); } @@ -127,7 +123,7 @@ TEST(PREFETCH, CPU) { std::thread server_thread(StartServer); g_rpc_service->WaitServerReady(); - detail::RPCClient client; + detail::RPCClient* client = detail::RPCClient::GetInstance(); int port = g_rpc_service->GetSelectedPort(); std::string ep = paddle::string::Sprintf("127.0.0.1:%d", port); @@ -141,8 +137,8 @@ TEST(PREFETCH, CPU) { std::string in_var_name("ids"); std::string out_var_name("out"); - client.AsyncPrefetchVariable(ep, ctx, scope, in_var_name, out_var_name); - client.Wait(); + client->AsyncPrefetchVariable(ep, ctx, scope, in_var_name, out_var_name); + client->Wait(); auto var = scope.Var(out_var_name); auto value = var->GetMutable()->value(); auto ptr = value.mutable_data(place); @@ -152,6 +148,7 @@ TEST(PREFETCH, CPU) { } } + g_rpc_service->ShutDown(); server_thread.join(); LOG(INFO) << "begin reset"; g_rpc_service.reset(nullptr); diff --git a/paddle/fluid/operators/fetch_barrier_op.cc b/paddle/fluid/operators/fetch_barrier_op.cc index 79ec02f52094121d01c6bda2a5d99d2211893e89..1e2c93335fb9cc6b231857783743eda4e387bf39 100644 --- a/paddle/fluid/operators/fetch_barrier_op.cc +++ b/paddle/fluid/operators/fetch_barrier_op.cc @@ -45,13 +45,13 @@ class FetchBarrierOp : public framework::OperatorBase { auto rpc_client = detail::RPCClient::GetInstance(); - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); for (auto& ep : eps) { VLOG(3) << "fetch barrier, ep: " << ep; rpc_client->AsyncSendFetchBarrier(ep); } - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); } }; diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc index 71e75c25321812c849e205460217b174d80654be..66a0f87b46c6447bac7e42f0f61e3170cb1f2fdb 100644 --- a/paddle/fluid/operators/listen_and_serv_op.cc +++ b/paddle/fluid/operators/listen_and_serv_op.cc @@ -222,8 +222,8 @@ static void FillRequestCtx(detail::RequestHandler *h, framework::Scope *scope, h->SetDevCtx(dev_ctx); h->SetExecutor(executor); h->SetProgram(program); - h->SetPrefetchPreparedCtx(std::move( - std::unique_ptr(prefetch_ctx))); + h->SetPrefetchPreparedCtx( + std::unique_ptr(prefetch_ctx)); h->SetRPCServer(rpc_server); } diff --git a/paddle/fluid/operators/prefetch_op.cc b/paddle/fluid/operators/prefetch_op.cc index e0a9b24ac8978418a1a4ece62286e022bec8b834..167a06e090c1d5a15f502098e5fe4968693bcc04 100644 --- a/paddle/fluid/operators/prefetch_op.cc +++ b/paddle/fluid/operators/prefetch_op.cc @@ -53,7 +53,7 @@ class PrefetchOp : public framework::OperatorBase { VLOG(3) << "don't send no-initialied variable: " << ins[i]; } } - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); } }; diff --git a/paddle/fluid/operators/reader/open_files_op.cc b/paddle/fluid/operators/reader/open_files_op.cc index 8c0dac65dd691954b112bfa61622d399b2b9c3e5..31e5d81e55ed9703eb3a9ef2595fa2a280f1a734 100644 --- a/paddle/fluid/operators/reader/open_files_op.cc +++ b/paddle/fluid/operators/reader/open_files_op.cc @@ -26,7 +26,11 @@ class MultiFileReader : public framework::ReaderBase { MultiFileReader(const std::vector& file_names, const std::vector& dims, size_t thread_num, size_t buffer_size) - : file_names_(file_names), dims_(dims), buffer_size_(buffer_size) { + : buffer_size_(buffer_size) { + readers_.reserve(file_names.size()); + for (const std::string& f_name : file_names) { + readers_.emplace_back(CreateReaderByFileName(f_name, dims)); + } prefetchers_.resize(thread_num); StartNewScheduler(); } @@ -40,14 +44,13 @@ class MultiFileReader : public framework::ReaderBase { void StartNewScheduler(); void EndScheduler(); void ScheduleThreadFunc(); - void PrefetchThreadFunc(std::string file_name, size_t thread_idx); + void PrefetchThreadFunc(size_t reader_idx, size_t thread_idx); - std::vector file_names_; - std::vector dims_; + std::vector> readers_; std::thread scheduler_; std::vector prefetchers_; size_t buffer_size_; - reader::BlockingQueue* waiting_file_idx_; + reader::BlockingQueue* waiting_reader_idx_; reader::BlockingQueue* available_thread_idx_; reader::BlockingQueue>* buffer_; }; @@ -65,15 +68,15 @@ void MultiFileReader::ReInit() { void MultiFileReader::StartNewScheduler() { size_t thread_num = prefetchers_.size(); - waiting_file_idx_ = new reader::BlockingQueue(file_names_.size()); + waiting_reader_idx_ = new reader::BlockingQueue(readers_.size()); available_thread_idx_ = new reader::BlockingQueue(thread_num); buffer_ = new reader::BlockingQueue>( buffer_size_); - for (size_t i = 0; i < file_names_.size(); ++i) { - waiting_file_idx_->Send(i); + for (size_t i = 0; i < readers_.size(); ++i) { + waiting_reader_idx_->Send(i); } - waiting_file_idx_->Close(); + waiting_reader_idx_->Close(); for (size_t i = 0; i < thread_num; ++i) { available_thread_idx_->Send(i); } @@ -84,13 +87,13 @@ void MultiFileReader::StartNewScheduler() { void MultiFileReader::EndScheduler() { available_thread_idx_->Close(); buffer_->Close(); - waiting_file_idx_->Close(); + waiting_reader_idx_->Close(); if (scheduler_.joinable()) { scheduler_.join(); } delete buffer_; delete available_thread_idx_; - delete waiting_file_idx_; + delete waiting_reader_idx_; } void MultiFileReader::ScheduleThreadFunc() { @@ -102,12 +105,11 @@ void MultiFileReader::ScheduleThreadFunc() { if (prefetcher.joinable()) { prefetcher.join(); } - size_t file_idx; - if (waiting_file_idx_->Receive(&file_idx)) { + size_t reader_idx; + if (waiting_reader_idx_->Receive(&reader_idx)) { // Still have files to read. Start a new prefetch thread. - std::string file_name = file_names_[file_idx]; - prefetcher = std::thread([this, file_name, thread_idx] { - PrefetchThreadFunc(file_name, thread_idx); + prefetcher = std::thread([this, reader_idx, thread_idx] { + PrefetchThreadFunc(reader_idx, thread_idx); }); } else { // No more file to read. @@ -129,23 +131,22 @@ void MultiFileReader::ScheduleThreadFunc() { VLOG(5) << "MultiFileReader schedule thread terminates."; } -void MultiFileReader::PrefetchThreadFunc(std::string file_name, - size_t thread_idx) { - VLOG(5) << "The prefetch thread of file '" << file_name << "' starts."; - std::unique_ptr reader = - CreateReaderByFileName(file_name, dims_); +void MultiFileReader::PrefetchThreadFunc(size_t reader_idx, size_t thread_idx) { + VLOG(5) << "The prefetch thread of file idx '" << reader_idx << "' starts."; + std::unique_ptr& reader = readers_[reader_idx]; while (true) { std::vector ins; reader->ReadNext(&ins); if (ins.empty()) { + reader->ReInit(); break; } try { buffer_->Send(std::move(ins)); } catch (paddle::platform::EnforceNotMet e) { VLOG(5) << "WARNING: The buffer channel has been closed. The prefetch " - "thread of file '" - << file_name << "' will terminate."; + "thread of file idx '" + << reader_idx << "' will terminate."; break; } } @@ -154,7 +155,8 @@ void MultiFileReader::PrefetchThreadFunc(std::string file_name, VLOG(5) << "WARNING: The available_thread_idx_ channel has been closed. " "Fail to send thread_idx."; } - VLOG(5) << "The prefetch thread of file '" << file_name << "' terminates."; + VLOG(5) << "The prefetch thread of file idx '" << reader_idx + << "' terminates."; } class OpenFilesOp : public framework::OperatorBase { diff --git a/paddle/fluid/operators/recv_op.cc b/paddle/fluid/operators/recv_op.cc index d8ddb7b448910b5e0e6e71742eb2fdc6a225c919..49b480948a788dc22f95a4eafc6f780298d7c5f9 100644 --- a/paddle/fluid/operators/recv_op.cc +++ b/paddle/fluid/operators/recv_op.cc @@ -51,7 +51,7 @@ class RecvOp : public framework::OperatorBase { rpc_client->AsyncGetVariable(epmap[i], ctx, scope, outs[i]); } if (sync_mode) { - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); } } }; diff --git a/paddle/fluid/operators/reduce_op.h b/paddle/fluid/operators/reduce_op.h index cd19cc1460a6b4d4201f21f6f27f988c1547b88a..7df47f316c30b9eb2644677681b91023e1838548 100644 --- a/paddle/fluid/operators/reduce_op.h +++ b/paddle/fluid/operators/reduce_op.h @@ -135,15 +135,16 @@ class ReduceKernel : public framework::OpKernel { } else { int ndim = context.Input("X")->dims().size(); int rdim = context.Attr>("dim").size(); - HANDLE_DIM(6, 5); - HANDLE_DIM(6, 4); - HANDLE_DIM(6, 3); - HANDLE_DIM(6, 2); - HANDLE_DIM(6, 1); - HANDLE_DIM(5, 4); - HANDLE_DIM(5, 3); - HANDLE_DIM(5, 2); - HANDLE_DIM(5, 1); + // comments for accelerating compiling temporarily. + // HANDLE_DIM(6, 5); + // HANDLE_DIM(6, 4); + // HANDLE_DIM(6, 3); + // HANDLE_DIM(6, 2); + // HANDLE_DIM(6, 1); + // HANDLE_DIM(5, 4); + // HANDLE_DIM(5, 3); + // HANDLE_DIM(5, 2); + // HANDLE_DIM(5, 1); HANDLE_DIM(4, 3); HANDLE_DIM(4, 2); HANDLE_DIM(4, 1); diff --git a/paddle/fluid/operators/send_barrier_op.cc b/paddle/fluid/operators/send_barrier_op.cc index bcd8e81609a37cc544f5a5cc4188400c1632a668..2bc38ff4e3e6ee32bb2b0dbf4daa6d871dbaebfd 100644 --- a/paddle/fluid/operators/send_barrier_op.cc +++ b/paddle/fluid/operators/send_barrier_op.cc @@ -49,13 +49,13 @@ class SendBarrierOp : public framework::OperatorBase { VLOG(3) << "SendBarrierOp sync_mode:" << sync_mode; // need to wait before sending send_barrier message - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); if (sync_mode) { for (auto& ep : eps) { VLOG(3) << "send barrier, ep: " << ep; rpc_client->AsyncSendBatchBarrier(ep); } - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); } } }; diff --git a/paddle/fluid/operators/send_op.cc b/paddle/fluid/operators/send_op.cc index a5150f242ca3b0befafa2443f0bc466e2aea85e4..a91b1453896f951be58797071d9a5928633ccdcf 100644 --- a/paddle/fluid/operators/send_op.cc +++ b/paddle/fluid/operators/send_op.cc @@ -59,14 +59,14 @@ class SendOp : public framework::OperatorBase { VLOG(3) << "don't send no-initialied variable: " << ins[i]; } } - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); if (sync_mode) { for (auto& ep : endpoints) { VLOG(3) << "batch barrier, ep: " << ep; rpc_client->AsyncSendBatchBarrier(ep); } - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); } if (outs.size() > 0) { @@ -74,13 +74,13 @@ class SendOp : public framework::OperatorBase { VLOG(2) << "getting " << outs[i] << " from " << epmap[i]; rpc_client->AsyncGetVariable(epmap[i], ctx, scope, outs[i]); } - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); // tell pservers that current trainer have called fetch for (auto& ep : endpoints) { VLOG(2) << "send fetch barrier, ep: " << ep; rpc_client->AsyncSendFetchBarrier(ep); } - PADDLE_ENFORCE(rpc_client->Wait()); + rpc_client->Wait(); } } }; diff --git a/paddle/fluid/operators/sgd_op.h b/paddle/fluid/operators/sgd_op.h index f9e0596191d0b86686e0fa36265806111c774b38..2685ce217ee0f0d3e89f3751e96218dcd19bead4 100644 --- a/paddle/fluid/operators/sgd_op.h +++ b/paddle/fluid/operators/sgd_op.h @@ -114,7 +114,7 @@ class SGDOpKernel : public framework::OpKernel { int64_t id_index = param.Index(grad.rows()[i]); PADDLE_ENFORCE_GE(id_index, static_cast(0), "id should be in the table"); - for (size_t j = 0; j < grad_row_width; j++) { + for (int64_t j = 0; j < grad_row_width; j++) { out_data[id_index * grad_row_width + j] -= lr[0] * grad_data[i * grad_row_width + j]; } diff --git a/paddle/fluid/operators/test_send_nccl_id.cc b/paddle/fluid/operators/test_send_nccl_id.cc index a845ba2eb038fa6a8e70dfbac06c31c19dbb9e3e..eb01ac9b9072b1bbd4115d60a2101d2f1cbcf93a 100644 --- a/paddle/fluid/operators/test_send_nccl_id.cc +++ b/paddle/fluid/operators/test_send_nccl_id.cc @@ -61,7 +61,6 @@ void StartServer() { std::bind(&detail::AsyncGRPCServer::StartServer, g_rpc_service.get())); g_rpc_service->SetCond(detail::kRequestSend); - std::cout << "before WaitFanInOfSend" << std::endl; g_rpc_service->WaitBarrier(detail::kRequestSend); LOG(INFO) << "got nccl id and stop server..."; @@ -88,12 +87,12 @@ TEST(SendNcclId, GrpcServer) { int port = g_rpc_service->GetSelectedPort(); std::string ep = string::Sprintf("127.0.0.1:%d", port); - detail::RPCClient client; - LOG(INFO) << "connect to server" << ep; - client.AsyncSendVariable(ep, dev_ctx, scope, NCCL_ID_VARNAME); - client.Wait(); - client.AsyncSendBatchBarrier(ep); - client.Wait(); + detail::RPCClient* client = detail::RPCClient::GetInstance(); + LOG(INFO) << "connect to server " << ep; + client->AsyncSendVariable(ep, dev_ctx, scope, NCCL_ID_VARNAME); + client->Wait(); + client->AsyncSendBatchBarrier(ep); + client->Wait(); server_thread.join(); g_rpc_service.reset(nullptr); diff --git a/paddle/fluid/recordio/chunk.cc b/paddle/fluid/recordio/chunk.cc index 82d9aa601cf450b8f90573d6c582bb12ced7a48a..6c65d9160c059ac143ee258b2bdaed5915a1dca1 100644 --- a/paddle/fluid/recordio/chunk.cc +++ b/paddle/fluid/recordio/chunk.cc @@ -119,40 +119,56 @@ bool Chunk::Write(std::ostream& os, Compressor ct) const { } bool Chunk::Parse(std::istream& sin) { - Header hdr; - bool ok = hdr.Parse(sin); + ChunkParser parser(sin); + if (!parser.Init()) { + return false; + } + Clear(); + while (parser.HasNext()) { + Add(parser.Next()); + } + return true; +} + +ChunkParser::ChunkParser(std::istream& sin) : in_(sin) {} +bool ChunkParser::Init() { + pos_ = 0; + bool ok = header_.Parse(in_); if (!ok) { return ok; } - auto beg_pos = sin.tellg(); - uint32_t crc = Crc32Stream(sin, hdr.CompressSize()); - PADDLE_ENFORCE_EQ(hdr.Checksum(), crc); - Clear(); - sin.seekg(beg_pos, sin.beg); - std::unique_ptr compressed_stream; - switch (hdr.CompressType()) { + auto beg_pos = in_.tellg(); + uint32_t crc = Crc32Stream(in_, header_.CompressSize()); + PADDLE_ENFORCE_EQ(header_.Checksum(), crc); + in_.seekg(beg_pos, in_.beg); + + switch (header_.CompressType()) { case Compressor::kNoCompress: break; case Compressor::kSnappy: - compressed_stream.reset(new snappy::iSnappyStream(sin)); + compressed_stream_.reset(new snappy::iSnappyStream(in_)); break; default: PADDLE_THROW("Not implemented"); } + return true; +} - std::istream& stream = compressed_stream ? *compressed_stream : sin; +bool ChunkParser::HasNext() const { return pos_ < header_.NumRecords(); } - for (uint32_t i = 0; i < hdr.NumRecords(); ++i) { - uint32_t rec_len; - stream.read(reinterpret_cast(&rec_len), sizeof(uint32_t)); - std::string buf; - buf.resize(rec_len); - stream.read(&buf[0], rec_len); - PADDLE_ENFORCE_EQ(rec_len, stream.gcount()); - Add(buf); +std::string ChunkParser::Next() { + if (!HasNext()) { + return ""; } - return true; + ++pos_; + std::istream& stream = compressed_stream_ ? *compressed_stream_ : in_; + uint32_t rec_len; + stream.read(reinterpret_cast(&rec_len), sizeof(uint32_t)); + std::string buf; + buf.resize(rec_len); + stream.read(&buf[0], rec_len); + PADDLE_ENFORCE_EQ(rec_len, stream.gcount()); + return buf; } - } // namespace recordio } // namespace paddle diff --git a/paddle/fluid/recordio/chunk.h b/paddle/fluid/recordio/chunk.h index 71a1556a33bfa5c937d6a799d2818cd5a5ef2094..cfb954a591679c2d2c4f42ecd99ca0c8bd1084cf 100644 --- a/paddle/fluid/recordio/chunk.h +++ b/paddle/fluid/recordio/chunk.h @@ -13,6 +13,7 @@ // limitations under the License. #pragma once +#include #include #include @@ -53,9 +54,20 @@ class Chunk { DISABLE_COPY_AND_ASSIGN(Chunk); }; -size_t CompressData(const char* in, size_t in_length, Compressor ct, char* out); +class ChunkParser { + public: + explicit ChunkParser(std::istream& sin); + + bool Init(); + std::string Next(); + bool HasNext() const; -void DeflateData(const char* in, size_t in_length, Compressor ct, char* out); + private: + Header header_; + uint32_t pos_{0}; + std::istream& in_; + std::unique_ptr compressed_stream_; +}; } // namespace recordio } // namespace paddle diff --git a/paddle/fluid/recordio/scanner.cc b/paddle/fluid/recordio/scanner.cc index 88b4d4001bc1b6dc935a9aabc2db5edfb55a60e4..06a13e6c5b6ea76456e231e3f7b1eb33492b16ea 100644 --- a/paddle/fluid/recordio/scanner.cc +++ b/paddle/fluid/recordio/scanner.cc @@ -22,35 +22,33 @@ namespace paddle { namespace recordio { Scanner::Scanner(std::unique_ptr &&stream) - : stream_(std::move(stream)) { + : stream_(std::move(stream)), parser_(*stream_) { Reset(); } -Scanner::Scanner(const std::string &filename) { - stream_.reset(new std::ifstream(filename)); +Scanner::Scanner(const std::string &filename) + : stream_(new std::ifstream(filename)), parser_(*stream_) { Reset(); } void Scanner::Reset() { stream_->clear(); stream_->seekg(0, std::ios::beg); - ParseNextChunk(); + parser_.Init(); } std::string Scanner::Next() { - PADDLE_ENFORCE(!eof_, "StopIteration"); - auto rec = cur_chunk_.Record(offset_++); - if (offset_ == cur_chunk_.NumRecords()) { - ParseNextChunk(); + if (stream_->eof()) { + return ""; } - return rec; -} -void Scanner::ParseNextChunk() { - eof_ = !cur_chunk_.Parse(*stream_); - offset_ = 0; + auto res = parser_.Next(); + if (!parser_.HasNext() && HasNext()) { + parser_.Init(); + } + return res; } -bool Scanner::HasNext() const { return !eof_; } +bool Scanner::HasNext() const { return !stream_->eof(); } } // namespace recordio } // namespace paddle diff --git a/paddle/fluid/recordio/scanner.h b/paddle/fluid/recordio/scanner.h index 34f1b0c78d6b5af6072a993579e1866d38c6d009..0d885dd87a2f819ba1d9f76259196f6cfff0b2a0 100644 --- a/paddle/fluid/recordio/scanner.h +++ b/paddle/fluid/recordio/scanner.h @@ -37,11 +37,7 @@ class Scanner { private: std::unique_ptr stream_; - Chunk cur_chunk_; - size_t offset_; - bool eof_; - - void ParseNextChunk(); + ChunkParser parser_; }; } // namespace recordio } // namespace paddle diff --git a/paddle/scripts/paddle_build.sh b/paddle/scripts/paddle_build.sh index 8eeea1805d8610f6f27f422337f3526688b73de3..113d02ce4865877d9385da31d996c0985c348716 100755 --- a/paddle/scripts/paddle_build.sh +++ b/paddle/scripts/paddle_build.sh @@ -145,19 +145,17 @@ function check_style() { trap 'abort' 0 set -e - # install glide - curl https://glide.sh/get | bash - eval "$(GIMME_GO_VERSION=1.8.3 gimme)" + if [ -x "$(command -v gimme)" ]; then + eval "$(GIMME_GO_VERSION=1.8.3 gimme)" + fi # set up go environment for running gometalinter mkdir -p $GOPATH/src/github.com/PaddlePaddle/ ln -sf ${PADDLE_ROOT} $GOPATH/src/github.com/PaddlePaddle/Paddle - cd $GOPATH/src/github.com/PaddlePaddle/Paddle/go; glide install; cd - - - go get github.com/alecthomas/gometalinter - gometalinter --install + mkdir -p ./build/go + cp go/glide.* build/go + cd build/go; glide install; cd - - cd ${PADDLE_ROOT} export PATH=/usr/bin:$PATH pre-commit install clang-format --version diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index 60f8cbbfa714e8500606fdf68b7a23e1ffb9d37a..69cfde852dd087bb9192da1f7582f925582dbce4 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -71,6 +71,7 @@ __all__ = [ 'cumsum', 'scatter', 'sum', + 'polygon_box_transform', 'shape', ] + __activations__ diff --git a/python/paddle/fluid/recordio_writer.py b/python/paddle/fluid/recordio_writer.py index 5accaacd5361165d30b92c71ae4fd62e23e44e07..8d48e9abef0fb9861284c6302b30efb0e3994989 100644 --- a/python/paddle/fluid/recordio_writer.py +++ b/python/paddle/fluid/recordio_writer.py @@ -12,10 +12,12 @@ # See the License for the specific language governing permissions and # limitations under the License. +import os import core import contextlib - -__all__ = ['convert_reader_to_recordio_file'] +__all__ = [ + 'convert_reader_to_recordio_file', 'convert_reader_to_recordio_files' +] @contextlib.contextmanager @@ -46,3 +48,36 @@ def convert_reader_to_recordio_file( writer.complete_append_tensor() counter += 1 return counter + + +def convert_reader_to_recordio_files( + filename, + batch_per_file, + reader_creator, + feeder, + compressor=core.RecordIOWriter.Compressor.Snappy, + max_num_records=1000, + feed_order=None): + if feed_order is None: + feed_order = feeder.feed_names + f_name, f_ext = os.path.splitext(filename) + assert (f_ext == ".recordio") + + lines = [] + f_idx = 0 + counter = 0 + for idx, batch in enumerate(reader_creator()): + lines.append(batch) + if idx >= batch_per_file and idx % batch_per_file == 0: + filename = "%s-%05d%s" % (f_name, f_idx, f_ext) + with create_recordio_writer(filename, compressor, + max_num_records) as writer: + for l in lines: + res = feeder.feed(l) + for each in feed_order: + writer.append_tensor(res[each]) + writer.complete_append_tensor() + counter += 1 + lines = [] + f_idx += 1 + return counter diff --git a/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py b/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py index de3906fc6a005181b0ab04a846eb2e7ce14004c2..b3117cf2e5e0513089e5e1146d49702fcc8b7ba6 100644 --- a/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py +++ b/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py @@ -48,13 +48,15 @@ def linear(): return avg_loss +def optimizer_func(): + return fluid.optimizer.SGD(learning_rate=0.001) + + def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = fluid.Trainer( - train_func=train_program, - place=place, - optimizer=fluid.optimizer.SGD(learning_rate=0.001)) + train_func=train_program, place=place, optimizer_func=optimizer_func) def event_handler(event): if isinstance(event, fluid.EndStepEvent): diff --git a/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py b/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py index 63dc1b6ce30974ede22a3f7772b76bf207bbae39..2df3da9cca7042222317de626460909f018cb107 100644 --- a/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py +++ b/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py @@ -85,6 +85,10 @@ def train_network(): return [avg_cost, accuracy] +def optimizer_func(): + return fluid.optimizer.Adam(learning_rate=0.001) + + def train(use_cuda, train_program, params_dirname): BATCH_SIZE = 128 EPOCH_NUM = 1 @@ -111,9 +115,7 @@ def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = fluid.Trainer( - train_func=train_program, - optimizer=fluid.optimizer.Adam(learning_rate=0.001), - place=place) + train_func=train_program, optimizer_func=optimizer_func, place=place) trainer.train( reader=train_reader, diff --git a/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py b/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py index 0bf8f265a1c1b11364ecfa11061af183ce20d51e..224cca417e717bbcc54b58be6ac0219be207dea3 100644 --- a/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py +++ b/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py @@ -64,6 +64,10 @@ def train_network(): return [avg_cost, accuracy] +def optimizer_func(): + return fluid.optimizer.Adam(learning_rate=0.001) + + def train(use_cuda, train_program, params_dirname): BATCH_SIZE = 128 train_reader = paddle.batch( @@ -88,9 +92,7 @@ def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = fluid.Trainer( - train_func=train_program, - place=place, - optimizer=fluid.optimizer.Adam(learning_rate=0.001)) + train_func=train_program, place=place, optimizer_func=optimizer_func) trainer.train( reader=train_reader, diff --git a/python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py b/python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py index 8cce398ff33695dc15ae6fb01a887194596af001..0ccb3a39e02ea0c24bdfe01c5eba73b92da88a04 100755 --- a/python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py +++ b/python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py @@ -141,12 +141,16 @@ def train_program(): return [avg_cost] +def optimize_func(): + return fluid.optimizer.SGD(learning_rate=fluid.layers.exponential_decay( + learning_rate=0.01, decay_steps=100000, decay_rate=0.5, staircase=True)) + + def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - optimizer = fluid.optimizer.SGD(learning_rate=0.01) trainer = fluid.Trainer( - train_func=train_program, place=place, optimizer=optimizer) + train_func=train_program, place=place, optimizer_func=optimize_func) feed_order = [ 'word_data', 'ctx_n2_data', 'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data', @@ -245,7 +249,7 @@ def infer(use_cuda, inference_program, params_dirname): }, return_numpy=False) - print("infer results: ", np.array(results[0])) + print("infer results: ", np.array(results[0]).shape) def main(use_cuda): diff --git a/python/paddle/fluid/tests/book/high-level-api/machine_translation/test_machine_translation.py b/python/paddle/fluid/tests/book/high-level-api/machine_translation/test_machine_translation.py index d4b723d3e6b619709ab3dc76a32ae87f1cdec274..c4b37df3a09f93fe965ae28ce783f06f5018020d 100644 --- a/python/paddle/fluid/tests/book/high-level-api/machine_translation/test_machine_translation.py +++ b/python/paddle/fluid/tests/book/high-level-api/machine_translation/test_machine_translation.py @@ -158,6 +158,13 @@ def train_program(is_sparse): return avg_cost +def optimizer_func(): + return fluid.optimizer.Adagrad( + learning_rate=1e-4, + regularization=fluid.regularizer.L2DecayRegularizer( + regularization_coeff=0.1)) + + def train(use_cuda, is_sparse, is_local=True): EPOCH_NUM = 1 @@ -182,11 +189,8 @@ def train(use_cuda, is_sparse, is_local=True): trainer = fluid.Trainer( train_func=partial(train_program, is_sparse), - optimizer=fluid.optimizer.Adagrad( - learning_rate=1e-4, - regularization=fluid.regularizer.L2DecayRegularizer( - regularization_coeff=0.1)), - place=place) + place=place, + optimizer_func=optimizer_func) trainer.train( reader=train_reader, diff --git a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py index 03439cbd37671b4727879bf3d0793f016f55247a..9a09db25dc0e2c71772aa06e6d0cf993321612e4 100644 --- a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py +++ b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py @@ -57,14 +57,17 @@ def train_program(): return [avg_cost, acc] +def optimizer_func(): + return fluid.optimizer.Adam(learning_rate=0.001) + + def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - optimizer = fluid.optimizer.Adam(learning_rate=0.001) trainer = fluid.Trainer( train_func=train_program, place=place, - optimizer=optimizer, + optimizer_func=optimizer_func, parallel=True) def event_handler(event): diff --git a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py index 89bbd21bea7d64a8dd6fc32829b6addb680da62e..b2b544e791d7ea35ff7d2c9a2dce7ce7f5680f38 100644 --- a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py +++ b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py @@ -44,12 +44,15 @@ def train_program(): return [avg_cost, acc] +def optimizer_func(): + return fluid.optimizer.Adam(learning_rate=0.001) + + def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - optimizer = fluid.optimizer.Adam(learning_rate=0.001) trainer = fluid.Trainer( - train_func=train_program, place=place, optimizer=optimizer) + train_func=train_program, place=place, optimizer_func=optimizer_func) def event_handler(event): if isinstance(event, fluid.EndEpochEvent): diff --git a/python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py b/python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py index dfc7325acf23176c05fe42761b9997b98d23372a..090c11ce1e79201f0d65d3540527791ab2191d4a 100644 --- a/python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py +++ b/python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py @@ -155,12 +155,15 @@ def train_program(): return [avg_cost, scale_infer] +def optimizer_func(): + return fluid.optimizer.SGD(learning_rate=0.2) + + def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - optimizer = fluid.optimizer.SGD(learning_rate=0.2) trainer = fluid.Trainer( - train_func=train_program, place=place, optimizer=optimizer) + train_func=train_program, place=place, optimizer_func=optimizer_func) feed_order = [ 'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id', diff --git a/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py b/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py index 11e9fd1bec1450f6753dbe38c7014090d6e136b6..9b61f7a00ce5e2a08c2105fb7f50e6868ef25df3 100644 --- a/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py +++ b/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py @@ -64,15 +64,18 @@ def train_program(word_dict): return [avg_cost, accuracy] +def optimizer_func(): + return fluid.optimizer.Adagrad(learning_rate=0.002) + + def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - optimizer = fluid.optimizer.Adagrad(learning_rate=0.002) word_dict = paddle.dataset.imdb.word_dict() trainer = fluid.Trainer( train_func=partial(train_program, word_dict), place=place, - optimizer=optimizer) + optimizer_func=optimizer_func) def event_handler(event): if isinstance(event, fluid.EndEpochEvent): diff --git a/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py b/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py index 90757d54f99715163518ce5a094e6ba3a67efed3..aa7c567b4d66ba07c26d54436fb305011cfeccf2 100644 --- a/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py +++ b/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py @@ -79,15 +79,18 @@ def train_program(word_dict): return [avg_cost, accuracy] +def optimizer_func(): + return fluid.optimizer.Adagrad(learning_rate=0.002) + + def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - optimizer = fluid.optimizer.Adagrad(learning_rate=0.002) word_dict = paddle.dataset.imdb.word_dict() trainer = fluid.Trainer( train_func=partial(train_program, word_dict), place=place, - optimizer=optimizer) + optimizer_func=optimizer_func) def event_handler(event): if isinstance(event, fluid.EndEpochEvent): diff --git a/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py b/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py index 52b7d4a83779d01936afb3d9d1e4864b05d55b5a..113dda88ca974c9e6241f127091bd96fb2af4a70 100644 --- a/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py +++ b/python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py @@ -71,15 +71,18 @@ def train_program(word_dict): return [avg_cost, accuracy] +def optimizer_func(): + return fluid.optimizer.Adagrad(learning_rate=0.002) + + def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - optimizer = fluid.optimizer.Adagrad(learning_rate=0.002) word_dict = paddle.dataset.imdb.word_dict() trainer = fluid.Trainer( train_func=partial(train_program, word_dict), place=place, - optimizer=optimizer) + optimizer_func=optimizer_func) def event_handler(event): if isinstance(event, fluid.EndEpochEvent): diff --git a/python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py b/python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py index eeb8e67087334ea96aab9cdb6272e34e2eb99939..ba44f72d9b03c3a44560a8a30cba2253256314ef 100644 --- a/python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py +++ b/python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py @@ -80,6 +80,10 @@ def train_program(is_sparse): return avg_cost +def optimizer_func(): + return fluid.optimizer.SGD(learning_rate=0.001) + + def train(use_cuda, train_program, params_dirname): train_reader = paddle.batch( paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) @@ -104,9 +108,7 @@ def train(use_cuda, train_program, params_dirname): sys.exit("got NaN loss, training failed.") trainer = fluid.Trainer( - train_func=train_program, - optimizer=fluid.optimizer.SGD(learning_rate=0.001), - place=place) + train_func=train_program, optimizer_func=optimizer_func, place=place) trainer.train( reader=train_reader, diff --git a/python/paddle/fluid/tests/book_memory_optimization/test_memopt_machine_translation.py b/python/paddle/fluid/tests/book_memory_optimization/test_memopt_machine_translation.py index a1ca6d981fafb401985d03e9f2d63d1cb41b21b5..fa696acdfa9058af14f0bd34ce1a2980db5aeafc 100644 --- a/python/paddle/fluid/tests/book_memory_optimization/test_memopt_machine_translation.py +++ b/python/paddle/fluid/tests/book_memory_optimization/test_memopt_machine_translation.py @@ -80,21 +80,6 @@ def encoder_decoder(): return rnn() -def to_lodtensor(data, place): - seq_lens = [len(seq) for seq in data] - cur_len = 0 - lod = [cur_len] - for l in seq_lens: - cur_len += l - lod.append(cur_len) - flattened_data = np.concatenate(data, axis=0).astype("int64") - flattened_data = flattened_data.reshape([len(flattened_data), 1]) - res = core.LoDTensor() - res.set(flattened_data, place) - res.set_lod([lod]) - return res - - def main(): rnn_out = encoder_decoder() label = layers.data( @@ -122,18 +107,21 @@ def main(): exe.run(framework.default_startup_program()) + feed_order = [ + 'src_word_id', 'target_language_word', 'target_language_next_word' + ] + + feed_list = [ + fluid.default_main_program().global_block().var(var_name) + for var_name in feed_order + ] + feeder = fluid.DataFeeder(feed_list, place) + batch_id = 0 for pass_id in xrange(10): for data in train_data(): - word_data = to_lodtensor(map(lambda x: x[0], data), place) - trg_word = to_lodtensor(map(lambda x: x[1], data), place) - trg_word_next = to_lodtensor(map(lambda x: x[2], data), place) outs = exe.run(fluid.default_main_program(), - feed={ - 'src_word_id': word_data, - 'target_language_word': trg_word, - 'target_language_next_word': trg_word_next - }, + feed=feeder.feed(data), fetch_list=[avg_cost]) avg_cost_val = np.array(outs[0]) print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + diff --git a/python/paddle/fluid/tests/unittests/CMakeLists.txt b/python/paddle/fluid/tests/unittests/CMakeLists.txt index fead95ffdab25c7ea96b7ef223efc0abf7eea3e3..c33539f6b50a3dc079e2a1e7820a63f264457b95 100644 --- a/python/paddle/fluid/tests/unittests/CMakeLists.txt +++ b/python/paddle/fluid/tests/unittests/CMakeLists.txt @@ -48,5 +48,7 @@ foreach(TEST_OP ${TEST_OPS}) endforeach(TEST_OP) py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR} SERIAL) py_test_modules(test_dist_train MODULES test_dist_train SERIAL) -# tests that need to be done in fixed timeout -set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 20) +# FIXME(Yancey1989): this test would cost much more time on CUDAPlace +# since load cudnn libraries, so we use a longer timeout to make this +# unit test stability. +set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 30) diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index ca08fd7fc8e452b36a984ee5db3832e65e97ef78..621a450fa6a6a8f47e3f1c1de609614b2359c33b 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -379,6 +379,14 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(output) print(str(program)) + def test_polygon_box_transform(self): + program = Program() + with program_guard(program): + x = layers.data(name='x', shape=[8, 4, 4], dtype="float32") + output = layers.polygon_box_transform(input=x) + self.assertIsNotNone(output) + print(str(program)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py b/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py index cf89f9d0ebf6200933e539ef7fa8cbdc8f6db058..1226027ddc9c0b9dce9cedc5d1d20c0708647b6f 100644 --- a/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py +++ b/python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py @@ -23,7 +23,7 @@ from multiprocessing import Process from op_test import OpTest -def run_pserver(use_cuda, sync_mode, ip, port, trainer_count, trainer_id): +def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id): x = fluid.layers.data(name='x', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) y = fluid.layers.data(name='y', shape=[1], dtype='float32') @@ -39,15 +39,8 @@ def run_pserver(use_cuda, sync_mode, ip, port, trainer_count, trainer_id): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) - port = os.getenv("PADDLE_INIT_PORT", port) - pserver_ips = os.getenv("PADDLE_INIT_PSERVERS", ip) # ip,ip... - eplist = [] - for ip in pserver_ips.split(","): - eplist.append(':'.join([ip, port])) - pserver_endpoints = ",".join(eplist) # ip:port,ip:port... - trainers = int(os.getenv("TRAINERS", trainer_count)) - current_endpoint = os.getenv("POD_IP", ip) + ":" + port - trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID", trainer_id)) + pserver_endpoints = ip + ":" + port + current_endpoint = ip + ":" + port t = fluid.DistributeTranspiler() t.transpile( trainer_id, @@ -62,47 +55,51 @@ def run_pserver(use_cuda, sync_mode, ip, port, trainer_count, trainer_id): class TestListenAndServOp(OpTest): def setUp(self): - self.sleep_time = 5 + self.ps_timeout = 5 self.ip = "127.0.0.1" self.port = "6173" - self.trainer_count = 1 + self.trainers = 1 self.trainer_id = 1 - def _raise_signal(self, parent_pid, raised_signal): - time.sleep(self.sleep_time) - ps_command = subprocess.Popen( - "ps -o pid --ppid %d --noheaders" % parent_pid, - shell=True, - stdout=subprocess.PIPE) - ps_output = ps_command.stdout.read() - retcode = ps_command.wait() - assert retcode == 0, "ps command returned %d" % retcode - - for pid_str in ps_output.split("\n")[:-1]: - try: - os.kill(int(pid_str), raised_signal) - except Exception: - continue - def _start_pserver(self, use_cuda, sync_mode): p = Process( target=run_pserver, - args=(use_cuda, sync_mode, self.ip, self.port, self.trainer_count, + args=(use_cuda, sync_mode, self.ip, self.port, self.trainers, self.trainer_id)) p.start() + return p.pid + + def _wait_ps_ready(self, pid): + retry_times = self.ps_timeout + while True: + assert retry_times >= 0, "wait ps ready failed" + time.sleep(0.5) + try: + # the listen_and_serv_op would touch a file which contains the listen port + # on the /tmp directory until it was ready to process all the RPC call. + os.stat("/tmp/paddle.%d.port" % pid) + return + except os.error: + retry_times -= 1 + + def test_rpc_interfaces(self): + # TODO(Yancey1989): need to make sure the rpc interface correctly. + pass def test_handle_signal_in_serv_op(self): # run pserver on CPU in sync mode - self._start_pserver(False, True) + pid = self._start_pserver(False, True) + self._wait_ps_ready(pid) - # raise SIGINT to pserver - self._raise_signal(os.getpid(), signal.SIGINT) + # raise SIGTERM to pserver + os.kill(pid, signal.SIGTERM) # run pserver on CPU in async mode - self._start_pserver(False, False) + pid = self._start_pserver(False, False) + self._wait_ps_ready(pid) # raise SIGTERM to pserver - self._raise_signal(os.getpid(), signal.SIGTERM) + os.kill(pid, signal.SIGTERM) if __name__ == '__main__': diff --git a/python/paddle/fluid/trainer.py b/python/paddle/fluid/trainer.py index 7da123dd92ed9d111d68cd70efb8ce1493452609..cdacb419863518cc0606903ed8eb79f0d2bc9e40 100644 --- a/python/paddle/fluid/trainer.py +++ b/python/paddle/fluid/trainer.py @@ -90,13 +90,13 @@ class Trainer(object): Args: train_func(callable): A function which will return loss. The loss must be a scalar. - optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer + optimizer_func(callable): A function that returns an Optimizer object. place: The device place of this trainer. """ def __init__(self, train_func, - optimizer, + optimizer_func, param_path=None, place=None, parallel=False): @@ -105,8 +105,6 @@ class Trainer(object): # 1. we need to generate a framework.Program by calling # program_func. Reference: fluid.program_guard in # test_word2vec.py - if not isinstance(optimizer, opt_module.Optimizer): - raise TypeError("The optimizer should be an instance of Optimizer") self.scope = core.Scope() @@ -118,11 +116,14 @@ class Trainer(object): self.train_func_outputs = program_func_outs if isinstance( program_func_outs, list) else [program_func_outs] self.test_program = self.train_program.clone() + + # The fisrt element of program_func_outs is loss. + loss = self.train_func_outputs[0] + + optimizer = optimizer_func() if not isinstance(optimizer, opt_module.Optimizer): raise TypeError( "The optimizer should be an instance of Optimizer") - # The fisrt element of program_func_outs is loss. - loss = self.train_func_outputs[0] optimize_ops, params_grads = optimizer.minimize(loss) self.place = check_and_get_place(place) diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index da001add8e12fab8c8a09ede8ef27cbbf653865e..27992df462ffd00ddf445538cc508b4232712481 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -187,12 +187,17 @@ class DistributeTranspiler: param_list = [] grad_list = [] + param_grad_set = set() for p, g in self.params_grads: # skip parameter marked not trainable if type(p) == Parameter and p.trainable == False: continue - param_list.append(p) - grad_list.append(g) + if p.name not in param_grad_set: + param_list.append(p) + param_grad_set.add(p.name) + if g.name not in param_grad_set: + grad_list.append(g) + param_grad_set.add(g.name) self._update_dist_lookup_table_vars(param_list, grad_list, self.params_grads) @@ -829,6 +834,9 @@ class DistributeTranspiler: if not block_map.has_key(varname): block_map[varname] = [] block_map[varname].append((long(offset), long(size))) + # Do not remove this important debug message: + print("block map: %s" % block_map) + for varname, splited in block_map.iteritems(): orig_var = program.global_block().var(varname) if len(splited) == 1: diff --git a/tools/codestyle/.gitignore b/tools/codestyle/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..0d20b6487c61e7d1bde93acf4a14b7a89083a16d --- /dev/null +++ b/tools/codestyle/.gitignore @@ -0,0 +1 @@ +*.pyc