From 23c32aa884603899a4301305a5a472f6f35352e9 Mon Sep 17 00:00:00 2001 From: Zhou Wei <1183042833@qq.com> Date: Tue, 27 Jul 2021 15:55:04 +0800 Subject: [PATCH] add args check for learning rate scheduler API (#34394) --- python/paddle/optimizer/lr.py | 16 ++++++++++++---- 1 file changed, 12 insertions(+), 4 deletions(-) diff --git a/python/paddle/optimizer/lr.py b/python/paddle/optimizer/lr.py index db4e80d8d9..7cea2645fa 100644 --- a/python/paddle/optimizer/lr.py +++ b/python/paddle/optimizer/lr.py @@ -570,7 +570,7 @@ class PolynomialDecay(LRScheduler): Args: learning_rate (float): The initial learning rate. It is a python float number. - decay_steps(int): The decay step size. It determines the decay cycle. + decay_steps(int): The decay step size. It determines the decay cycle. It must be a positive integer. end_lr(float, optional): The minimum final learning rate. Default: 0.0001. power(float, optional): Power of polynomial. Default: 1.0. cycle(bool, optional): Whether the learning rate rises again. If True, then the learning rate will rise when it decrease @@ -639,6 +639,8 @@ class PolynomialDecay(LRScheduler): cycle=False, last_epoch=-1, verbose=False): + assert decay_steps > 0 and isinstance( + decay_steps, int), " 'decay_steps' must be a positive integer." self.decay_steps = decay_steps self.end_lr = end_lr self.power = power @@ -688,7 +690,7 @@ class LinearWarmup(LRScheduler): Args: learning_rate (float|LRScheduler): The learning rate after warm-up. It is a python float number or any subclass of ``LRScheduler`` . - warmup_steps (int): total steps of warm up. + warmup_steps (int): total steps of warm up. It must be a positive integer. start_lr (float): Initial learning rate of warm up. end_lr (float): Final learning rate of warm up. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. @@ -763,6 +765,8 @@ class LinearWarmup(LRScheduler): "the type of learning_rate should be [int, float or LRScheduler], the current type is {}". format(learning_rate)) self.learning_rate = learning_rate + assert warmup_steps > 0 and isinstance( + warmup_steps, int), " 'warmup_steps' must be a positive integer." self.warmup_steps = warmup_steps self.start_lr = start_lr self.end_lr = end_lr @@ -1010,7 +1014,7 @@ class StepDecay(LRScheduler): Args: learning_rate (float): The initial learning rate. It is a python float number. - step_size (int): the interval to update. + step_size (int): the interval to update. It must be a positive integer. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. @@ -1083,6 +1087,8 @@ class StepDecay(LRScheduler): if gamma >= 1.0: raise ValueError('gamma should be < 1.0.') + assert step_size > 0 and isinstance( + step_size, int), " 'step_size' must be a positive integer." self.step_size = step_size self.gamma = gamma super(StepDecay, self).__init__(learning_rate, last_epoch, verbose) @@ -1415,7 +1421,7 @@ class CosineAnnealingDecay(LRScheduler): Args: learning_rate (float): The initial learning rate, that is :math:`\eta_{max}` . It can be set to python float or int number. - T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate. + T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate. It must be a positive integer. eta_min (float|int, optional): Minimum learning rate, that is :math:`\eta_{min}` . Default: 0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . @@ -1487,6 +1493,8 @@ class CosineAnnealingDecay(LRScheduler): raise TypeError( "The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received %s." % type(eta_min)) + assert T_max > 0 and isinstance( + T_max, int), " 'T_max' must be a positive integer." self.T_max = T_max self.eta_min = float(eta_min) super(CosineAnnealingDecay, self).__init__(learning_rate, last_epoch, -- GitLab