From 229565303f71e5acb674cdb013ea1c66cea46643 Mon Sep 17 00:00:00 2001 From: minqiyang Date: Sat, 29 Dec 2018 23:44:54 +0800 Subject: [PATCH] Polish PyLayers test=develop --- python/paddle/fluid/imperative/layers.py | 14 +- python/paddle/fluid/imperative/nn.py | 38 ++--- python/paddle/fluid/layers/nn.py | 132 ++++++------------ .../fluid/tests/unittests/test_imperative.py | 2 +- .../unittests/test_imperative_optimizer.py | 5 +- 5 files changed, 67 insertions(+), 124 deletions(-) diff --git a/python/paddle/fluid/imperative/layers.py b/python/paddle/fluid/imperative/layers.py index c95b89a2c4..d78d61eb3f 100644 --- a/python/paddle/fluid/imperative/layers.py +++ b/python/paddle/fluid/imperative/layers.py @@ -24,19 +24,7 @@ __all__ = ['PyLayer'] class PyLayer(core.Layer): - def __init__(self, - dtype=core.VarDesc.VarType.FP32, - param_attr=None, - bias_attr=None, - name=None): - from ..layer_helper import LayerHelper - self._helper = LayerHelper( - type(self).__name__, - param_attr=param_attr, - bias_attr=bias_attr, - dtype=dtype, - name=name) - + def __init__(self, dtype=core.VarDesc.VarType.FP32, name=None): self._once_built = False self._dtype = dtype diff --git a/python/paddle/fluid/imperative/nn.py b/python/paddle/fluid/imperative/nn.py index 8757670ef8..4f30417e99 100644 --- a/python/paddle/fluid/imperative/nn.py +++ b/python/paddle/fluid/imperative/nn.py @@ -46,8 +46,15 @@ class Conv2D(layers.PyLayer): name=None, dtype=core.VarDesc.VarType.FP32): assert param_attr is not False, "param_attr should not be False here." - super(Conv2D, self).__init__( - param_attr=param_attr, bias_attr=bias_attr, name=name, dtype=dtype) + super(Conv2D, self).__init__(name=name, dtype=dtype) + + from ..layer_helper import LayerHelper + self._helper = LayerHelper( + type(self).__name__, + param_attr=param_attr, + bias_attr=bias_attr, + dtype=dtype, + name=name) self._groups = groups self._stride = utils.convert_to_list(stride, 2, 'stride') @@ -163,6 +170,9 @@ class Pool2D(layers.PyLayer): super(Pool2D, self).__init__(name=name, dtype=dtype) + from ..layer_helper import LayerHelper + self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name) + self._pool_type = pool_type self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') self._pool_padding = utils.convert_to_list(pool_padding, 2, @@ -197,32 +207,22 @@ class Pool2D(layers.PyLayer): class FC(layers.PyLayer): def __init__(self, - size_in, - size_out, - num_flatten_dims=1, + size, param_attr=None, + num_flatten_dims=1, dtype=core.VarDesc.VarType.FP32): - super(FC, self).__init__(param_attr=param_attr, dtype=dtype) - - self._size_in = size_in - self._size_out = size_out + super(FC, self).__init__() + self._size = size self._num_flatten_dims = num_flatten_dims self._dtype = dtype - if self._size_in != -1: - self._w = self._helper.create_parameter( - attr=self._helper.param_attr, - shape=[size_in, size_out], - dtype=self._dtype, - is_bias=False) + from ..layer_helper import LayerHelper + self._helper = LayerHelper('FC', param_attr=param_attr) def _build_once(self, input): - if self._size_in != -1: - return - input_shape = input.shape param_shape = [ reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) - ] + [self._size_out] + ] + [self._size] self._w = self._helper.create_parameter( attr=self._helper.param_attr, shape=param_shape, diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 81b2148989..9572fcb385 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -502,22 +502,22 @@ def lstm(input, If Device is GPU, This op will use cudnn LSTM implementation A four-gate Long Short-Term Memory network with no peephole connections. - In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, + In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations: .. math:: - - i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) - - f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) - - o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) - + + i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) + + f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) + + o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) + \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) - - c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t} - - h_t &= o_t \odot tanh(c_t) + + c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t} + + h_t &= o_t \odot tanh(c_t) - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix of weights from the input gate to the input) @@ -531,19 +531,19 @@ def lstm(input, - :math:`\\tilde{c_t}` is also called candidate hidden state, which is computed based on the current input and the previous hidden state. - Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication, + Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication, X represensts a matrix multiplication Args: input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size ) - init_h(Variable): The initial hidden state of the LSTM + init_h(Variable): The initial hidden state of the LSTM This is a tensor with shape ( num_layers x batch_size x hidden_size) if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size) init_c(Variable): The initial cell state of the LSTM. This is a tensor with shape ( num_layers x batch_size x hidden_size ) if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size) - max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len + max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len hidden_size (int): hidden size of the LSTM num_layers (int): total layers number of the LSTM dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps @@ -558,18 +558,18 @@ def lstm(input, Returns: - rnn_out(Tensor),last_h(Tensor),last_c(Tensor): - + rnn_out(Tensor),last_h(Tensor),last_c(Tensor): + Three tensors, rnn_out, last_h, last_c: - + - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \ if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2) - last_h is the hidden state of the last step of LSTM \ shape is ( num_layers x batch_size x hidden_size ) \ - if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size) + if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size) - last_c(Tensor): the cell state of the last step of LSTM \ shape is ( num_layers x batch_size x hidden_size ) \ - if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size) + if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size) Examples: @@ -1255,7 +1255,7 @@ def dropout(x, (mask is a tensor same shape with input, value is 0 or 1 ratio of 0 is dropout_prob) - + Returns: Variable: A tensor variable is the shape with `x`. @@ -1346,10 +1346,10 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex): ValueError: 1. the 1st dimension of ``input`` and ``label`` are not equal. - + 2. when ``soft_label == True``, and the 2nd dimension of ``input`` and ``label`` are not equal. - + 3. when ``soft_label == False``, and the 2nd dimension of ``label`` is not 1. @@ -1471,7 +1471,7 @@ def chunk_eval(input, This function computes and outputs the precision, recall and F1-score of chunk detection. - For some basics of chunking, please refer to + For some basics of chunking, please refer to `Chunking with Support Vector Machines `_ . ChunkEvalOp computes the precision, recall, and F1-score of chunk detection, @@ -2306,7 +2306,7 @@ def sequence_slice(input, offset, length, name=None): out.lod = [[2, 1]], out.dims = (3, 2). - Note: + Note: The first dimension size of **input**, **offset** and **length** should be equal. The **offset** should start from 0. @@ -4678,7 +4678,7 @@ def ctc_greedy_decoder(input, blank, name=None): [0.5, 0.1, 0.3, 0.1]] input.lod = [[4, 4]] - + Computation: step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get: @@ -4712,7 +4712,7 @@ def ctc_greedy_decoder(input, blank, name=None): Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \ 'Lp' is the sum if all output sequences' length. If all the sequences \ in result were empty, the result LoDTensor will be [-1] with \ - LoD [[]] and dims [1, 1]. + LoD [[]] and dims [1, 1]. Examples: .. code-block:: python @@ -5065,7 +5065,7 @@ def hsigmoid(input, """ The hierarchical sigmoid operator is used to accelerate the training process of language model. This operator organizes the classes into a - complete binary tree, or you can use is_custom to pass your own tree to + complete binary tree, or you can use is_custom to pass your own tree to implement hierarchical. Each leaf node represents a class(a word) and each internal node acts as a binary classifier. For each word there's a unique path from root to it's leaf node, hsigmoid calculate the cost for each @@ -5082,7 +5082,7 @@ def hsigmoid(input, 2. build a dict to store word_id -> word's leaf to root path, we call it path_table. 3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code means label of each binary classification, using 1 indicate true, 0 indicate false. - 4. now, each word should has its path and code along the path, you can pass a batch of path and code + 4. now, each word should has its path and code along the path, you can pass a batch of path and code related to the same batch of inputs. Args: @@ -5091,8 +5091,8 @@ def hsigmoid(input, and :math:`D` is the feature size. label (Variable): The tensor variable contains labels of training data. It's a tensor with shape is :math:`[N \\times 1]`. - num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, - it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num + num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, + it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num which indicates the num of classes using by binary classify. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid @@ -5105,15 +5105,15 @@ def hsigmoid(input, is not set, the bias is initialized zero. Default: None. name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None. - path_table: (Variable|None) this variable can store each batch of samples' path to root, + path_table: (Variable|None) this variable can store each batch of samples' path to root, it should be in leaf -> root order - path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like - structure and each element in this array is indexes in parent nodes' Weight Matrix. - path_code: (Variable|None) this variable can store each batch of samples' code, + path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like + structure and each element in this array is indexes in parent nodes' Weight Matrix. + path_code: (Variable|None) this variable can store each batch of samples' code, each code consist with every code of parent nodes. it should be in leaf -> root order - is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is + is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is set you need to set path_table/path_code/num_classes, otherwise num_classes should be set - is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient + is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient of W and input will be sparse. Returns: @@ -6965,10 +6965,10 @@ def mean_iou(input, label, num_classes): num_classes (int): The possible number of labels. Returns: - mean_iou (Variable),out_wrong(Variable),out_correct(Variable): - + mean_iou (Variable),out_wrong(Variable),out_correct(Variable): + Three variables: - + - mean_iou : A Tensor representing the mean intersection-over-union with shape [1]. - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class. - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class. @@ -7166,7 +7166,7 @@ def affine_grid(theta, out_shape, name=None): Args: theta (Variable): A batch of affine transform parameters with shape [N, 2, 3]. - out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W]. + out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W]. ``out_shape`` can be a Variable or a list or tuple. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. @@ -7762,9 +7762,9 @@ def flatten(x, axis=1, name=None): """ **Flatten layer** Flattens the input tensor into a 2D matrix. - + For Example: - + .. code-block:: text Case 1: @@ -8942,7 +8942,7 @@ def similarity_focus(input, axis, indexes, name=None): SimilarityFocus Operator Generate a similarity focus mask with the same shape of input using the following method: - + 1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding to the axis according to the indexes. For example, if axis=1 and indexes=[a], it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X @@ -9713,47 +9713,3 @@ def huber_loss(input, label, delta): 'Residual': residual}, attrs={'delta': delta}) return out - - -class FC(layers.PyLayer): - def __init__(self, - size, - param_attr=None, - num_flatten_dims=1, - dtype=core.VarDesc.VarType.FP32): - super(FC, self).__init__(param_attr=param_attr) - self._size = size - self._num_flatten_dims = num_flatten_dims - self._dtype = dtype - self._tmp = self._helper.create_variable_for_type_inference(self._dtype) - self._out = self._helper.create_variable_for_type_inference(self._dtype) - - def _build_once(self, inputs): - input_shape = inputs.shape - param_shape = [ - reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) - ] + [self._size] - self._w = self._helper.create_parameter( - attr=self._helper.param_attr, - shape=param_shape, - dtype=self._dtype, - is_bias=False) - - def forward(self, inputs): - self._helper.append_op( - type="mul", - inputs={"X": inputs, - "Y": self._w}, - outputs={"Out": self._tmp}, - attrs={ - "x_num_col_dims": self._num_flatten_dims, - "y_num_col_dims": 1 - }) - - self._helper.append_op( - type="sum", - inputs={"X": [self._tmp]}, - outputs={"Out": self._out}, - attrs={"use_mkldnn": False}) - - return self._out diff --git a/python/paddle/fluid/tests/unittests/test_imperative.py b/python/paddle/fluid/tests/unittests/test_imperative.py index f717801bae..1dc13ec74e 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative.py +++ b/python/paddle/fluid/tests/unittests/test_imperative.py @@ -18,7 +18,7 @@ import numpy as np import paddle.fluid as fluid from paddle.fluid import core -from paddle.fluid.layers.nn import FC +from paddle.fluid.imperative.nn import FC from test_imperative_base import new_program_scope diff --git a/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py b/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py index e9dd158295..5d97edf876 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py @@ -74,7 +74,7 @@ class SimpleImgConvPool(fluid.imperative.PyLayer): class MNIST(fluid.imperative.PyLayer): def __init__(self, param_attr=None, bias_attr=None): - super(MNIST, self).__init__(param_attr=param_attr, bias_attr=bias_attr) + super(MNIST, self).__init__() self._simple_img_conv_pool_1 = SimpleImgConvPool( 1, 20, 5, 2, 2, act="relu") @@ -85,8 +85,7 @@ class MNIST(fluid.imperative.PyLayer): pool_2_shape = 50 * 8 * 8 SIZE = 10 scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5 - self._fc = FC(-1, - 10, + self._fc = FC(10, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale))) -- GitLab