From 225012024514075ced9434a092e5571e91fece0c Mon Sep 17 00:00:00 2001 From: zhupengyang <zhu_py@qq.com> Date: Wed, 15 Jul 2020 10:31:23 +0800 Subject: [PATCH] randint API: remove out, devive, stop_gradient; add name (#25433) * randint API: remove out, devive, stop_gradient; add name; test=develop * test=develop * test=develop * test=develop --- .../fluid/tests/unittests/test_randint_op.py | 82 +++---- python/paddle/tensor/random.py | 221 +++++++----------- 2 files changed, 111 insertions(+), 192 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_randint_op.py b/python/paddle/fluid/tests/unittests/test_randint_op.py index 40c9480a2c..89739a37fd 100644 --- a/python/paddle/fluid/tests/unittests/test_randint_op.py +++ b/python/paddle/fluid/tests/unittests/test_randint_op.py @@ -17,12 +17,9 @@ from __future__ import print_function import unittest import numpy as np from op_test import OpTest - -import paddle.fluid.core as core -from paddle.fluid.op import Operator -import paddle.fluid as fluid -from paddle.fluid import Program, program_guard import paddle +from paddle.fluid import core +from paddle import Program, program_guard def output_hist(out): @@ -56,25 +53,10 @@ class TestRandintOp(OpTest): class TestRandintOpError(unittest.TestCase): def test_errors(self): - main_prog = Program() - start_prog = Program() - with program_guard(main_prog, start_prog): - - def test_shape(): - shape = np.array([2, 3]) - paddle.randint(5, shape=shape, dtype='int32') - - self.assertRaises(TypeError, test_shape) - - def test_dtype(): - paddle.randint(5, shape=[32, 32], dtype='float32') - - self.assertRaises(TypeError, test_dtype) - - def test_low_high(): - paddle.randint(low=5, high=5, shape=[32, 32], dtype='int32') - - self.assertRaises(ValueError, test_low_high) + with program_guard(Program(), Program()): + self.assertRaises(TypeError, paddle.randint, 5, shape=np.array([2])) + self.assertRaises(TypeError, paddle.randint, 5, dtype='float32') + self.assertRaises(ValueError, paddle.randint, 5, 5) class TestRandintOp_attr_tensorlist(OpTest): @@ -127,46 +109,44 @@ class TestRandint_attr_tensor(OpTest): # Test python API class TestRandintAPI(unittest.TestCase): def test_api(self): - startup_program = fluid.Program() - train_program = fluid.Program() - with fluid.program_guard(train_program, startup_program): + with program_guard(Program(), Program()): # results are from [0, 5). - output1 = paddle.randint(5) + out1 = paddle.randint(5) # shape is a list and dtype is 'int32' - output2 = paddle.randint( + out2 = paddle.randint( low=-100, high=100, shape=[64, 64], dtype='int32') # shape is a tuple and dtype is 'int64' - output3 = paddle.randint( + out3 = paddle.randint( low=-100, high=100, shape=(32, 32, 3), dtype='int64') # shape is a tensorlist and dtype is 'float32' - dim_1 = fluid.layers.fill_constant([1], "int64", 32) - dim_2 = fluid.layers.fill_constant([1], "int32", 50) - output4 = paddle.randint( - low=-100, high=100, shape=[dim_1, 5], dtype='int32') + dim_1 = paddle.fill_constant([1], "int64", 32) + dim_2 = paddle.fill_constant([1], "int32", 50) + out4 = paddle.randint( + low=-100, high=100, shape=[dim_1, 5, dim_2], dtype='int32') # shape is a tensor and dtype is 'float64' - var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") - output5 = paddle.randint( + var_shape = paddle.nn.data( + name='var_shape', shape=[2], dtype="int64") + out5 = paddle.randint( low=1, high=1000, shape=var_shape, dtype='int64') - place = fluid.CPUPlace() - if fluid.core.is_compiled_with_cuda(): - place = fluid.CUDAPlace(0) - exe = fluid.Executor(place) - - exe.run(startup_program) + place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda( + ) else paddle.CPUPlace() + exe = paddle.Executor(place) outs = exe.run( - train_program, feed={'var_shape': np.array([100, 100]).astype('int64')}, - fetch_list=[output1, output2, output3, output4, output5]) + fetch_list=[out1, out2, out3, out4, out5]) -class TestRandintDygraphMode(unittest.TestCase): - def test_check_output(self): - with fluid.dygraph.guard(): - x = paddle.randint(10, shape=[10], dtype="int32") - x_np = x.numpy() - for i in range(10): - self.assertTrue((x_np[i] >= 0 and x_np[i] < 10)) +class TestRandintImperative(unittest.TestCase): + def test_api(self): + n = 10 + with paddle.imperative.guard(): + x1 = paddle.randint(n, shape=[10], dtype="int32") + x2 = paddle.tensor.randint(n) + x3 = paddle.tensor.random.randint(n) + for i in [x1, x2, x3]: + for j in i.numpy().tolist(): + self.assertTrue((j >= 0 and j < n)) if __name__ == "__main__": diff --git a/python/paddle/tensor/random.py b/python/paddle/tensor/random.py index 8eabaa84ce..8ef9dde088 100644 --- a/python/paddle/tensor/random.py +++ b/python/paddle/tensor/random.py @@ -37,172 +37,111 @@ __all__ = [ ] -def randint(low, - high=None, - shape=None, - out=None, - dtype=None, - device=None, - stop_gradient=False, - seed=0, - name=None): +def randint(low=0, high=None, shape=[1], dtype=None, name=None): """ :alias_main: paddle.randint :alias: paddle.randint,paddle.tensor.randint,paddle.tensor.random.randint - This function returns a Tensor filled with random integers from the "discrete uniform" distribution of the - specified data type in the interval [low, high). If high is None (the default), then results are from [0, low). + This function returns a Tensor filled with random integers from the + "discrete uniform" distribution of the specified data type in the interval + [low, high). If high is None (the default), then results are from [0, low). Args: - low (int): The lower bound on the range of random values to generate, the low is included in the range. - (unless high=None, in which case this parameter is one above the highest such integer). - high (int, optional): The upper bound on the range of random values to generate, the high is excluded - in the range. Default None(see above for behavior if high=None). - shape (list|tuple|Variable, optional): The shape of the output Tensor, if the shape is a list or tuple, - its elements can be an integer - or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. - If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be - int32 or int64. Default is None, in which case the shape is [1]. - out(Variable, optional): Optional output which can be any created - Variable that meets the requirements to store the result of operation. - if out is None, a new Varibale will be create to store the result. - dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output Tensor - which can be int32, int64, if dytpe is `None`, the data - type of created Tensor is `int64` - device(str, optional): This parameter specifies that the Tensor is created - on the GPU or CPU. - stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable, - default value is False. - seed (int, optional): Random seed used for permute samples. If seed is - equal to 0, it means use a seed generated by the system. Note that - if seed is not 0, this operator will always generate the same random - permutation every time. Default: 0. - name(str, optional): The default value is None. Normally there is no need for user to set this - property. For more information, please refer to :ref:`api_guide_Name`. + low (int): The lower bound on the range of random values to generate, + the low is included in the range.(unless high=None, in which case + this parameter is one above the highest such integer). Default is 0. + high (int, optional): The upper bound on the range of random values to + generate, the high is excluded in the range. Default is None(see + above for behavior if high=None). + shape (list|tuple|Variable, optional): The shape of the output Tensor, + if the shape is a list or tuple, its elements can be an integer or + a Tensor with the shape [1], and the type of the Tensor must be + int32 or int64. If the shape is a Variable, it is a 1-D Tensor, + and the type of the Tensor must be int32 or int64. Default is None. + dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the + output Tensor which can be int32, int64. If dtype is `None`, the + data type of created Tensor is `int64` + name(str, optional): The default value is None. Normally there is no + need for user to set this property. For more information, please + refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor of the specified shape filled with random integers. Raises: - TypeError: Randint's low must less then high. + TypeError: If shape's type is not list, tuple or Variable. + TypeError: If dtype is not int32 or int64. + ValueError: If low is not large then high; If low is 0, and high is None. Examples: .. code-block:: python - import paddle - import paddle.fluid as fluid - - # example 1: - # attr shape is a list which doesn't contain tensor Variable. - result_1 = paddle.randint(low=-5, high=5, shape=[3, 4], dtype="int64") - - # example 2: - # attr shape is a list which contains tensor Variable. - dim_1 = fluid.layers.fill_constant([1],"int64",3) - dim_2 = fluid.layers.fill_constant([1],"int32",5) - result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32") - - # example 3: - # attr shape is a Variable, the data type must be int64 or int32. - var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") - result_3 = paddle.randint(low=-5, high=5, shape=var_shape, dtype="int32") - var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32") - result_4 = paddle.randint(low=-5, high=5, shape=var_shape_int32, dtype="int64") - - # example 4: - # Input only one parameter - # low=0, high=10, shape=[1], dtype='int64' - result_4 = paddle.randint(10) - """ - - def get_new_shape_tensor(list_shape): - new_shape_tensor = [] - for dim in list_shape: - if isinstance(dim, Variable): - dim.stop_gradient = True - new_shape_tensor.append(dim) - else: - assert isinstance(dim, int) or isinstance(dim, long) - temp_out = helper.create_variable_for_type_inference('int64') - fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out) - new_shape_tensor.append(temp_out) - return new_shape_tensor - - def get_attr_shape(list_shape): - unk_dim_idx = -1 - attrs_shape = [] - for dim_idx, dim_size in enumerate(list_shape): - if isinstance(dim_size, Variable): - attrs_shape.append(-1) - else: - attrs_shape.append(dim_size) - assert dim_size > 0, ( - "Each dimension size given in shape must not be negative " - "except one unknown dimension.") - return attrs_shape - - if dtype is None: - dtype = 'int64' - check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint') - - inputs = dict() - attrs = dict() - - if shape is None: - shape = [1] - assert len(shape) > 0, ("The size of argument(shape) can't be zero.") + import paddle + import numpy as np - helper = LayerHelper("randint", **locals()) + paddle.enable_imperative() - if in_dygraph_mode(): - attrs['shape'] = shape - else: - if isinstance(shape, Variable): - shape.stop_gradient = True - inputs["ShapeTensor"] = shape - elif isinstance(shape, (list, tuple)): - assert len(shape) > 0, ( - "The size of argument(shape) can't be zero.") - if utils._contain_var(shape): - inputs['ShapeTensorList'] = get_new_shape_tensor(shape) - else: - attrs["shape"] = get_attr_shape(shape) - check_type(shape, 'shape', (list, tuple, Variable), 'randint') + # example 1: + # attr shape is a list which doesn't contain tensor Variable. + result_1 = paddle.randint(low=-5, high=5, shape=[3]) + # [0 -3 2] + + # example 2: + # attr shape is a list which contains tensor Variable. + dim_1 = paddle.fill_constant([1],"int64",2) + dim_2 = paddle.fill_constant([1],"int32",3) + result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32") + print(result_2.numpy()) + # [[ 0 -1 -3] + # [ 4 -2 0]] + + # example 3: + # attr shape is a Variable + var_shape = paddle.imperative.to_variable(np.array([3])) + result_3 = paddle.randint(low=-5, high=5, shape=var_shape) + # [-2 2 3] + + # example 4: + # data type is int32 + result_4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32') + # [-5 4 -4] + + # example 5: + # Input only one parameter + # low=0, high=10, shape=[1], dtype='int64' + result_5 = paddle.randint(10) + # [7] + """ if high is None: high = low low = 0 - attrs['low'] = low - attrs['high'] = high - attrs['seed'] = seed - if (low >= high): + if dtype is None: + dtype = 'int64' + if not isinstance(dtype, core.VarDesc.VarType): + dtype = convert_np_dtype_to_dtype_(dtype) + + if in_dygraph_mode(): + shape = utils._convert_shape_to_list(shape) + return core.ops.randint('shape', shape, 'low', low, 'high', high, + 'seed', 0, 'dtype', dtype) + + check_type(shape, 'shape', (list, tuple, Variable), 'randint') + check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint') + if low >= high: raise ValueError( "randint's low must less then high, but received low = {0}, " "high = {1}".format(low, high)) - if out is None: - if name is None: - out = helper.create_variable_for_type_inference(dtype=dtype) - else: - out = helper.create_variable( - name=name, dtype=dtype, persistable=False) - else: - check_dtype(dtype, 'dtype', - convert_dtype(out.dtype), 'randint', - "(The dtype in randint must be the same with out's dtype.)") - attrs['dtype'] = out.dtype - out.stop_gradient = stop_gradient - - if device is None: - helper.append_op( - type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs) - else: - with device_guard(device): - helper.append_op( - type='randint', - inputs=inputs, - outputs={'Out': out}, - attrs=attrs) + inputs = dict() + attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype} + utils._get_shape_tensor_inputs( + inputs=inputs, attrs=attrs, shape=shape, op_type='randint') + + helper = LayerHelper("randint", **locals()) + out = helper.create_variable_for_type_inference(dtype=dtype) + helper.append_op( + type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out -- GitLab