Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
222a5137
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
222a5137
编写于
4月 14, 2020
作者:
D
danleifeng
提交者:
GitHub
4月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add new tensor in API2.0: max,min,t,eye,log1p (#23228)
add new tensor: max,min,t,eye,log1p; test=develop
上级
146bed76
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
600 addition
and
15 deletion
+600
-15
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+10
-0
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+21
-0
python/paddle/__init__.py
python/paddle/__init__.py
+5
-5
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+52
-0
python/paddle/fluid/tests/unittests/test_eye_op.py
python/paddle/fluid/tests/unittests/test_eye_op.py
+42
-0
python/paddle/fluid/tests/unittests/test_reduce_op.py
python/paddle/fluid/tests/unittests/test_reduce_op.py
+64
-0
python/paddle/fluid/tests/unittests/test_transpose_op.py
python/paddle/fluid/tests/unittests/test_transpose_op.py
+67
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+10
-5
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+61
-1
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+72
-1
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+196
-3
未找到文件。
paddle/fluid/operators/activation_op.cc
浏览文件 @
222a5137
...
...
@@ -279,6 +279,15 @@ Natural logarithm of x.
)DOC"
;
UNUSED
constexpr
char
Log1pDoc
[]
=
R"DOC(
Log Activation Operator.
$out = \ln(x+1)$
Natural logarithm of x.
)DOC"
;
UNUSED
constexpr
char
SquareDoc
[]
=
R"DOC(
The OP square each elements of the inputs.
...
...
@@ -634,6 +643,7 @@ REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
REGISTER_ACTIVATION_OP_MAKER
(
Round
,
RoundDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Reciprocal
,
ReciprocalDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Log
,
LogDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Log1p
,
Log1pDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Square
,
SquareDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Softplus
,
SoftplusDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Softsign
,
SoftsignDoc
);
...
...
paddle/fluid/operators/activation_op.h
浏览文件 @
222a5137
...
...
@@ -737,6 +737,26 @@ struct LogGradFunctor : public BaseActivationFunctor<T> {
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
// log1p(x) = natural logarithm of x+1
template
<
typename
T
>
struct
Log1pFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
(
static_cast
<
T
>
(
1
)
+
x
).
log
();
}
};
template
<
typename
T
>
struct
Log1pGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
(
x
+
static_cast
<
T
>
(
1
)));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
// square(x) = x^2
template
<
typename
T
>
struct
SquareFunctor
:
public
BaseActivationFunctor
<
T
>
{
...
...
@@ -1718,6 +1738,7 @@ class PowGradKernel
__macro(round, Round, RoundFunctor, ZeroGradFunctor); \
__macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor); \
__macro(log, Log, LogFunctor, LogGradFunctor); \
__macro(log1p, Log1p, Log1pFunctor, Log1pGradFunctor); \
__macro(brelu, BRelu, BReluFunctor, BReluGradFunctor); \
__macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor); \
__macro(stanh, STanh, STanhFunctor, STanhGradFunctor); \
...
...
python/paddle/__init__.py
浏览文件 @
222a5137
...
...
@@ -43,7 +43,7 @@ import paddle.nn
# from .tensor.creation import create_random_int_lod.tensor #DEFINE_ALIAS
# from .tensor.creation import crop_.tensor #DEFINE_ALIAS
# from .tensor.creation import diag #DEFINE_ALIAS
# from .tensor.creation import eye
#DEFINE_ALIAS
from
.tensor.creation
import
eye
#DEFINE_ALIAS
from
.tensor.creation
import
fill_constant
#DEFINE_ALIAS
# from .tensor.creation import get_.tensor_from_selected_rows #DEFINE_ALIAS
from
.tensor.creation
import
linspace
#DEFINE_ALIAS
...
...
@@ -131,15 +131,15 @@ from .tensor.math import sum #DEFINE_ALIAS
# from .tensor.math import sums #DEFINE_ALIAS
from
.tensor.math
import
tanh
#DEFINE_ALIAS
from
.tensor.math
import
elementwise_sum
#DEFINE_ALIAS
# from .tensor.math import max
#DEFINE_ALIAS
# from .tensor.math import min
#DEFINE_ALIAS
from
.tensor.math
import
max
#DEFINE_ALIAS
from
.tensor.math
import
min
#DEFINE_ALIAS
from
.tensor.math
import
mm
#DEFINE_ALIAS
from
.tensor.math
import
div
#DEFINE_ALIAS
from
.tensor.math
import
add
#DEFINE_ALIAS
# from .tensor.math import atan #DEFINE_ALIAS
from
.tensor.math
import
logsumexp
#DEFINE_ALIAS
# from .tensor.math import inverse #DEFINE_ALIAS
# from .tensor.math import log1p
#DEFINE_ALIAS
from
.tensor.math
import
log1p
#DEFINE_ALIAS
# from .tensor.math import erf #DEFINE_ALIAS
# from .tensor.math import addcmul #DEFINE_ALIAS
from
.tensor.math
import
addmm
#DEFINE_ALIAS
...
...
@@ -153,7 +153,7 @@ from .tensor.linalg import dot #DEFINE_ALIAS
from
.tensor.linalg
import
norm
#DEFINE_ALIAS
# from .tensor.linalg import transpose #DEFINE_ALIAS
from
.tensor.linalg
import
dist
#DEFINE_ALIAS
# from .tensor.linalg import t
#DEFINE_ALIAS
from
.tensor.linalg
import
t
#DEFINE_ALIAS
# from .tensor.linalg import cross #DEFINE_ALIAS
# from .tensor.linalg import cholesky #DEFINE_ALIAS
# from .tensor.linalg import .tensordot #DEFINE_ALIAS
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
222a5137
...
...
@@ -775,6 +775,57 @@ class TestLog(TestActivation):
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
log
,
in2
)
class
TestLog1p
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"log1p"
self
.
init_dtype
()
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
log1p
(
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
([
'X'
],
'Out'
)
def
test_api
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
input_x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float64"
)
data_x
=
fluid
.
layers
.
data
(
name
=
"data_x"
,
shape
=
[
11
,
17
],
append_batch_size
=
False
,
dtype
=
"float64"
)
res_log1p
=
fluid
.
layers
.
data
(
name
=
"res_log1p"
,
shape
=
[
11
,
17
],
append_batch_size
=
False
,
dtype
=
"float64"
)
out1
=
paddle
.
log1p
(
data_x
)
out2
=
paddle
.
log1p
(
data_x
,
out
=
res_log1p
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
res1
,
res_in
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"data_x"
:
input_x
},
fetch_list
=
[
out1
,
res_log1p
])
expected_res
=
np
.
log1p
(
input_x
)
np
.
testing
.
assert_allclose
(
res1
,
expected_res
)
np
.
testing
.
assert_allclose
(
res_in
,
expected_res
)
# dygraph
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float64"
)
data_x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
log1p
(
data_x
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
log1p
(
np_x
))
np
.
testing
.
assert_allclose
(
np_z
,
z_expected
)
class
TestSquare
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"square"
...
...
@@ -1173,6 +1224,7 @@ create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class
(
TestELU
)
create_test_act_fp16_class
(
TestReciprocal
)
create_test_act_fp16_class
(
TestLog
)
create_test_act_fp16_class
(
TestLog1p
,
grad_atol
=
0.9
)
create_test_act_fp16_class
(
TestSquare
)
create_test_act_fp16_class
(
TestPow
,
atol
=
5e-2
)
create_test_act_fp16_class
(
TestPow_factor_tensor
,
atol
=
5e-2
)
...
...
python/paddle/fluid/tests/unittests/test_eye_op.py
浏览文件 @
222a5137
...
...
@@ -18,6 +18,8 @@ import unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.framework
as
framework
...
...
@@ -70,5 +72,45 @@ class TestEyeOp2(OpTest):
self
.
check_output
()
class
API_TestTensorEye
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
paddle
.
eye
(
10
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
expected_result
=
np
.
eye
(
10
,
dtype
=
"float32"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
paddle
.
eye
(
10
,
num_columns
=
7
,
dtype
=
"float64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
expected_result
=
np
.
eye
(
10
,
7
,
dtype
=
"float64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
paddle
.
eye
(
10
,
dtype
=
"int64"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
expected_result
=
np
.
eye
(
10
,
dtype
=
"int64"
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
def
test_num_rows_type_check
():
paddle
.
eye
(
-
1
,
dtype
=
"int64"
)
self
.
assertRaises
(
TypeError
,
test_num_rows_type_check
)
def
test_num_columns_type_check
():
paddle
.
eye
(
10
,
num_columns
=
5.2
,
dtype
=
"int64"
)
self
.
assertRaises
(
TypeError
,
test_num_columns_type_check
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_reduce_op.py
浏览文件 @
222a5137
...
...
@@ -574,5 +574,69 @@ class API_TestSumOp(unittest.TestCase):
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
class
API_TestMaxOp
(
unittest
.
TestCase
):
def
test_1
(
self
):
# type: float
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
result_max
=
paddle
.
max
(
input
=
data
,
dim
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_data
=
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_max
])
self
.
assertEqual
((
res
==
np
.
max
(
input_data
,
axis
=
1
)).
all
(),
True
)
# type: int
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"int64"
)
result_max
=
paddle
.
max
(
input
=
data
,
dim
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_data
=
np
.
random
.
randint
(
10
,
size
=
(
10
,
10
)).
astype
(
np
.
int64
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_max
])
self
.
assertEqual
((
res
==
np
.
max
(
input_data
,
axis
=
1
)).
all
(),
True
)
# dygraph
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
array
([
10
,
10
]).
astype
(
'float64'
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
max
(
x
,
dim
=
0
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
max
(
np_x
,
axis
=
0
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
class
API_TestMinOp
(
unittest
.
TestCase
):
def
test_1
(
self
):
# type: float
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
result_min
=
paddle
.
min
(
input
=
data
,
dim
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_data
=
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_min
])
self
.
assertEqual
((
res
==
np
.
min
(
input_data
,
axis
=
1
)).
all
(),
True
)
# type: int
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
"data"
,
shape
=
[
10
,
10
],
dtype
=
"int64"
)
result_min
=
paddle
.
min
(
input
=
data
,
dim
=
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_data
=
np
.
random
.
randint
(
10
,
size
=
(
10
,
10
)).
astype
(
np
.
int64
)
res
,
=
exe
.
run
(
feed
=
{
"data"
:
input_data
},
fetch_list
=
[
result_min
])
self
.
assertEqual
((
res
==
np
.
min
(
input_data
,
axis
=
1
)).
all
(),
True
)
# dygraph
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
array
([
10
,
10
]).
astype
(
'float64'
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
min
(
x
,
dim
=
0
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
min
(
np_x
,
axis
=
0
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_transpose_op.py
浏览文件 @
222a5137
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
...
...
@@ -137,5 +138,71 @@ class TestTransposeOpError(unittest.TestCase):
self
.
assertRaises
(
ValueError
,
test_each_elem_value_check
)
class
TestTAPI
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
10
],
dtype
=
"float64"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
10
]).
astype
(
"float64"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
10
,
5
],
dtype
=
"float64"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
10
,
5
]).
astype
(
"float64"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
1
,
5
],
dtype
=
"float64"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
1
,
5
]).
astype
(
"float64"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
10
]).
astype
(
"float64"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
10
,
5
]).
astype
(
"float64"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
1
,
5
]).
astype
(
"float64"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
10
,
5
,
3
],
dtype
=
'float64'
)
def
test_x_dimension_check
():
paddle
.
t
(
x
)
self
.
assertRaises
(
ValueError
,
test_x_dimension_check
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
222a5137
...
...
@@ -11,6 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
#from .math import *
#from .creation import *
#from .linalg import *
# TODO: define alias in tensor and framework directory
# from .creation import create_tensor #DEFINE_ALIAS
...
...
@@ -18,7 +23,7 @@
# from .creation import create_random_int_lod #DEFINE_ALIAS
# from .creation import crop_tensor #DEFINE_ALIAS
# from .creation import diag #DEFINE_ALIAS
# from .creation import eye
#DEFINE_ALIAS
from
.creation
import
eye
#DEFINE_ALIAS
# from .creation import fill_constant #DEFINE_ALIAS
# from .creation import get__from_selected_rows #DEFINE_ALIAS
from
.creation
import
linspace
#DEFINE_ALIAS
...
...
@@ -106,15 +111,15 @@ from .math import sum #DEFINE_ALIAS
# from .math import sums #DEFINE_ALIAS
from
.math
import
tanh
#DEFINE_ALIAS
from
.math
import
elementwise_sum
#DEFINE_ALIAS
# from .math import max
#DEFINE_ALIAS
# from .math import min
#DEFINE_ALIAS
from
.math
import
max
#DEFINE_ALIAS
from
.math
import
min
#DEFINE_ALIAS
from
.math
import
mm
#DEFINE_ALIAS
from
.math
import
div
#DEFINE_ALIAS
from
.math
import
add
#DEFINE_ALIAS
# from .math import atan #DEFINE_ALIAS
from
.math
import
logsumexp
#DEFINE_ALIAS
# from .math import inverse #DEFINE_ALIAS
# from .math import log1p
#DEFINE_ALIAS
from
.math
import
log1p
#DEFINE_ALIAS
# from .math import erf #DEFINE_ALIAS
# from .math import addcmul #DEFINE_ALIAS
from
.math
import
addmm
#DEFINE_ALIAS
...
...
@@ -128,7 +133,7 @@ from .linalg import dot #DEFINE_ALIAS
from
.linalg
import
norm
#DEFINE_ALIAS
# from .linalg import transpose #DEFINE_ALIAS
from
.linalg
import
dist
#DEFINE_ALIAS
# from .linalg import t
#DEFINE_ALIAS
from
.linalg
import
t
#DEFINE_ALIAS
# from .linalg import cross #DEFINE_ALIAS
# from .linalg import cholesky #DEFINE_ALIAS
# from .manipulation import cast #DEFINE_ALIAS
...
...
python/paddle/tensor/creation.py
浏览文件 @
222a5137
...
...
@@ -38,7 +38,7 @@ __all__ = [
'zeros'
,
'zeros_like'
,
# 'arrange',
#
'eye',
'eye'
,
'full'
,
'full_like'
,
'triu'
,
...
...
@@ -396,6 +396,66 @@ def zeros_like(input, dtype=None, device=None, name=None):
return
out
def
eye
(
num_rows
,
num_columns
=
None
,
out
=
None
,
dtype
=
'float32'
,
stop_gradient
=
True
,
name
=
None
):
"""
**eye**
This function constructs an identity tensor, or a batch of tensor.
Args:
num_rows(int): the number of rows in each batch tensor.
num_columns(int, optional): the number of columns in each batch tensor.
If None, default: num_rows.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
dtype(string, optional): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64.
stop_gradient(bool, optional): Whether stop calculating gradients. Default:True.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
Examples:
.. code-block:: python
import paddle
data = paddle.eye(3, dtype='int32')
# [[1, 0, 0]
# [0, 1, 0]
# [0, 0, 1]]
data = paddle.eye(2, 3, dtype='int32')
# [[1, 0, 0]
# [0, 1, 0]]
"""
helper
=
LayerHelper
(
"eye"
,
**
locals
())
if
not
isinstance
(
num_rows
,
int
)
or
num_rows
<
0
:
raise
TypeError
(
"num_rows should be a non-negative int"
)
if
num_columns
is
not
None
:
if
not
isinstance
(
num_columns
,
int
)
or
num_columns
<
0
:
raise
TypeError
(
"num_columns should be a non-negative int"
)
else
:
num_columns
=
num_rows
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
helper
.
append_op
(
type
=
'eye'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'num_rows'
:
num_rows
,
'num_columns'
:
num_columns
,
'dtype'
:
c_dtype
},
stop_gradient
=
True
)
out
.
stop_gradient
=
stop_gradient
return
out
def
full
(
shape
,
fill_value
,
out
=
None
,
...
...
python/paddle/tensor/linalg.py
浏览文件 @
222a5137
...
...
@@ -23,7 +23,7 @@ __all__ = [
'norm'
,
# 'transpose',
'dist'
,
#
't',
't'
,
# 'cross',
# 'cholesky',
# 'tensordot'
...
...
@@ -458,3 +458,74 @@ def dot(x, y, name=None):
type
=
"dot"
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
attrs
=
{},
outputs
=
{
"Out"
:
out
})
return
out
def
t
(
input
,
name
=
None
):
"""
Transpose <=2-D tensor.
0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
the fluid.layers.transpose function which perm dimensions set 0 and 1.
Args:
input (Variable): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.
For Example:
.. code-block:: text
# Example 1 (0-D tensor)
x = tensor([0.79])
paddle.t(x) = tensor([0.79])
# Example 2 (1-D tensor)
x = tensor([0.79, 0.84, 0.32])
paddle.t(x) = tensor([0.79, 0.84, 0.32])
# Example 3 (2-D tensor)
x = tensor([0.79, 0.84, 0.32],
[0.64, 0.14, 0.57])
paddle.t(x) = tensor([0.79, 0.64],
[0.84, 0.14],
[0.32, 0.57])
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[2, 3],
dtype='float32')
x_transposed = paddle.t(x)
print x_transposed.shape
#(3L, 2L)
"""
if
len
(
input
.
shape
)
>
2
:
raise
ValueError
(
"Input(input) only support N-D (N<=2) tensor, but received "
"length of Input(input) is %s. Perhaps you can use paddle."
"tensor.transpose() instead."
%
len
(
input
.
shape
))
if
in_dygraph_mode
():
if
len
(
input
.
shape
)
==
1
:
return
input
# 2-D tensor
perm
=
[
1
,
0
]
out
,
_
=
core
.
ops
.
transpose2
(
input
,
'axis'
,
perm
)
return
out
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'transpose'
)
helper
=
LayerHelper
(
't'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
input_shape
=
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
if
len
(
input
.
shape
)
==
1
:
out
=
input
else
:
helper
.
append_op
(
type
=
'transpose2'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
out
],
'XShape'
:
[
input_shape
]},
attrs
=
{
'axis'
:
[
1
,
0
]})
return
out
python/paddle/tensor/math.py
浏览文件 @
222a5137
...
...
@@ -65,15 +65,15 @@ __all__ = [
# 'sums',
'tanh'
,
'elementwise_sum'
,
#
'max',
#
'min',
'max'
,
'min'
,
'mm'
,
'div'
,
'add'
,
# 'atan',
'logsumexp'
,
# 'inverse',
#
'log1p',
'log1p'
,
# 'erf',
# 'addcmul',
'addmm'
...
...
@@ -1062,3 +1062,196 @@ Examples:
return
out
return
layers
.
log
(
sum_out
,
name
)
def
max
(
input
,
dim
=
None
,
keep_dim
=
False
,
out
=
None
,
name
=
None
):
"""
Computes the maximum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor, the data type is float32,
float64, int32, int64.
dim (list|int, optional): The dimension along which the maximum is computed.
If :attr:`None`, compute the maximum over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true, default
value is False.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: Tensor, results of maximum on the specified dim of input tensor,
it's data type is the same as input's Tensor.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
paddle.max(x) # [0.9]
paddle.max(x, dim=0) # [0.2, 0.3, 0.6, 0.9]
paddle.max(x, dim=-1) # [0.9, 0.7]
paddle.max(x, dim=1, keep_dim=True) # [[0.9], [0.7]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# Each example is followed by the corresponding output tensor.
y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
paddle.max(y, dim=[1, 2]) # [4.0, 8.0]
paddle.max(y, dim=[0, 1]) # [7.0, 8.0]
"""
helper
=
LayerHelper
(
'max'
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'max'
)
reduce_all
=
True
if
dim
==
None
or
dim
==
[]
else
False
dim
=
dim
if
dim
!=
None
and
dim
!=
[]
else
[
0
]
if
in_dygraph_mode
():
return
core
.
ops
.
reduce_max
(
input
,
'dim'
,
dim
,
'keep_dim'
,
keep_dim
,
'reduce_all'
,
reduce_all
)
helper
.
append_op
(
type
=
'reduce_max'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'dim'
:
dim
,
'keep_dim'
:
keep_dim
,
'reduce_all'
:
reduce_all
})
return
out
def
min
(
input
,
dim
=
None
,
keep_dim
=
False
,
out
=
None
,
name
=
None
):
"""
Computes the minimum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor, the data type is float32,
float64, int32, int64.
dim (list|int, optional): The dimensions along which the minimum is computed.
If :attr:`None`, compute the minimum over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true, default
value is False.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: Tensor, result of minimum on the specified dim of input tensor,
it's data type is the same as input's Tensor.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
paddle.min(x) # [0.1]
paddle.min(x, dim=0) # [0.1, 0.2, 0.5, 0.7]
paddle.min(x, dim=-1) # [0.2, 0.1]
paddle.min(x, dim=1, keep_dim=True) # [[0.2], [0.1]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# Each example is followed by the corresponding output tensor.
y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
paddle.min(y, dim=[1, 2]) # [1.0, 5.0]
paddle.min(y, dim=[0, 1]) # [1.0, 2.0]
"""
helper
=
LayerHelper
(
'min'
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'max'
)
reduce_all
=
True
if
dim
==
None
or
dim
==
[]
else
False
dim
=
dim
if
dim
!=
None
and
dim
!=
[]
else
[
0
]
if
in_dygraph_mode
():
return
core
.
ops
.
reduce_min
(
input
,
'dim'
,
dim
,
'keep_dim'
,
keep_dim
,
'reduce_all'
,
reduce_all
)
helper
.
append_op
(
type
=
'reduce_min'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'dim'
:
dim
,
'keep_dim'
:
keep_dim
,
'reduce_all'
:
reduce_all
})
return
out
def
log1p
(
x
,
out
=
None
,
name
=
None
):
"""
Calculates the natural log of the given input tensor, element-wise.
.. math::
Out =
\\
ln(x+1)
Args:
x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
# Graph Organizing
x = fluid.data(name="x", shape=[2,1], dtype="float32")
res = paddle.log1p(x)
# Create an executor using CPU as an example
exe = fluid.Executor(fluid.CPUPlace())
# Execute
x_i = np.array([[0], [1]]).astype(np.float32)
res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
print(res_val) # [[0.], [0.6931472]]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
log1p
(
x
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
"log1p"
)
inputs
=
{
'X'
:
[
x
]}
helper
=
LayerHelper
(
'log1p'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"log1p"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录